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Abstract: In this paper, we present a hierarchical controller for autonomous aerial vehicles
control and navigation. For autonomous rotorcraft flight, it is common to separate the flight
control problem into an inner loop that controls attitude and an outer loop that controls
the translational trajectory of the rotorcraft. The resulted nonlinear controller is thus, easy
to implement and to tune. Although satisfactory results have been reported in the literature
and various navigational tasks have been achieved using this hierarchical control technique,
this control scheme suffers from the lack of the stability proof and analysis of the closed-loop
system. Here, we propose a 3D flight controller which is based on the inner- and outer-loop
control scheme, and we prove the asymptotic stability property for the connected closed-loop
system.

Keywords: Rotorcraft control, hierarchical control, stability analysis, systems in cascade.

1. INTRODUCTION

Although the research on Unmanned Aerial Vehicles
(UAVs) goes back to the last decade, the UAV control
has a rich literature with different control techniques.
Conventional approaches to UAV flight control involve
dynamics linearization about a set of pre-selected equi-
librium conditions or trim points, La Civita et al. (2006).
Then, many linear control techniques such as classical PID,
Bouabdallah et al. (2004), can be applied. However, these
approaches suffer from performance degradation when the
aircraft moves away from a design trim point. Hence,
gain scheduling is usually required to obtain acceptable
performance, Oosterom and Babuska (2006). The main
drawback of this approach is the severe trade-off between
control performance and the number of the required trim
points.

In order to overcome some of the limitations and draw-
backs of the previous linear approaches, a variety of nonlin-
ear flight control techniques have been developed. Among
these, feedback linearization, Koo and Sastry (1998), dy-
namic inversion, Reiner et al. (1995); Johnson and Kannan
(2005) and backstepping, Olfati-Saber (2001); Mahony
and Hamel (2004) techniques have received much of the
attention and showed great promise. However, few con-
trollers have been successfully implemented and tested on
real aircraft for achieving realistic navigational tasks. The
most popular flight controllers that have achieved quite
good performances in real flights are those based on the
inner- and outer-loop control scheme. In designing these
practical controllers, the conventional conceptual separa-
tion between the position (outer-loop) and the orienta-
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tion (inner-loop) is made Johnson and Kannan (2005);
La Civita et al. (2006); Nonami (2006).

Most rotary-wing aerial vehicles are under-actuated me-
chanical systems with six degrees of freedom and four
control inputs, which generally include the total thrust
and three control torques. The total thrust is used to
compensate the gravity force and to control the vertical
movement. The horizontal movements are controlled by
directing the force vector in the appropriate direction
(thrust vectoring control). The control moments are thus
used to control the aircraft body orientation which controls
the rotorcraft horizontal movement. Therefore, some flight
controllers take advantage of rotorcraft model structure
and separate the control design into an inner-loop that
controls the moments acting on the aircraft, and an outer-
loop that controls the thrust force acting on the aircraft. In
fact, the thrust vector is effectively oriented in the desired
direction by controlling changes to the UAV attitude using
the inner-loop. This hierarchical control scheme is moti-
vated by several reasons and has many advantages. Firstly,
it is suitable for rotorcraft UAVs control because of their
models structure. Secondly, the obtained flight controllers
are simple, easy to implement and to tune. Finally, most
of the aerospace systems (spacecraft, launchers, aircraft,
UAVs) use this hierarchical control scheme for many years,
and satisfactory results have been obtained.

The idea of controlling the rotorcraft position through its
orientation has been exploited by many researchers. The
most popular control techniques using this methodology
are the backstepping and dynamic inversion-based flight
controllers.

When applying the backstepping methodology to UAVs,
the control design is usually based on the following model
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(see Olfati-Saber (2001); Mahony and Hamel (2004);
Kendoul et al. (2006)):




ξ̇ = υ

υ̇ =
1
m

RF − ge3

Ṙ = R sk(Ω)

Ω̇ = J−1τ − J−1Ω× JΩ

(1)

The control laws are then constructed in four steps. The
resulted control algorithms are somewhat complex and
difficult to implement. Indeed, the obtained control laws
are coupled and they are not given explicitly. Therefore,
the adjustment of controller parameters is not trivial,
especially when the plant parameters are not known.
The main advantage of the backstepping approach is the
proof of the closed-loop system stability, Mahony and
Hamel (2004); Sepulcre et al. (1997); Olfati-Saber (2001);
Kendoul et al. (2006); Hamel et al. (2002).

On the other hand, the dynamic inversion technique is
usually applied to the transformed model given by the
following equations (see Section 2):{

ξ̈ = ν + ∆ξ(ξ, ξ̇, η)

η̈ = τ̃ + ∆η(ξ, ξ̇, η, η̇)
(2)

where (ν, τ̃) ∈ R6 are the desired control vectors and
(∆ξ, ∆η) ∈ R3 × R3 are the model inversion errors. Thus,
the control design is achieved in two steps: 1) synthesize
a control law for the ξ-subsystem (outer-loop); and 2)
design a second control law for the η-subsystem (inner-
loop). It is clear that the control design is very simple in
this case and the obtained controller is easy to implement
and to tune. The major drawback of this approach is
the loss of the closed-loop system stability. Indeed, the
existing controllers suffer from the lack of stability analysis
and robustness with respect to model inversion errors
(∆ξ, ∆η). Some researchers have tried to overcome this
issue by incorporating an adaptive term in the control law
for compensating the model inversion errors, Johnson and
Kannan (2005). Once again, the asymptotic stability of
the connected system (2) is not guaranteed.

In this paper, we present the main steps for designing a
hierarchical flight controller that is based on the inner-
outer loop control scheme. Our objective is to design a
3D flight control system that performs well in practice as
well as in theory. Indeed, a control system is required to
be practical for real-world applications while guaranteeing
the stability of the closed-loop system. To reach this goal,
we have separated the aircraft model into two connected
subsystems by exploiting the structural properties of ro-
torcraft UAVs model. The outer-loop with slow dynam-
ics which controls the position, and the inner-loop with
fast dynamics which controls the orientation. Thus, each
subsystem can be controlled independently using linear
or/and nonlinear control tools. The asymptotic stability
of the entire connected system is proven by exploiting the
theories of systems in cascade.

In Section 2, we recall the dynamic model of rotorcraft
UAVs and formulate the control problem as the control of
two systems in cascade. Section 3 is devoted to the presen-
tation of some theorems about the stability of systems in
cascade. Section 4 is devoted to the control design and the

analysis of the closed-loop system stability. In section 5,
we show simulation results for stabilization and trajectory
tracking. Some concluding remarks are given in Section 6.

2. PROBLEM STATEMENT

The dynamics of a rotorcraft UAV such as the quadrotor
helicopter can be represented by the following mathemat-
ical model, Kendoul et al. (2007); Olfati-Saber (2001):




ξ̈ =
1
m

uRe3 − ge3

M(η)η̈ + C(η, η̇)η̇ = Ψ(η)T τ
(3)

where ξ and η are the aircraft position and orientation
respectively. (u, τ) are the applied thrust and torque
vector, R and Ψ are the rotation matrix and Euler matrix
respectively. The pseudo inertial matrix M is defined as
M(η) = Ψ(η)T JΨ(η), and the centripetal vector C is given
by C(η, η̇) = Ψ(η)T JΨ̇(η)−Ψ(η)T sk(Ψ(η)η̇)JΨ(η).

Since the attitude dynamics in (3) is a fully-actuated
mechanical system for θ 6= kπ/2, then it is exact feedback
linearizable. In fact, by considering the following change
of variables:

τ = JΨ(η)τ̃ + Ψ−1C(η, η̇)η̇ (4)
we obtain a 3-dimensional double-integrator. Hence, the
system (3) can be written in the following form:

{
ξ̈=

1

m
uRe3 − ge3

η̈= τ̃
⇒





ẍ=− 1

m
u sin(θ),

ÿ=
1

m
u cos(θ) sin(φ),

z̈=
1

m
u cos(θ) cos(φ)− g,

φ̈= τ̃φ

θ̈= τ̃θ

ψ̈= τ̃ψ

(5)

Unlike some standard backstepping approaches where the
control law is constructed in four steps, the backstepping
principle is here applied to transform system (5) into two
subsystems in cascade.

Let us first, define a virtual control vector ν ∈ R3 as
follows:

ν = q(u, φd, θd) =
1
m

uR(φd, θd)e3 − ge3 (6)

where q(.) : R3 → R3 is a continuous invertible function
and (φd, θd) is the desired roll and pitch angles. Hence,
(u, φd, θd)T = q−1(ν). More precisely, by using the expres-
sion of the matrix R, the pseudo-control vector compo-
nents can be defined as follows:




νx =− 1

m
u sin(θd)

νy =
1

m
u cos(θd) sin(φd)

νz =
1

m
u cos(θd) cos(φd)− g

⇒





u=m
√

ν2
x + ν2

y + (νz + g)2

φd =tan−1

(
νy

νz + g

)

θd =sin−1

(
−νx√

ν2
x + ν2

y + (νz + g)2

)

(7)

Since the angles (φ, θ, ψ) are the state variables of the
orientation subsystem, then the desired angles (φd, θd, ψd)
can not be provided instantaneously. We will then define
the following error vector e = (eη, eη̇)T ∈ R6 such that
eη = η − ηd and eη̇ = η̇ − η̇d. The vector ηd contains the
desired Euler angles which are φd, θd (see equ. (7)) and ψd

which is a reference trajectory given by the user or by a
high-level navigation system.
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Now, by replacing (φ, θ) in (5) by (φd + eφ, θd + eθ), the
system (5) can be written in the following form:




ξ̇ = υ, υ̇ = ν +
1
m

uh(ηd, eη)

ėη = eη̇, ėη̇ = τ̃ − η̈d

(8)

The components of the interconnection term
h = (hx, hy, hz)T are given by:





hx = −[sin(eθ/2) cos(θd + eθ/2)]
hy = [h1(.)h2(.) + sin φdh2(.) + cos θdh1(.)]
hz = [h2(.)h3(.) + cos φdh2(.) + cos θdh3(.)]
and
h1 = sin(eφ/2) cos(φd + eφ/2)
h2 = − sin(eθ/2) sin(θd + eθ/2)
h3 = − sin(eφ/2) sin(φd + eφ/2)

(9)

Remark 1. When computing the explicit expressions of
the interconnection term h(ηd, eη), we have exploited some
useful relations between trigonometric functions such as:{

sin(a + b) = sin(a) + sin(b/2) cos(a + b/2)
cos(a + b) = cos(a)− sin(b/2) sin(a + b/2)

(10)

By defining the tracking errors χ = (ξ− ξd, υ− υd)T ∈ R6

and e = (eη, eη̇)T ∈ R6, the system (8) becomes:




χ̇ = A1χ + B1(ν − ξ̈d)︸ ︷︷ ︸
f(χ,ν,ξ̈d)

+
1
m

u H(ηd, eη)
︸ ︷︷ ︸

∆(u,ηd,eη)

ė = A2e + B2(τ̃ − η̈d)

(11)

where H(ηd, eη) = (0, 0, 0, hx, hy, hz)T . The matrices A1 ∈
R6×6, B1 ∈ R6×3, A2 ∈ R6×6 and B2 ∈ R6×3 are defined
as follows:

A1 = A2 =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, B1 = B2 =




0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



(12)

The rotorcraft control problem is then, formulated as the
control of two subsystems which are coupled by a non-
linear term ∆(u, ηd, eη). The control objective is thus, to
synthesize the control laws ν(χ, ξ̈d) and τ̃(e, η̈d) such that
the tracking errors χ and e will asymptotically converge
to zero.

3. STABILITY OF SYSTEMS IN CASCADE

The idea behind the inner-outer loop control scheme is
to design two independent controllers for the χ- and e-
subsystem without considering the interconnection term
∆(χ, eη). As mentioned in the Introduction, this procedure
simplifies the control design and results in simple and
efficient control laws. However, the stability of the con-
nected closed-loop system and its robustness with respect
to ∆(χ, eη) have not been proven. Therefore, the first
contribution of this paper is the analysis of the controller
robustness with respect to the interconnection and cou-
pling term ∆(χ, eη).

Much work has been done on the stability analysis of
systems in cascade, Sontag (1988); Sepulcre et al. (1997).

One of the most important theorem on the stability of
systems in cascade is the following theorem expressed by
Sontag (1988).

Theorem 2. If there is a feedback ν = α(χ, ξ̈d) such that
χ = 0 is an asymptotically stable equilibrium of χ̇ =
f(χ, α(χ, ξ̈d), ξ̈d), then any partial state feedback control
τ̃ = β(e, η̈d) which renders the e-subsystem equilibrium
e = 0 asymptotically stable, also achieves asymptotic sta-
bility of (χ, e) = (0, 0). Furthermore, if the two subsystems
are both Globally Asymptotically Stable (GAS), then, as
t → ∞, every solution (χ(t), e(t)) either converges to
(χ, e) = (0, 0) (GAS) or is unbounded.

Therefore, the stability of the connected system (11) will
be ensured if we choose stabilizing feedbacks ν = α(χ, ξ̈d),
τ̃ = β(e, η̈d) and prove that all the trajectories (χ(t), e(t))
are bounded.

One of the major tools usually used to show the bound-
edness of connected system trajectories is the Input-to-
State-Stability (ISS) property, Sontag (1988). The ISS
property is a strong condition which is often difficult to
verify. For the system (11), the complexity is due to the
interconnection term ∆(χ, eη). Consequently, we propose
a theorem that guarantees the GAS of the connected sys-
tem (11) provided that the interconnection term ∆(χ, eη)
satisfies some relaxed conditions. This theorem is inspired
by Sepulcre’s work, Sepulcre et al. (1997), Theorem 4.7,
page 129.
Theorem 3. Let τ̃ = β(e, η̈d) be any C1 partial-state
feedback such that the equilibrium point e = 0 is GAS
and LES. Suppose that there exist a positive constant c1

and one class-K function γ(.), differentiable at e = 0, such
that

‖χ‖ ≥ c1 ⇒ ‖∆(χ, eη)‖ ≤ γ(‖eη‖) ‖χ‖ (13)
If there exist a positive semi-definite radially unbounded
function V (χ) and positive constants c2 and c3 such that
for ‖χ‖ ≥ c2 




∂V

∂χ
f(χ, α(χ, ξ̈d), ξ̈d) ≤ 0

‖∂V

∂χ
‖ ‖χ‖ ≤ c3V (χ)

(14)

then, the feedback τ̃ = β(e, η̈d) guarantees the bound-
edness of all the solutions of (11). Furthermore, if χ̇ =
f(χ, α(χ, ξ̈d), ξ̈d) is GAS, then the equilibrium point
(χ, e) = (0, 0) is GAS.

Proof: The proof of Theorem 3 is given in Appendix A.

4. FLIGHT CONTROLLER DESIGN AND STABILITY

Here, we apply Theorem 2 to design a practical controller
for the UAV transformed model given by (11). Theorem
3 is used to prove the asymptotic stability of the con-
nected closed-loop system. The control design can thus,
be achieved in three steps:

(1) Choose the control law ν = α(χ, ξ̈d) that guarantees
the Global Exponential Stability (GES) of the χ-
subsystem without the interconnection term ∆(χ, eη).

(2) Choose the feedback τ̃ = β(e, η̈d), such that the e-
subsystem is GES.
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(3) Prove that the system (11) satisfies the conditions
stated in Theorem 3. In fact, we need to prove that
the interconnection term ∆(χ, eη) satisfies the growth
condition (13).

Since the χ- and e-subsystems are linear, we can use
simple linear controllers such as PD or PID. Therefore,
we synthesize two control laws{

ν = −Kχχ + ξ̈d, Kχ ∈ R3×6

τ̃ = −Kee + η̈d, Kχ ∈ R3×6
(15)

such that the matrices Aχ = A1 −B1Kχ and
Ae = A2 −B2Ke are Hurwitz.

By substituting (15) into (11), the closed-loop system is
given by {

χ̇ = Aχχ + ∆(χ, eη)
ė = Aee

(16)

Although Aχ and Ae are Hurwitz, the asymptotic stability
of the closed-loop system (16) can not be directly deduced
because of the interconnection term ∆(χ, eη). Thus, we
apply Theorem 3 in order to prove the asymptotic stability
of the connected closed-loop system (16).

Since Aχ and Ae are Hurwitz, the χ-subsystem (without
the interconnection term) and the e-subsystem are GES
which is stronger than the GAS property. The GES of the
χ-subsystem implies that there exist a positive definite
radially unbounded function V (χ) and positive constants
c2 and c3 such that for ‖χ‖ ≥ c2: ∂V

∂χ Aχχ ≤ 0 and
‖∂V

∂χ ‖‖χ‖ ≤ c3V (χ). Therefore, the condition (14) of
Theorem 3 is satisfied.

Now, it remains to show that the interconnection term
∆(χ, eη) satisfies the growth restriction (13) of Theorem
3. The norm of the interconnection term ∆(χ, eη) can be
expressed as follows:

‖∆(χ, eη)‖=
1
m
|u(χ)|‖H(χ, eη)‖=

1
m
|u(χ)|

√
h2

x+h2
y+h2

z

(17)
where (hx, hy, hz) are defined in (9) and

|u(χ)| = m‖ν(χ) + ge3‖ = m
√

ν2
x + ν2

y + (νz + g)2

Before proving the boundedness of the interconnection
term ∆(χ, eη), we need the following two lemmas:
Lemma 4. Assume that the desired trajectories ξd(t) and
their time-derivatives are bounded and denote Ld =
‖ξ̈d‖∞. Then, there exist positive constants r and k1

such that the collective thrust feedback u(χ) satisfies the
following properties:

|u(χ)| ≤
{

k1‖χ‖, for ‖χ‖ ≥ r

k1r, for ‖χ‖ < r
(18)

Lemma 5. There exists a positive constant k2 such that
the coupling term H(χ, eη) satisfies the following inequal-
ity:

‖H(χ, eη)‖ ≤ k2‖eη‖ (19)

The proofs of Lemmas 4 and 5 are given in Appendix B.

From Lemmas 4 and 5, we can write that for ‖χ‖ ≥ r, we
have

‖u H(.)‖ ≤ k1‖χ‖ k2‖eη‖ = k‖eη‖‖χ‖ (20)

where k = k1 k2 is a positive constant.

Finally, we obtain the following inequality

‖∆‖ =
1
m
‖u H‖ ≤ γ(‖eη‖)‖χ‖, for ‖χ‖ ≥ r (21)

where γ(.) = k
m‖eη‖ is a class-K function.

So, all the conditions of Theorems (2)-(3) are satisfied and
the GAS of the equilibrium point (χ, e) = (0, 0) is then
guaranteed.

We have synthesized two practical control laws for control-
ling the rotorcraft position and orientation. By exploiting
the theory of systems in cascade, we have proven the GAS
of the rotorcraft model given by (5). The block diagram of
the overall controller is shown in Fig. 1.

UAV 

Nonlinear 

Model 

dynamic

Atittude 

Controller
Inner-Loop

Nonlinear 
Transfor.

Transfor. 

Dynamic 

Inversion

Position 

Controller
Outer-Loop

Trajec. 

gener.

ζ
ζ

V
V

V
ψ

d

d

d

d

η

η

η

η

η

d

d

d

ν

τ τ
∼

u

Task

Equ. (7)
Equ. (4)

Equ. (3)
Equ. (15)

Equ. (15)

Fig. 1. Structure of the inner-outer loop-based controller

5. SIMULATION RESULTS

In order to evaluate the performance of the designed flight
controller, we have performed two tests by considering
the nonlinear model of the rotorcraft. Furthermore, white
noise has been added to the measurements. Indeed, a zero-
mean noise with 0.01 variance has been added to the posi-
tion and velocity signals, and the attitude measurements
have been corrupted by a noise of 0.0001 variance. The
considered initial conditions are ξ(0) = (5, 1, 10)T , υ(0) =
(1,−1, 0)T , η(0) = (−0.1, 0.3, 0.5)T and η̇(0) = (0, 0, 0)T .

In the first experiment, the rotorcraft UAV was tasked to
stabilize its attitude and horizontal movement and achieve
a smooth landing. From Figs. 2 and 3 we can see that
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Fig. 2. Rotorcraft stabilization and landing using noisy
measurements

control objective is successfully achieved.

In the second experiment, the control objective was to
make the aircraft track an aggressive 3D trajectory. As
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shown in Fig. 6, the rotorcraft was tasked to take off
elliptically, and then to achieve a circular flight at a
desired altitude of 25 m, followed by a hover flight and
finally to land vertically. Significant noise and external
disturbances Fext = (0.5, 0.5, 0.5 N)T have been added
to the rotorcraft model. It can be seen that the controller
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Fig. 4. Trajectory tracking: take-off, circular flight, hover-
ing and vertical landing
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Fig. 5. Control inputs (trajectory tracking)
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Fig. 6. 3D trajectory of the rotorcraft UAV

performs very well and it is robust with respect to noise
and external perturbations. Figs. 4-6 show the position,
attitude, control inputs and the UAV 3D trajectory. The
assigned navigational task was successfully achieved and
the reference trajectories were tracked with high accuracy.

6. CONCLUSION

In this paper, we have presented a practical flight con-
troller that exploits the model structure of rotorcraft

UAVs. The aircraft dynamics are modelled by two con-
nected subsystems. In fact, we have applied dynamic inver-
sion to the position subsystem and feedback linearization
to the rotation dynamics, thereby resulting in two linear
subsystems connected by a complex nonlinear term. Two
control laws have been then, synthesizing for controlling
the UAV position (outer-loop) and orientation (inner-
loop). The asymptotic stability property has been proven
for the connected closed-loop system, and the performance
of the proposed hierarchical controller has been observed
in simulations.
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Appendix A. PROOF OF THEOREM 2

Let (χ(0), e(0)) be an arbitrary initial condition, and let
V (χ) be a semi-definite positive function. By recalling (13)
and (14), then for ‖χ‖ ≥ max (c1, c2) we have the following
inequalities:

V̇ (χ) =
∂V

∂χ
f(.)

︸ ︷︷ ︸
≤0

+
∂V

∂χ
∆(.) ≤ ∂V

∂χ
∆(.) ≤ ‖∂V

∂χ
‖‖∆‖

≤ ‖∂V

∂χ
‖γ(‖eη‖)‖χ‖ ≤ c3V (χ)γ(‖eη‖) (A.1)

Since the equilibrium point eη = 0 is GAS and LES, then
‖eη‖ converges to zero exponentially. This implies that

γ(‖eη(t)‖) ≤ γ(‖eη(0)e−at‖) ≤ γ1(‖eη(0)‖)e−at

with a is a positive constant and γ1(.) is a class-K function.

Now, the derivative of V (χ) satisfies
V̇ (χ) ≤ c3V (χ) γ1(‖eη(0)‖) e−at, for ‖χ‖ ≥ max (c1, c2)

We define a positive constant c as: c = c3 γ1(‖eη(0)‖).
Thus: V̇ (χ) ≤ cV (χ) e−at, for ‖χ‖ ≥ max (c1, c2)

This relation proves the boundedness of V (χ) because

V (χ) ≤ V (χ(0)) e

∫ t

0
c e−as ds ≤ γ2(‖eη(0)‖)V (χ(0))

for some γ2(.) ∈ K.
Because V (χ) is radially unbounded, the boundedness of
V (χ) implies the boundedness of ‖χ‖.
Therefore, the GAS of the equilibrium point (χ, e) = (0, 0)
follows from Theorem 2.
Remark 6. In the previous analysis, the boundedness of
‖χ‖ was proven for ‖χ‖ ≥ max (c1, c2). If ‖χ‖ <
max (c1, c2), then its boundedness is satisfied by the as-
sumption itself.

Appendix B. PROOFS OF LEMMAS 1 AND 2

B.1 Boundedness of |u(χ)|

Let us recall the expressions of the thrust u and the
feedback ν. {

|u(χ)| = m‖ ν(χ, ξ̈d) + ge3‖
ν(χ, ξ̈d) = −Kξχξ −Kυχυ + ξ̈d

(B.1)

Let λξ > 0 and λυ > 0 be the maximum values of Kξ and
Kυ eigenvalues respectively. Thus, we write

|u(χ)|= m‖ge3 + ξ̈d −Kξχξ −Kυχυ‖
≤m(g + ‖ξ̈d‖+ λξ‖χξ‖+ λυ‖χυ‖)
≤m(g + Ld + max (λξ, λυ)(‖χξ‖+ ‖χυ‖))
≤m(g + Ld) + m max (λξ, λυ)

√
2‖χ‖

because

(‖χξ‖+ ‖χυ‖)2 = ‖χξ‖2 + ‖χυ‖2 + 2‖χξ‖‖χυ‖ ≤
2(‖χξ‖2 + ‖χυ‖2), which implies that

‖χξ‖+ ‖χυ‖ ≤
√

2
√
‖χξ‖2 + ‖χυ‖2 =

√
2‖χ‖

Setting c , m
√

2 max (Kξ,Kυ), we get

|u(χ)| ≤m(g + Ld) + c‖χ‖ ≤ c(
mg + mLd

c
+ ‖χ‖)

≤ c(r + ‖χ‖), where r =
mg + mLd

c
From the above inequalities, we deduce that

|u(χ)| ≤
{

k1‖χ‖, for all‖χ‖ ≥ r

k1r, for all‖χ‖ < r, where k1 = 2c
(B.2)

B.2 Boundedness of ‖H(.)‖

We had ‖H(χ, eη)‖ =
√

h2
x + h2

y + h2
z where the expres-

sions of the components (hx, hy, hz) are given in (9) and
verify:
|hx| ≤ | sin(eθ/2)|
|hy| ≤ | sin(eφ/2)|| sin(eθ/2)|+ | sin(eθ/2)|+ | sin(eφ/2)|
|hz| ≤ | sin(eφ/2)|| sin(eθ/2)|+ | sin(eθ/2)|+ | sin(eφ/2)|

(B.3)

Let us recall some trivial inequalities

| sin a| ≤ |a| (B.4)

|a||b| ≤ 1
2
(|a|+ |b|), for |a| ≤ 1 and |b| ≤ 1 (B.5)

Then, we can write

|hx| ≤ 1
2
|eθ|

|hy| ≤ 3
2
(| sin(eθ/2)|+ | sin(eφ/2)|) ≤ 3

4
(|eθ|+ |eφ|)

|hz| ≤ 3
2
(| sin(eθ/2)|+ | sin(eφ/2)|) ≤ 3

4
(|eθ|+ |eφ|)

By computing the squares of the previous functions, we
obtain

h2
x ≤

1
4
e2
θ

h2
y ≤

9
16

(e2
θ + e2

φ + 2|eθ||eφ|)

h2
z ≤

9
16

(e2
θ + e2

φ + 2|eθ||eφ|)

Note that 2|eθ||eφ| ≤ e2
θ + e2

φ. Thus,

h2
x ≤

1
4
e2
θ; h2

y ≤
9
8
(e2

θ + e2
φ); h2

z ≤
9
8
(e2

θ + e2
φ) (B.6)

From (B.6), we deduce that

‖H(.)‖ ≤
√

10
4

e2
θ +

9
4
e2
φ ≤

√
10
4

(e2
θ + e2

φ) (B.7)

≤ k2‖eη‖ with k2 =
√

10
2

(B.8)

and this ends the proof.
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