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Abstract: The purpose of this paper is to solve a global asymptotic stabilization problem
for a nonlinear control system on a Riemannian manifold. As well known, a system on a
noncontractible manifold is not globally asymptotically stabilizable via a C1 feedback law. This
problem results from the existence of multiple singular points of such a controlled system. It
is shown that if all the singular points can be assigned to a subset of the extended state space
using a dynamic compensator and a C0 feedback, then the original system becomes globally
asymptotically stable. Moreover, a method for stabilization is developed using a dynamic
compensator and a global control Lyapunov function for an input-affine system. Finally, we
propose a method for constructing the control Lyapunov function for a controllable system.

1. INTRODUCTION

We deal with a global asymptotic stabilization problem
for a nonlinear control system on a Riemannian manifold
of dimension nx. For this problem, Sontag (1998) has
shown that if the state space of a control system is not
contractible, the system is not C1 globally asymptotically
stabilizable. One of the reasons why this problem occurs is
that the system has multiple singular points (equilibria).
We introduce a modified control Lyapunov function (CLF)
and a dynamic compensator defined on Rnp to resolve the
problem.

CLF methods have often been used to solve stabilization
problems for nonlinear systems; see Artstein (1983) and
Sontag (1989). However, there are no CLFs for a system
with noncontractible state space, because any function on
a noncontractible manifold has either zero or more than
one critical point while the CLF must have only one critical
point. For any input-affine system, the existence of a CLF
is equivalent to global asymptotic stabilizability via a C1

feedback. This implies that all affine systems on a non-
contractible manifold are not C1 globally asymptotically
stabilizable.

To solve the global asymptotic stabilization problem
for systems on manifolds, we have proposed a control
Lyapunov-Morse function (CLMF) based on the ideas of
CLFs and Lyapunov-Morse functions in Franks (1979),
and have derived a discontinuous global asymptotic sta-
bilizer using a CLMF; see Tsuzuki and Yamashita (2006).
CLMFs eixst for systems on manifolds and can have multi-
ple critical points. So additional conditions at the critical
points are necessary for stabilization. This paper shows
a new approach for stabilizing such systems. We define a
global control Lyapunov function extended from a CLMF,
and then derive additional conditions for stabilization us-
ing a dynamic compensator.

The control system and the compensator are represented
by an (nx + np)-dimensional augmented system. The nx-
dimensional system that is controlled is called the original
system. The point at which the original system is to be
globally asymptotically stabilized is denoted by 0x and is
called the origin of the original system. The basic idea is
that if all singular points of a controlled augmented system
are on {0x} × Rnp and the augmented system has a weak
Lyapunov function, then any state of the original system
converges to 0x.

In this paper we present

(1) a C0 global asymptotic stabilization method via a
dynamic compensator in section 3,

(2) a definition of a GCLF and conditions for stabiliza-
tion on a GCLF using a dynamic compensator for an
input-affine system in section 4, and

(3) a method for constructing a GCLF satisfying the
above conditions for a controllable system in section
5.

As for other studies for the stabilization problem of non-
linear systems on manifolds, Enomoto and Shima (1998)
have proposed a stabilization method for a gradient-like
Morse-Smale controlled systems, and Malisoff et al. (2006)
have shown that global asymptotic controllability implies
s-stabilizability.

2. CONTROL SYSTEM ON A MANIFOLD

The purpose of this study is to globally asymptotically
stabilize a general nonlinear control system

ẋ = f̃(x, u), x ∈ X, u ∈ U = Rm (1)
where x is the state, u is the input, and where f̃ is
assumed to be smooth with respect to x and u. X denotes
an nx-dimensional Riemannian manifold, and Rm an m-
dimensional Euclidean space.
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We consider a continuous feedback law:
u = k(x). (2)

Throughout this paper, we assume that for any initial state
x0 there exists a unique solution of the controlled system

ẋ = f̃(x, k(x)), x(0) = x0. (3)

We define a singular point of this controlled system.
Definition 1. For the system (3) and a point x∗ ∈ X, if

f̃(x∗, k(x∗)) = 0 (4)
holds, then the point x∗ is called a singular point of (3).

¨

Sontag (1998) has shown the following theorem.
Theorem 1. If X is not contractible, then the system (1)
is not C1 globally asymptotically stabilizable. ¨

For example, consider the system:
θ̇ = u, (5)

where u is the input and θ is the state on a circle S1. Here,
S1 is a space [−π, π] such that the boundary is identified
to a single point, i.e., π = −π. To locally stabilize the
system, one can use a smooth feedback u = − sin θ. Under
this smooth feedback, its origin is locally stable, but the
system is not globally asymptotically stable because of the
existence of an unstable singular point at θ = ±π. The
existence of multiple singular points for any C1 feedback
law is followed from the relative Poincaré-Hopf index
formula or the Morse inequality; see Pugh (1968) and
Milnor (1963).

The existence of singular points except at the origin is an
obstacle to the global asymptotic stabilization of nonlinear
systems on manifolds. The following section develops a
method for making the system globally asymptotically
stable using a dynamic compensator.

3. GLOBAL ASYMPTOTIC STABILIZATION VIA A
DYNAMIC COMPENSATOR

We introduce a dynamic compensator for the system (1)
and consider the following augmented system:

ẋ = f̃(x, u)
ṗ = v,

(6)

where p ∈ Rnp and v ∈ Rnp are the state and the input of
the compensator, respectively, and where np is any positive
integer. Let X̄ := X×Rnp , and Ū := U×Rnp . We call the
point (x, p) = (0x, 0) the origin of the augmented system.

For a feedback k : X̄ → Ū, we consider the controlled
augmented system

ẋ = f̃(x, ku(x̄))
ṗ = kv(x̄),

(7)

in which x̄ := (x, p) ∈ X̄ and k(x̄) = (ku(x̄), kv(x̄)).

It is obvious that if X is not contractible, then X̄ is also
not contractible. This implies that for any C1 feedback
the system (7) must have multiple singular points when
X is not contractible. However, the degree of freedom
for placing the singular points can be increased by the
compensator. So, we consider changing the positions of
the singular points for stabilization.

We clarify the term ”a global asymptotic stability” of (1)
when controlled by a feedback k.
Definition 2. The original system (1) controlled by a feed-
back k : X̄ → Ū is globally asymptotically stable, iff for the
controlled augmented system (7) no solutions have finite-
escape time and moreover the following conditions hold:

(i) (Lyapunov stability) The origin (0x, 0) is globally
stable in the sense of Lyapunov.

(ii) (Attraction) The x-part of the solution x̄(t) for any
initial state x̄0 ∈ X̄ converges to 0x, i.e.,

lim
t→∞

x̄(t) = (0x, p∗) (8)

holds for a p∗ ∈ Rnp that is a function of x̄0. ¨

In this paper, we say that a function V : X̄ → R is proper
if for any positive constant a, the level set

X̄a :=
{
x̄ ∈ X̄ | V (x̄) ≤ a

}
(9)

is compact, and that V is a generalized Lyapunov function
for (7) if V is smooth and

V̇ (x̄) < 0 (10)
for any point x̄ ∈ X̄ except the chain recurrent set. Note
that the generalized Lyapunov function can exist even for
unstable systems, since it may not be positive definite.
In Robinson (1999), the generalized Lyapunov function is
called the (global) Lyapunov function.

Then the following theorem is obtained.
Theorem 2. We assume that for a feedback k : X̄ → Ū the
system (7) satisfies the following conditions:

(i) The chain recurrent set consists of isolated singular
points.

(ii) There exists a smooth, proper, and positive definite
generalized Lyapunov function V : X̄ → R.

(iii) All singular points are on the subset
X̄x=0 :=

{
(x, p) ∈ X̄ | x = 0x

}
= {0x} × Rnp . (11)

Then the original system (1) controlled by k is globally
asymptotically stable. ¨

Proof. Note that condition (ii) of theorem 2 implies the
Lyapunov stability of the system.

It follows from the invariance principle that the solution
starting from any point converges to a singular point.
Moreover, all singular points are on X̄x=0 from the as-
sumption. Hence, (8) holds, and thus the original system
controlled by k is globally asymptotically stable. ¤

This theorem implies that if a C0 feedback satisfying the
conditions exists, the original system is globally asymptot-
ically stabilizable via the compensator and the feedback.

All solutions of (7) satisfying the conditions of theorem
2 converge to the set of singular points. However, there
exists a solution such that it converges to a singular point
after it gets close to another singular point. For example,
we consider the case where the controlled system (7) has
a stable singular point eS and a saddle singular point eU .
The solution starting from a point in a neighborhood of
the stable manifold of eU moves in a neighborhood of eU .
Then the solution may get away from the neighborhood
of eU and converge to eS . In this case, the x-part of the
solution once approaches 0x, but then gets away from
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0x; finally, it tends to 0x again. The convergence of the
solution may require a much time, and so the control may
be inefficient. Therefore, we consider a jump of the state
p of the compensator.

Let B(r, x̄c) be a closed ball centered at x̄c with radius r.
For a positive constant r and the singular points e1, . . . , es

except the origin of the controlled augmented system, we
consider the following system with a jump:

ẋ = f̃(x, ku(x̄))
ṗ = kv(x̄)

p(τ+) = 0, if x̄(τ) ∈
∪

i=1,...,s

B(r, ei).
(12)

See Ichikawa and Katayama (2001) and Engell et al. (2002)
for jump systems.

We establish the following theorem.
Theorem 3. We assume that a feedback k : X̄ → Ū satisfies
the conditions of theorem 2. Then there exist positive
numbers ε and r, and a function T : R≥0 → R≥0 such
that the following hold:

(A) All solutions tends to (0x, 0), i.e.,

lim
t→∞

x̄J(t) = (0x, 0) (13)

for the solution x̄J(t) of the jump system (12) with
any initial state.

(B) For any initial state x̄0, and for the above ε and r,

x̄J(t) ∈ B(ε, (0x, 0)), ∀t ≥ T (∥x̄0∥). (14)

¨

Proof. Conditions (i) and (ii) of theorem 2 implies that
the origin (0x, 0) is locally asymptotically stable. We can
choose an ε > 0 such that for any initial state x̄0 ∈
B(ε, (0x, 0)) the solution x̄(t) of (7) converges to (0x, 0) as
t → ∞, i.e., B(ε, (0x, 0)) is a compact domain of attraction
of (0x, 0).

For this ε and (12), we can choose an r > 0 such that
r ≤ ε (15)

and

B(ε, (0x, 0))
∩  ∪

i=1,...,s

B(r, ei)

 = ∅. (16)

It follows from (15) and (16) that for a time τ at which
the jump of (12) happens

x̄J(t) ∈ B(ε, (0x, 0)), ∀t > τ. (17)
Then any solution of (12) has at most a one-time jump.
Since any solution tends to the set of singular points, (A)
holds for the ε and the r.

Because the system (7) is globally stable, for any initial
state x̄0 there exists a positive M1 such that

∥x̄(t)∥ ≤ M1. (18)
The subset

B(M1, (0x, 0)) \ int

(
B(ε, (0x, 0))

∪( ∪
i=1,...,s

B(r, ei)

))
(19)

is compact and does not contain the singular points,
i.e., the vector field of (7) is not zero and the generalized

Lyapunov function V has no critical points on the subset
(19). These mean that there exits an M2 > 0 such that

V̇ (x̄) ≤ −M2 (20)
for any x̄ in (19). If T does not exist, V (x̄(t)) is not positive
definite, which contradicts the assumption of V . Hence, T
exists. ¤

The solution x̄J(t) may be discontinuous with respect to
t, and when it is so, only the state p of the compensator
is discontinuous while the original state x is continuous.

In this section we have shown the conditions for global
asymptotic stabilization via a dynamic compensator and
a jump system. However, finding a feedback law satisfying
the conditions of theorem 2 is very difficult. Thus, we shall
use a CLF in the following section.

4. GLOBAL ASYMPTOTIC STABILIZATION VIA A
GLOBAL CONTROL LYAPUNOV FUNCTION

In this section we assume that the control system (1) can
be represented by the input-affine system:

ẋ = f̃(x, u) = f(x) + G(x)u
G(x) = (g1(x), g2(x), . . . , gm(x)) ,

(21)

where f, g1, . . . , gm are smooth vector fields.

4.1 Definition of a global control Lyapunov function

We extend CLFs to ones having multiple critical points
to use CLF methods for systems on manifolds. For any
dynamical system with a flow, the existence of a gen-
eralized Lyapunov function is guaranteed from Conley’s
fundamental theorem of dynamical systems; see Conley
(1978) and Robinson (1999). The definition of the gener-
alized Lyapunov function is given in the previous section.

For a function V : X → R we say that a point q ∈ X is a
critical point when

gradV (q) = 0 (22)
holds.

We define a generalized control Lyapunov function using
the idea of generalized Lyapunov functions.
Definition 3. Let V : X → R be a positive definite, proper,
and smooth function. Moreover, we assume that V satisfies

inf
u∈U

{LfV (x) + LGV (x)u} < 0 (23)

for any x ∈ X except the critical points of V . Then
the function V is called a generalized control Lyapunov
function (GCLF) for the control system (21) ¨

A GCLF with only one critical point at the origin is
identical to Sontag’s global CLF. CLMF is defined as a
GCLF such that the critical points are nondegenerate. The
definition of GCLF can be also applied to systems with
multiple locally asymptotically stable points.

For any controlled system satisfying the conditions of the-
orem 2, there exists a GCLF from Conley’s fundamental
theorem of dynamical systems.

Given GCLF V of (21), we use Sontag’s feedback kS(x) as
in the CLF case.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6180



kS(x) :=

−
Lf V (x) +

√
|Lf V (x)|2 + |LGV (x)|4

|LGV (x)|2
L

T
GV (x),

LGV (x) ̸= 0

0, LGV (x) = 0

(24)

Sontag (1989) has shown that the control kS is analytic
on {x ∈ X | LGV (x) ̸= 0 or LfV (x) < 0}. Then kS for
GCLF V is analytic on X except the set of critical points.

The continuity of kS at the critical points is assured via
the small control property as in the CLF case.
Definition 4. Let q be a critical point of GCLF V . We
suppose that for each ε > 0, there is a δ > 0 such that
there exists a u satisfying |u| < ε and

LfV (x) + LGV (x)u < 0, (25)
for x ̸= q in Bδ(q). Then we say that V has the small
control property at q. ¨

Given a GCLF with the small control property at any
critical point, kS is continuous on X̄.

4.2 Global asymptotic stabilization via a compensator and
a GCLF

Theorem 2 is reconstructed in terms of a GCLF.
Theorem 4. For the augmented system (6) let V : X̄ → R
be a GCLF such that the critical points of V are on X̄x=0

and are isolated, and the number of the critical points
is finite. Moreover, we assume that at any critical point
q, f(q) = 0, G(q) ̸= 0, and V has the small control
property. Then the original system (21) controlled by
Sontag’s feedback kS is globally asymptotically stable. ¨

Proof. First, we show Lyapunov stability. The derivative
of V with respect to time is negative semi-definite.

V̇ (x) = −
√

|LfV (x)|2 + |LGV (x)|4 ≤ 0 (26)

This means that the augmented system is globally stable.

The equality of (26) holds only at the critical points. So, all
solutions converge to the maximum invariant set consisting
of the critical points. From the assumption, all critical
points are on X̄x=0. Therefore, all solutions tend to X̄x=0.

¤

Recall that kS is analytic on X̄ except the critical points of
the GCLF, and continuous on the whole space in theorem
4. Next, we show a method for constructing a GCLF
satisfying the conditions of theorem 4 for a controllable
system with a one-dimensional compensator.

5. CONSTRUCTION OF A GCLF FOR A
CONTROLLABLE SYSTEM

In this section we restrict (1) to the following form:
ẋ = G(x)u

G(x) = (g1(x), . . . , gm(x)) ,
(27)

where for any x ∈ X we suppose
rankG(x) = nx, (28)

and the dimension of compensator is fixed to 1, that
is, np = 1. Note that any proper, positive definite, and
smooth function is a GCLF with the small control property
for (27).

Remark . Condition (28) requires n ≤ m. In particular,
if n = m, X should be a parallelizable manifold. We call
X a parallelizable manifold when there exist vector fields
v1, . . . , vn ∈ TX such that for any x ∈ X the vector fields
provide a basis of TxX. Equivalently, the tangent bundle
TX is a trivial bundle. ¨

Assume that V0 : X → R is a GCLF for (27) with the
isolated critical points x1

c , . . . , x
s
c ∈ X. This V0 cannot

stabilize (27) with a C0 feedback because of the existence
of multiple critical points. For the augmented system (6)
of dimension n + 1, we consider the GCLF

V1(x̄) := V0(x) + p2, (29)
where V1 has the critical points qi

1 := (xi
c, 0) ∈ X̄ for

i = 1, . . . , s. We show a method for constructing a GCLF
satisfying the conditions of theorem 4 by modifying the
GCLF V1.

⋄ Step1

We construct a GCLF V2 by a coordinate transformation
of p.

Let c0 : R → X denote a smooth curve on X such that

• c0 passes through all critical points xi
c, and

• c0(0) = 0 ∈ X.

The curve c0 may have self-intersections. We regard the
state p of the compensator as the parameter of c0. The
curve c0 induces a curve and points to which we assign
the critical points of V2:

c1(p) := (c0(p), p)
qi
2 := (xi

c, p
i
c), i = 1, . . . , s,

(30)

where pi
c is any point on the set c−1

0 (xi
c). For any smooth

function P : X → R such that
P (xi

c) = pi
c, (31)

we can define the diffeomorphism T̄1 : X̄ → X̄ by
T̄1(x̄) := (idx, p − P (x)), (32)

where idx is the identity map of X. V1 and T̄1 induce
V2(x̄) := V1 ◦ T̄1(x̄). (33)

The critical points of V2 are identical with qi
2 defined by

(30). It is obvious that c0 and P satisfying the above
conditions exist.

⋄ Step2

We construct a GCLF V3 satisfying the conditions of
theorem 4 from V2.

Suppose that the following map T̄2 be a diffeomorphism
on X̄.

T̄2 := (T2, idp) : X̄ → X̄ (34)
Hence, T2 : X̄ → X is a map such that

T p
2 := T2 (◦, p) : X → X (35)

is a diffeomorphism on X for any p ∈ R.

If for each critical point qi
2 = (xi

c, p
i
c) of V2

T2(0x, pi
c) = T

pi
c

2 (0x) = xi
c (36)

, i.e., T̄2(0x, pi
c) = qi

2. Then
V3(x, p) := V2 ◦ T̄2(x, p) = V1 ◦ T̄1 ◦ T̄2(x, p) (37)
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has a critical point qi
3 = (0x, pi

c). Because both T̄1 and
T̄2 are only smooth coordinate transformations, it is clear
that V3 is proper, positive definite, and smooth, and that
the number of isolated critical points of V3 is equivalent to
that of V1. Then V3 is a GCLF satisfying the conditions of
theorem 4.
Lemma 5. There exists a T2 satisfying (36) for (27). ¨

Proof. We can choose a curve c0 without self-intersections.
Then there exists a flow φ : X × R → X such that

φ(0x, t) = c0(t) (38)
holds. At any pi

c, φ(0x, pi
c) = c0(pi

c) = xi
c.

If T2(x, t) := φ(x, t), then
T2(0x, pi

c) = φ(0x, pi) = qi
2. (39)

Thus, the condition (36) holds. ¤

For (27), Sontag’s stabilizer kS is smooth on X̄, since
kS(x) = −LGV (x) for GCLF V .

In this section we have shown that GCLF V3 of (6) for
(27) satisfying the conditions of theorem 4 can be induced
from any GCLF V1 of (27). Therefore, the original system
(27) controlled by Sontag’s feedback kS derived from V3 is
globally asymptotically stable.

6. EXAMPLES

6.1 A simple case

We recall the system (5) as a simple example of (27).

θ̇ = u, x ∈ S1, u ∈ R (40)
This system is not C0-stabilizable. We shall design a global
asymptotic C∞ stabilizer to θ = 0 by using a compensator
and a GCLF.

The function
V0(θ) := 1 − cos θ (41)

is a GCLF of (40) with the two critical points θ1
c = 0, θ2

c =
π. We consider the following augmented system of (5):

θ̇ = u (42)
ṗ = v, p, v ∈ R. (43)

In this case, the diffeomorphism
P (θ) := 1 − cos θ (44)

derives
V2(θ, p) := 1 − cos θ + (p − (1 − cos θ))2 . (45)

The critical points of V2 are q1
2 = (0, 0) and q2

2 = (π, 2).

For the smooth map T2(θ, p) := θ − π
2 p, (36) holds, i.e.,

T̄2(0, 0) = q1
2 , T̄2(0, 2) = q2

2 . (46)
Then the function

V3(θ, p) := 1 − cos
(
θ − π

2
p
)

+
{

p −
(
1 − cos

(
θ − π

2
p
))}2 (47)

is a GCLF satisfying the conditions of theorem 4. The
critical points of V3 are q1

3 = (0, 0) and q2
3 = (0, 2).

Figure 1 shows the contour plot of V3 and trajectories of
the controlled augmented system via kS for V3. We can see
that all trajectories converge to q1

3 or q2
3 .

0 π-π

-1

0

2

1 q
3
1

q
3
2

p

θ

Fig. 1. Contour plot of V3 and trajectories.

x0

-π

θ

0-2π
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2

1p

q
3
1

q
3
2

q
3
1

q
3
2

Fig. 2. Trajectories starting from x̄0.

θ

0 20 40

p

-2π

0

2

θ
, 
p

t

Fig. 3. Time responses of x1 and p with no jump.

θ
p

0 2.5 5
t

-4

0

2
θ

, 
p

-2

Fig. 4. Time responses of x1 and p with jump.

In Fig.2, the dashed curve means the solution starting from
x̄0. The solution converges to q1

3 = (0, 0) = (−2π, 0) after
it moves in a neighborhood of q2

3 = (0, 2). Also, Fig.3 shows
the time responses. The solution requires a much time for
convergence to q1

3 . So, we use the jump system (12) for
ε = r = 0.5.

The solution starting from x̄0 has jump p(τ+) = 0 when it
enters B(0.5, q2

3). In Fig.2, the solid curve starting from
x̄0 denotes the solution of the jump system, and Fig.4
illustrates the time responses. It follows from these figures
that the solution converges to the origin quickly.

6.2 A three-dimensional case

We consider an attitude control of a satellite expressed as

Ṙ =

( 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

)
R, (48)

where the attitude R ∈ SO(3) is the state, and the velocity
ω = (ω1, ω2, ω3) is the input. SO(3) denotes the three-
dimensional special orthogonal group, and R is a three-
dimensional orthogonal matrix. This is an example of
the controllable system (27). The control objective is to
globally asymptotically stabilize the system to R = I,
where I is the identity matrix.
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By using the quaternion x := (x1, x2, x3, x4) such that
|x| = 1, (48) is transformed into

ẋ = Σ(x)ω :=
1
2

 x4 −x3 x2

x3 x4 −x1

−x2 x1 x4

−x1 −x2 −x3

 ω, (49)

where

R = R(x) =

(
x2
1−x2

2−x2
3+x2

4 2(x1x2+x3x4) 2(x1x3−x2x4)

2(x1x2−x3x4) −x2
1+x2

2−x2
3+x2

4 2(x2x3+x1x4)

2(x1x3+x2x4) 2(x2x3−x1x4) −x2
1−x2

2+x2
3+x2

4

)
. (50)

Note that R(·) is not injective and R(x) = R(−x). Then
the attitude indicated by x is identical with that of −x.
The origin R = I corresponds to x = (0, 0, 0,±1).

As a GCLF of (49), we consider
V0(x) = x2

1 + 2x2
2 + 3x2

3. (51)
The critical points are

x1
c := (±1, 0, 0, 0), x2

c := (0,±1, 0, 0),
x3

c := (0, 0,±1, 0), x4
c := (0, 0, 0,±1). (52)

We have found the following:
c0(p) := (cos h1 cos h2 sin h3, cos h1 sin h2,

sin h1, cos h1 cos h2 cos h3) (53)
P (x) := x2

1 + 2x2
2 + 3x2

3 (54)
T2(x, p) := R1(h1)R2(h2)R3(h3)x, (55)

where
h1 :=

π

4
p(p − 2)(p − 3) (56)

h2 := −π

4
p(p − 1)(p − 3) (57)

h3 :=
π

12
p(p − 1)(p − 2), (58)

and
R1(h) :=

( cos h 0 0 sin h
0 1 0 0
0 0 1 0

− sin h 0 0 cos h

)
,R2(h) :=

( 1 0 0 0
0 cos h 0 sin h
0 0 1 0
0 − sin h 0 cos h

)
,

R3(h) :=

( 1 0 0 0
0 1 0 0
0 0 cos h sin h
0 0 − sin h cos h

)
.

(59)

These induce V3(x, p) = V1 ◦ T̄1 ◦ T̄2(x, p). The critical
points are

q1
3 = (x4

c , 1), q2
3 = (x4

c , 2), q3
3 = (x4

c , 3), q4
3 = (x4

c , 0). (60)
All solutions of the augmented system controlled by kS

derived from V3 converge to the critical points, i.e., the
original system controlled by the kS is globally asymptot-
ically stable.

Figure 5 shows a solution with an initial state of the
augmented system controlled by the kS . It tends to q4

3 ,
i.e., the corresponding solution R(t) of (48) converges to
I.

7. CONCLUSION

In this paper we have shown a global asymptotic stabi-
lization method for a nonlinear system on a Riemannian
manifold by using a dynamic compensator. Moreover, we
have proposed a definition of GCLF for an input-affine
system, and a method for constructing a GCLF for a
controllable system.
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