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Abstract: The design of a reliable control and guidance system for aerial vehicles based only
on visual information and Inertial Measurement Unit (IMU) data possesses many unsolved
challenging problems, ranging from hardware and software development to pure control-
theoretical issues. Theses issues have been addressed by proposing a bio-inspired adaptive
autopilot for self-localization, obstacles detection and control of small autonomous rotorcraft
using optic flow and IMU measurements. This paper focuses particulary on the design of a
hierarchical adaptive control system. Adaptive control tools have been used to recover the
absolute aircraft velocities and real distances to obstacles. These estimates are then exploited
by a multipurpose hierarchical controller for achieving various navigational tasks such as take-
off, hovering, trajectory tracking and vertical landing. Furthermore, the asymptotic stability of
the entire closed-loop system has been established using connected systems control theories.
Simulation results over various ranges of the flight envelope illustrate that the proposed
autopilot performs very well and allows a simulated rotorcraft UAV to achieve interesting flight
behaviours.

Keywords: Adaptive control, rotorcraft UAVs, hierarchical flight control, vision-based control,
bio-inspired navigation.

1. INTRODUCTION
Recently, there is a growing interest in developing fully au-
tonomous Unmanned Aerial Vehicles (UAVs) for military
and civilian applications. The design of sensing, control
and navigation systems is a crucial step in the development
of such flying machines. Altitude, position and orientation
measurements are usually sufficient for UAVs operating at
high altitudes. Therefore, conventional Inertial Navigation
Systems (INS) that include pressure sensor, GPS and
IMU provide the needed information for flight control and
waypoint navigation. On the other hand, small and micro
UAVs are designed to operate at low altitude in cluttered
environments. To achieve this kind of missions, the UAV
needs to detect and avoid obstacles in real-time, recognize
and track targets, map the environment and plan its path.
Environment perception technologies used within UAVs
include cameras and range sensors. For some particular
operations such as autonomous landing, range sensors
(laser, pressure and ultrasonics) are widely used. However,
computer vision plays the most important role in several
applications. Indeed, computer vision provides a viable
and useful solution to sensing on UAVs because cameras
are too light to fit the limited payload capabilities of small
UAVs. Although computer vision has many benefits for
UAVs control and guidance, it presents many challenges
too. Indeed, the design of reliable and real-time vision
algorithms is a complex problem. Moreover, synthesizing
robust flight controllers that are based on visual cues is a
challenging task.

Despite these challenging issues, promising results have
been obtained using computer vision for aerial vehicles

control and navigation. Potential applications of computer
vision for UAVs include aircraft self-motion recovery, ob-
stacles detection, depth map reconstruction, target detec-
tion and tracking. The existing vision strategies for achiev-
ing these tasks can be classified in different manners. Here,
we make a distinction between vision approaches that rely
on image content (visual features) and vision strategies
that are based on image motion (optic flow) regardless its
content. Image content-based methods aim at detecting
known features in the image such as artificial marks,
Shakernia et al. (2002), horizon Ettinger et al. (2003)
or known objects like windows Saripalli et al. (2005),
roads, etc. On the other hand, many researchers have been
interested in using image motion for UAVs control and
guidance, Amidi et al. (1999). One of the main advantage
of these approaches is their suitability for unknown and
unstructured environments. Furthermore, recent findings
on insects flight revealed that these latter rely heavily on
optic flow for flight control and navigation Srinivasan et al.
(1996). These findings have motivated many researchers to
design insect-inspired optic flow-based autopilots for small
flying machines Ruffier and Franceschini (2005); Zufferey
and Floreano (2006); Green et al. (2004).

In this paper, we present a practical autopilot which
takes inspiration from flying insects. It is based on a
monocular camera and an IMU and it includes a vision
module for localization and 3D terrain modeling, and
an adaptive control system for navigation and trajectory
tracking. Functionally, the vision algorithm computes in
real time the optic flow, fuses the visual and angular rate
data, and recovers the aircraft ego-motion and depth map
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modulo some unknown scale factor (see Kendoul et al.
(2007) for more details in the vision system). Therefore, we
formulate the vision-based control problem as the control
of a nonlinear system with unknown parameters (scale
factor). An adaptive observer has been used to recover the
absolute aircraft velocities and real distances to obstacles.
These estimates are then, exploited by a multipurpose
hierarchical controller for autonomous take-off, hovering,
trajectory tracking and vertical landing.

Although previous works have shown that visual cues
can lead to an autonomous flight, our work has extended
this finding in a number of areas. Firstly, the proposed
autopilot is based on only two lightweight sensors, a small
monocular camera and a low-cost IMU. Secondly, system
identification techniques have been applied to estimate the
unknown scale factor introduced by visual measurements,
thereby recovering the absolute UAV motion and real
depth map. Furthermore, we have considered the 3D flight
control problem without any restrictions on the UAV
motion. Finally, the asymptotic stability of the entire
connected system has been established using advanced
nonlinear control theories.

The remainder of this paper is organized as follows: section
2 outlines and formulates the problem of UAVs control
using visual cues and IMU data. In section 3, we present
the proposed adaptive flight controller followed by the
stability analysis for the closed-loop system. Numerical
results using synthetic environments and a simulated UAV
are presented in Section 4. Finally, some conclusions are
given in Section 5.

2. MATHEMATICAL FORMULATION OF THE
OPTIC FLOW-BASED CONTROL PROBLEM

It is common to represent the control problem by differ-
ential equations that model the plant (UAV) dynamics,
and an algebraic system that expresses the available mea-
surements as functions of state variables. Let us denote
by (ξ, υ, η, η̇) the position, translational velocity, orienta-
tion and angular rate vectors, respectively. Therefore, the
dynamics of a rotorcraft UAV such as the quadrotor heli-
copter can be represented by the following mathematical
model, Kendoul (2007):




ξ̈ =
1
m

uRe3 − ge3

M(η)η̈ + C(η, η̇)η̇ = Ψ(η)T τ
(1)

where u is the total thrust, τ is the torque vector, R and
Ψ are the rotation and Euler matrices, respectively. The
pseudo-inertial matrix M(η) and the centripetal vector
C(η, η̇) are defined in Kendoul (2007).

Since the rotational dynamics are feedback linearizable, we
propose the following change of variables:

τ = JΨ(η)τ̃ + Ψ−1C(η, η̇)η̇ (2)
which is invertible for θ 6= kπ/2.

By recalling (1) and (2), the optic flow-based control
problem can be formulated as follows:




ξ̇ = υ

υ̇ =
1
m

uRe3 − ge3

η̈ = τ̃

,





yz = b z ∈ R
Yυ = b υ ∈ R3

Yη = (η, η̇)T ∈ R6

(3)

The available measurements, provided by the vision-IMU
system, are denoted by (yz, Yυ, Yη). In fact, we have
developed a bio-inspired sensing system that is based on
a monocular camera and a small IMU. Then, a real-
time vision algorithm has been designed for image motion
computation and interpretation. Fusing optic flow and
angular rate data allowed to estimate the UAV velocities
and distances to obstacles modulo some unknown scale
factor b ∈ R+−{0}. If we assume that the camera is down-
looking, then the extracted distances are proportional to
the aircraft altitude z (height map).

From (3), one can observe that there is no direct informa-
tion about the horizontal position (x, y). Moreover, the
translational velocity vector υ and the UAV altitude z
are not known explicitly. They are measured modulo some
unknown scale factor b. Hence, the position-based control
scheme can not be directly used because the aircraft posi-
tion and velocity can not be estimated using only the avail-
able measurements. The image-based control approach is
also not suitable because it complicates the control design
and may limit the flight envelope to special cases. Our
objective is to design a practical multipurpose controller
that can achieve many navigational tasks using IMU data
and the information extracted from optic flow. We have
thus, proposed a framework that can be considered as
the combination of the position- and image-based control
schemes. In fact, we use the visual cues to partially extract
information about the aircraft position and orientation
(yz, Yυ, Yη), and the state variables are reconstructed by
the controller itself. In other words, the measurements are
expressed in terms of visual signals and the control task is
defined in terms of aircraft position and orientation.

Let zd(t) ∈ R1, υd(t) ∈ R3 and ψd(t) ∈ R1 be
the desired trajectories. The control strategy aims then,
at finding a feedback control u(yz, Yυ, Yη, zd, υd) and
τ̃(yz, Yυ, Yη, zd, υd, ψd) such that the tracking errors (z(t)−
zd(t), υ(t) − υd(t), ψ(t) − ψd(t)) ∈ R5 are asymptotically
stable for all initial conditions. In fact, information about
the aircraft velocities and altitude is sufficient for achieving
several navigational tasks. In addition, most of naviga-
tional tasks are expressed in terms of desired velocities, al-
titude and heading (yaw angle). Indeed, studies on insect’s
flight behaviours have revealed that these latter control
their velocities for dealing with the navigation problem.

Insects like flies and bees use similar measurements (an-
gular rate data and information extracted from optic flow
such as self-motion and distances to obstacles) to deal with
the 3D navigation problem. Thus, it is clear from the theo-
retical and practical points of view that many navigational
tasks such as landing, translational flight regulation and
terrain following can be achieved using the measurements
given in (3). Furthermore, if the unknown parameter b can
be estimated on-line, then more complex behaviours can be
achieved. Indeed, we can stabilize the UAV at some desired
altitude and make the rotorcraft follow some arbitrary
trajectory. It is evident that the estimation of the unknown
parameter b allows the recovery of the absolute velocity
vector υ and the aircraft altitude z. Consequently, the op-
tic flow-based control, usually used for reactive behaviours,
can be extended to more complex navigational tasks. This
constitutes the major motivation for augmenting a flight
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controller by an identification algorithm and an adaptive
mechanism.

In the next section, we will design an adaptive hierarchical
controller that jointly identifies the unknown parameter
b, recovers the state variables (z, υ) and stabilizes the
tracking errors z(t)− zd(t), υ(t)− υd(t) and ψ(t)−ψd(t)).

3. ADAPTIVE HIERARCHICAL 3D FLIGHT
CONTROLLER

Since we are using a down-looking camera and an IMU,
then, only aircraft attitude (η, η̇), translational velocity υ
and its altitude z can be accurately controlled. The con-
sidered model for the control design is thus, the following:




ż = υz

υ̇ =
1
m

uRe3 − ge3

η̈ = τ̃

,





yz = b z

Yυ = b υ

Yη = (η, η̇)T

(4)

Consequently, the vision-based control of a rotorcraft UAV
is formulated as the control of a nonlinear system with an
unknown parameter. Therefore, various adaptive control
tools can be applied. We have chosen to use the indirect
adaptive control design because it has the advantage to
be flexible since different identification algorithms can be
combined with different control strategies. Furthermore,
this control scheme has the advantage to separate the
estimation and control processes, thereby facilitating the
analysis of the closed-loop system stability.

The control design for system (4) is be addressed in three
steps:

(1) Design an adaptive observer that identifies b and
estimates the state variables (z, υ) using the input-
output data.

(2) Synthesize a hierarchical flight controller that exploits
the estimates (ẑ, υ̂) and the measurements (η, η̇) to
achieve the assigned control tasks.

(3) Analyze the closed-loop system stability and robust-
ness.

3.1 Parameter identifier and adaptive observer

As a first step towards the design of an adaptive con-
troller, we develop an adaptive observer that estimates the
unknown parameter b and recovers that aircraft velocity
vector υ and altitude z.

By recalling (3) and differentiating the measurement vec-
tor Yυ = (yυx , yυy , yυz )T with respect to time, we obtain:




ẏυx = bυ̇x = −b
u

m
sin θ , b γx

ẏυy = bυ̇y = b
u

m
cos θ sin φ , b γy

ẏυz = bυ̇z = b (
u

m
cos θ cos φ− g) , b γz

(5)

Since the Euler angles (φ, θ) are measured by the IMU,
then, the signals (γx, γy, γz) are available for the para-
meter identification algorithm. Furthermore, the variables
(γx, γy, γz) correspond to the aircraft translational accel-
erations which are directly available from the accelerom-
eters contained in the IMU. The unknown parameter b
can, thus, be accurately estimated from the input-output
data (5) using a robust Recursive Least Squares (RLS)
algorithm, Ioannou and Sun (1996); Kendoul (2007). In

a deterministic case, b can be estimated using one of
the following SISO subsystems "ẏυi

= γi, i = x, y, z".
An interesting solution could consist in estimating b for
each SISO subsystem and then, fuse the three obtained
estimates (b̂x, b̂y, b̂z) in a favorable manner. For more ro-
bustness against noise and external disturbances, we have
applied the RLS algorithm with projection and dead-zone
in order to estimate b̂x, b̂y and b̂z from (yυx , γx), (yυy , γy)
and (yυz , γz), respectively. The three estimates (b̂x, b̂y, b̂z)
have then been fused using a weighted averaging method
where the weights depend on the Persistency Excitation
(PE) property of each signal γi, i = x, y, z.
Theorem 1. For i = x, y, z, the modified RLS algorithm
with projection and dead-zone guarantees the following
properties, Ioannou and Sun (1996):

(a) b̂i,
˙̂
bi ∈ L∞ (bounded).

(b) bmin ≤ b̂i(t) ≤ bmax, ∀t ≥ 0, where bmin > 0 and
bmax > 0 are a priori known lower and upper bounds of
the parameter b (projection principle).

(c) limt→∞ b̂i(t) = b̄i where b̄i is a positive constant.
(d) If γi ∈ L∞ and γi is PE , then the estimate b̂

converges exponentially to its true value 1 b.

Since the three estimates (b̂x, b̂y, b̂z) satisfy the properties
in Theorem 1, it is then trivial to show that b̂(t) > 0 and
satisfies also the same properties. Once the scale factor b
is identified, the aircraft velocity vector υ and altitude z
can be estimated as follows:

ẑ =
1

b̂
yz =

b

b̂
z and υ̂ =

1

b̂
Yυ =

b

b̂
υz (6)

Proposition 2. The adaptive observer (6) is stable and the
convergence of the state variables (ẑ, υ̂) is guaranteed.
Furthermore, if the PE property is satisfied, then the
estimation errors (z̃ = z − ẑ, υ̃ = υ − υ̂) converge to zero.

In fact, the observer stability is a direct consequence of the
parameter identifier (RLS algorithm) stability. Indeed, the
obtained estimates (ẑ, υ̂) satisfy the following properties:

• Since b̂(t) ∈ [bmin, bmax] → b̄, then, from (6) we
deduce that (ẑ, υ̂) → b/b̄(z, υ).

• Furthermore, if (γx, γy, γz) satisfy the PE property,
then, b̂ → b̄ = b which implies that (ẑ, υ̂) → (z, υ).

3.2 Hierarchical flight controller design

Control design for rotorcraft UAVs is already a challenging
task, especially when it comes to deal with unknown
parameters and state variables estimation errors. To cope
with these issues, we have proposed a hierarchical flight
controller that is based on the inner-outer loop control
scheme.

Let ν = q(u, φd, θd)T = u
mR(φd, θd)e3 − ge3 be a pseudo-

control vector such that (u, φd, θd)T = q−1(ν) exists. By
defining χ = (z − zd, υ − υd)T ∈ R4 and e = (η − ηd, η̇ −
η̇d)T ∈ R6 as tracking errors, system (4) can be written in
the following form:
1 In the presence of external disturbances, b̃i = b − b̂i converges
exponentially to the residual set: {b̃i/|b̃i| ≤ c(ρ0 + d̄)}, where d̄
is the disturbance upper bound, c is a positive constant and ρ0

characterizes the dead-zone.
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χ̇ = A1χ + B1(ν − υ̇d) +
u

m
H(ηd, e)

︸ ︷︷ ︸
∆(u,ηd,e)

ė = A2e + B2(τ̃ − η̈d)

(7)

where H(ηd, e) = (0, hx, hy, hz)T is a nonlinear intercon-
nection term (see Kendoul (2007) for the explicit expres-
sions of its components). The matrices (A1, B1, A2, B2) are
given by

A1=




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


, A2=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, B1=




0 0 0
1 0 0
0 1 0
0 0 1


, B2=




0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1




The system (7) can be seen as two linear subsystems in cas-
cade which are coupled by the nonlinear term ∆(u, ηd, e).
As explained in Kendoul (2007), the inner-outer control
scheme aims at synthesizing two control laws ν(χ̂, υ̇d) and
τ̃(e, η̈) for controlling the aircraft position represented by
the ξ-subsystem (outer-loop) and its orientation (inner-
loop), i.e., the e-subsystem. Therefore, we choose{

ν = −Kχχ̂ + υ̇d = −kz(ẑ − zd)−Kυ(υ̂ − υd) + υ̇d

τ̃ = −Kee + η̈d = −Kη(η − ηd)−Kη̇(η̇ − η̇d) + η̈d
(8)

where Kχ ∈ R3×4 and Ke ∈ R3×6 are positive matrices
such that Aχ = A1 − B1Kχ and Ae = A2 − B2Ke are
Hurwitz.

In fact, the structural properties of rotorcraft models have
been exploited in order to represent the trajectory tracking
problem as the control of two subsystems in cascade. A
hierarchical control design has then been applied to design
a practical flight controller which is easy to implement and
to tune. The main drawback of the inner-outer loop-based
flight controllers is the lack of stability analysis for the
connected closed-loop system. In the next subsection, we
address this issue by exploiting advanced control theories
on systems in cascade.
3.3 Analysis of the closed-loop system stability

By substituting (8) into (7), the closed-loop system dy-
namics become{

χ̇ = A1χ−B1Kχχ̂ + ∆(χ̂, e)
ė = Aee

(9)

The error χ̂ = (ẑ − zd, υ̂ − υd)T can be expressed as a
function of the original error χ as follows:

χ̂ = (
b

b̂
z − zd,

b

b̂
υ − υd)T =

b

b̂
χ +

b− b̂

b̂
(zd, υd)T (10)

So, the outer-loop dynamics become:

χ̇ = A1χ−B1Kχ[
b

b̂
χ +

b− b̂

b̂
(zd, υd)T ] + ∆(b̂, χ, e)

= (A1− b

b̂
B1Kχ)χ

︸ ︷︷ ︸
f(b̂,χ)

−b−b̂

b̂
B1Kχ(zd, υd)T

︸ ︷︷ ︸
ε(b̂,zd,υd)

+∆(b̂, χ, e)(11)

Now, the closed-loop dynamics can be expressed in the
following form:{

χ̇ = f(b̂, χ) + ε(b̂, zd, υd) + ∆(b̂, χ, e)
ė = Aee

(12)

The term ε(b̂, zd, υd) is mainly due to the parameter
estimate error b− b̂.

Before proving the stability of the closed-loop system (12),
we need the following theorem:
Theorem 3. If the following three assumptions hold, then
all the solutions χ(t) and e(t) of (12) are bounded.

A1. The equilibrium point e = 0 is Globally Asymptot-
ically Stable (GAS) and Locally Exponentially Stable
(LES).

A2. There exist a positive semi-definite radially un-
bounded function V (χ) and positive constants c1 and
c2 such that for ‖χ‖ ≥ c1




∂V

∂χ
[f(b̂, χ) + ε(b̂, zd, υd)] ≤ 0

‖∂V

∂χ
‖‖χ‖ ≤ c2V (χ)

(13)

A3. There exist a positive constant c3 and one class-K
function γ(.), differentiable at e = 0, such that

‖χ‖ ≥ c3 ⇒ ‖∆(b̂, χ, e)‖ ≤ γ(‖e‖) ‖χ‖ (14)

If in addition, χ̇ = f(b̂, χ) + ε(b̂, zd, υd) is GAS, then the
equilibrium point (χ, e) = (0, 0) is GAS.

The proof of Theorem 3 can be found in Kendoul (2007).

Thus, in order to prove the stability of the closed-loop
system (12), we need to show/prove that the e-subsystem,
the χ-subsystem and the coupling term ∆(.) satisfy the
conditions A1, A2 and A3 respectively.

• A1. e-subsystem stability: Since the matrix Ae is Hur-
witz, then, the e-subsystem (inner-loop) is GES which is
stronger than the GAS property.

• A2. χ-subsystem stability: We are interested here, in the
stability of the subsystem χ̇ = f(b̂, χ) + ε(b̂, zd, υd). It is
clear from (11) that if b̂ → b, the system χ̇ = f(b̂, χ) +
ε(b̂, zd, υd) will be GAS. Indeed, for b̂ → b, we have
ε(.) → 0 and f(.) → Aχ, which is Hurwitz. Consequently,
the inequalities (13) hold.

Now, let us analyze the stability of the χ-subsystem in the
presence of parameter estimate errors, i.e., b̂ → b̄ 6= b. So,
in the following, we will show that the term ε(b̂, zd, υd)
is bounded, the matrix A1 − b

b̂
B1Kχ is Hurwitz and the

tracking error χ(t) is bounded. Furthermore, we will prove
that the assumption A2. of Theorem 3 is satisfied.

Since b̂(t) ∈ [bmin, bmax] (see Theorem 1) and the desired
trajectories (zd(t), υd(t)) are bounded, then it is trivial to
deduce from (11) that ε(.) is bounded. Then, there exists
a positive constant d such that d = ‖ε(.)‖∞.

We recall that the matrix A1 − B1Kχ is Hurwitz and the
term b

b̂
is positive and bounded. Due to the structure of the

matrices A1 and B1 (8), then the matrix Âχ = A1− b
b̂
B1Kχ

is also Hurwitz. Therefore, we can write χ̇ − Âχχ = ε(t).
The solution of the preceding differential equation is:

χ(t) = χ(0)eÂχt +
∫ t

0

eÂχ(t−τ)ε(τ)dτ (15)
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From equation (15), we can show that after a finite time
T, we obtain

‖χ(t)‖ ≤ ‖ε(t)‖ ≤ d, ∀t ≥ T (16)
This means that given any initial condition χ(0), the
trajectories χ(t) converge exponentially to a bounded ball
with a radius d. Hence, inequalities (13) hold for ‖χ‖ ≥ d.

• A3. ∆(.) growth restriction: Now, let us analyze if the
interconnection term ∆(.) satisfies the growth condition
(14). By recalling (7), we have

‖∆(χ̂, e)‖ =
1
m
|u(χ̂)|‖H(χ̂, e)‖ (17)

where ‖H(χ̂, e)‖ =
√

h2
x + h2

y + h2
z and |u(χ̂)| = m‖ν(χ̂)+

ge3‖ = m
√

ν2
x + ν2

y + (νz + g)2.

Lemma 4. Assume that the desired trajectories (zd(t), υd(t))
and their time-derivatives are bounded. Then, there exist
positive constants r, k1 and k2 such that the collective
thrust u(χ̂) and the coupling term H(χ̂, e) satisfy the
following properties:

|u(χ)| ≤
{

k1‖χ̂‖, for ‖χ̂‖ ≥ r

k1r, for ‖χ̂‖ < r

‖H(χ̂, e)‖ ≤ k2‖e‖
(18)

Due to space limitation, the proof of Lemma 4 has been
omitted here. However, a detailed proof can be found in
Kendoul (2007).

Recalling (17) and (18), the interconnection term ∆(.)
verifies

‖∆(χ̂, e)‖ ≤ k1k2

m
‖e‖‖χ̂‖, for ‖χ̂‖ ≥ r (19)

Substituting (10) into (19) and recalling that b̂ and (zd, υd)
are bounded, then one can write

‖ ∆(b̂, χ, e)‖ = ‖∆(χ̂, e)‖ ≤ k1k2

m
‖e‖‖b

b̂
χ +

b− b̂

b̂
(zd, υd)T ‖

≤ k1k2

m
‖e‖(k3‖χ‖+ k4‖χ‖) ≤ (k1k2)(k3 + k4)

m
‖e‖‖χ‖ (20)

for ‖χ‖ ≥ 1, k3 = b
bmin

and k4 is the upper bound

of ‖ b−b̂
b̂

(zd, υd)T ‖. By defining γ(‖e‖) = (k1k2)(k3+k4)
m ‖e‖,

which is a class-K function, the interconnection term
∆(b̂, χ, e) satisfies the growth restriction (14), that is,
∆(b̂, χ, e) ≤ γ(‖e‖)‖χ‖ for ‖χ‖ ≥ c3 , max( r−k4

k3
, 1).

Finally, the stability of the closed-loop system (12) and
the boundedness of trajectories (χ(t), e(t)) are direct con-
sequences of Theorem 3. Furthermore, if the PE property
is satisfied, then the estimate b̂(t) converges exponen-
tially to the true value b. Therefore, the χ-subsystem is
GAS, thereby ensuring the GAS of the equilibrium point
(χ, e) = (0, 0). This result is very interesting because
it states that the aircraft velocities and altitude can be
accurately recovered and controlled using only visual cues
(optic flow) and IMU data. Furthermore, in the presence of
significant external disturbances that may probably induce
bounded errors in the parameter estimate b̂, the stability
of the connected closed-loop system holds and the tracking
errors remain within a small bounded region. The tracking
errors can be significantly reduced by exciting the system

Table 1. Control system parameters

Para. Value Parameter Value
kz

kυx

kυy

kυz

0.5
3
3
2

kφ, kφ̇

kφ, kφ̇

kφ, kφ̇

4, 4
4, 4
4, 4

(PE property) in order to improve the estimation of the
unknown parameter b. The overall block diagram of the
designed adaptive vision-based controller is shown in Fig.
1.
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Fig. 1. The overall diagram of the adaptive vision-based
autopilot

4. SIMULATION RESULTS

The performances of the adaptive vision-based controller
are evaluated using a nonlinear model of the quadro-
tor UAV. We have performed various simulation tests
for achieving useful navigational tasks such as hovering,
take-off, vertical landing, aggressive rectangular trajectory
tracking, etc (see Kendoul (2007) for more details). Only
two experiments are presented here, hovering flight and
circular trajectory tracking. The proposed controller was
implemented as shown in Fig. 1, and its robustness with
respect to noise and external disturbances is analyzed. The
values of the controller gains are listed in Table 1.

• Stabilization and hovering: the control objective is to
stabilize the UAV velocity and attitude and make the
rotorcraft hover at the desired altitude zd = 10 m. The
initial conditions are z(0) = 5m, υ(0) = (4,−1, 2)T , η(0) =
(0, 0.3, 0.5)T and η̇(0) = (0, 0, 0)T . The true value of the
unknown parameter is b = 3. As shown on Figs. 2 and 3,
the UAV translation and orientation are stabilized and the
aircraft performs a hovering flight at the desired altitude
of 10 m. Moreover, the parameter estimate b̂(t) converges
to its true value after a short transient time.

• Trajectory tracking: in this test, the UAV was tasked to
climb and fly in a horizontal circle at a desired altitude
of 19 m. Moreover, it has to track the reference veloc-
ity trajectories (υxd

, υyd
, υzd

), starting from the initial
configuration (z(0), υx(0), υy(0), υz(0)) = (10, 0, 0, 0) and
(η(0), η̇(0)) = (0, 0). High-fidelity simulation tests have
been considered with noisy measurements and external
disturbances Fext = (0.1, 0.1, 0.1 N). In this case, the true
value of b was chosen to be 0.5. The obtained results,
shown in Figs. 4 and 5 are very satisfactory. Indeed,
the reference velocity trajectories are tracked with high
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Fig. 2. Stabilization and hovering at a desired altitude
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Fig. 4. Circle trajectory tracking in the presence of noise
and external disturbances
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Fig. 5. Control inputs (trajectory tracking)

accuracy. Since the UAV position (x, y) is not controlled,
then small drifts in horizontal position occur which are
mainly due to the external disturbances.

5. CONCLUSION

In this paper, we have presented the design of a rotorcraft
UAV control system that relies on IMU data and useful in-
formation extracted from optic flow. Unlike most existing
biomimetic flight controllers which are usually used for
reactive behaviours, the proposed vision-based autopilot
extends optic flow-based control capabilities to complex
navigational tasks such as hovering at some desired alti-
tude and arbitrary trajectory tracking. These capabilities
are mainly due to the incorporated adaptive mechanism
that allows the identification of the unknown scale fac-
tor and the recovery of the aircraft absolute velocities
and altitude. A practical hierarchical flight controller is
then designed. Furthermore, the stability of the connected

closed-loop system has been proven by exploiting systems
in cascade control theories.

The simulation tests, performed under realistic condi-
tions that include measurements noise and external distur-
bances, have shown the good performance of the proposed
adaptive control system. Indeed, simulation results over
various ranges of the flight envelope illustrate that the
proposed controller performs very well and the tracking
errors remain within a small bounded region. In situa-
tions where external disturbances become very significant,
tracking errors increase but the stability of the closed-loop
system is guaranteed. The major factor that can deterio-
rate the control performance is the parameter estimate
errors, which are mainly due to external disturbances. This
issue can be easily overcome by using the accelerometers
data in the identification process. Hence, the estimation
errors will be reduced, thereby improving significantly the
control performance.
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