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Abstract: This paper aims at the blade root moment sensor fault detection and isolation issue. The
underlying problem is crucial to the successful application of the individual pitch control system which
plays a key role for reducing the blade loads of large offshore wind turbines. In this paper, a wind turbine
model is built based on the closed loop identification technique, where the wind dynamics is included
in the model. The fault detection issue are investigated based on the residual generated by Kalman filter.
The additive faults and multiplicative faults are investigated respectively. For the additive fault case,
the mean value change detection of the residual and the generalized likelihood ratio test are utilized
respectively. On the other hand, the multiplicative fault is handled by the variance change detection of
the residuals. The fault isolation issue is proceeded with the help of dual sensor redundancy. Simulation
results show that the proposed approach can be successfully applied to the underlying issue.

1. INTRODUCTION

Wind energy has been received much more attention than ever
before in the last decade. It will play a more and more important
role in the future energy market since the decreasing production
of the fossil energy, mainly from oil, which will be almost
totally exhausted in the next five or six decades. However,
wind energy can not compete with traditional energies up until
now since it is more expensive than others. Even though the
availability can be up to 98% for onshore wind turbines, the
cost due to maintenance are still very high. For offshore wind
power systems the availability may fall below 60% due to the
downtime of the wind turbines, which is mainly caused by the
failures of some components of wind turbines. Therefore, much
effort is needed to enhance the reliability of the wind turbines.

This paper aims at the blade root moment sensor faults detec-
tion issue, where the sensors are mainly utilized for the blade
loads reduction based on individual pitch control strategies (van
Engelen and van der Hooft 2003), especially for large scale
offshore wind turbines. In wind turbines, strain gauge sensors
are nowadays more often used than other types of moment
sensors, such as piezoelectric sensors. However, the lifetime of
strain gauge is normally not very long compared with that of the
other sensors in wind turbine systems. There are several reasons
which cause higher failure rates. The strain in the blades is
rather high, which has effect on the gauges themselves as well
as on the bonding. The harsh environment factors, such as light-
ning, salty spray, moisture and corrosion, can have direct effects
on the bonding and wiring. In addition, the sensors can be easily
damaged by maintenance people. The failure rate can be around
one failure per year. For wind turbines with three blades, the
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failure rate is 3 failures per year. This is not desired for offshore
wind turbine systems since the sensor failures lead to wrong
control behavior of the individual pitch control system, which
is crucial for blades loads reduction to prolong the wind turbine
lifetime. Therefore, the sensor fault detection of the rotor blades
moments is extremely important for successful individual pitch
control application. Meanwhile, dual sensor redundancy (two
blade root moment sensors are installed at each blade root) is
utilized for fault tolerant purpose. In the light of the sensor fault
detection alarms, a new sensor set, which are in good condition,
can be configured in order to send proper measured signals to
the control systems.

To achieve our sensor fault isolation goal, in this paper, two
parallel fault detection procedures are utilized at the same time.
On the one hand, the output signals of each sensor pair (at
the same blade root) are compared directly. The difference
is monitored by mean change detection or variance change
detection. Which sensor pair has fault can be detected in this
step. However, we can not identify which sensor has fault.
On the other hand, model based fault detection is applied to
monitor the changes of the three sensors (sensor set 1), which
are being used by the individual pitch control system, and the
rest sensors (sensor set 2), which are redundant sensors. In this
procedure, which sensor set has fault can be detected. The fault
isolation issue can be done by logic reasoning based on the two
procedures.

The remainder of this paper is organized as follows. In the
second section, the wind turbine system is briefly introduced.
The closed-loop system identification and residual generator
based on Kalman filter are presented in the third section. Fault
detection techniques, mainly the mean value change, variance
change detection, the generalized likelihood techniques and
fault isolation with the help of dual sensor redundancy, are
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reported in the fourth section. In the fifth section, the simulation
results are shown to illustrate the effectiveness of the proposed
sensor fault diagnosis approach. Some conclusions close this
paper.

2. WIND TURBINE SYSTEM AND PROBLEM
STATEMENT

2.1 Wind Turbine Plant Model

Define system states, disturbances, inputs and outputs as fol-
lows:

x = ( Ωr xfa ẋfa xsd ẋsd γ γ̇ )
T

(1)

d = ( v1 v2 v3 )
T

(2)

u = ( θ1 θ2 θ3 δTg )
T

(3)

y = ( Ωg ẋfa ẋsd δMz1 δMz2 δMz3 )
T

(4)

The system state space description then becomes

ẋ = Ax + B1(ψ)d + B2(ψ)u (5)

y = C(ψ)x + D1d + D2u (6)

where ψ is the blade azimuth angle which is measurable online.
Due to the space limitation, the detailed equations are not listed
here. Please refer to (van Engelen 2006) for the details.

The underlying system is time varying since the parameters de-
pend on the azimuth ψ. It is a time varying system. However,by
Coleman transformation, it can be transferred into a linear time
invariant system.

2.2 Linear Time Invariant Model in the Coleman Domain

Coleman transformation is widely adopted to analysis three
blades wind turbine systems, which transfer the underlying
system from a rotational coordinate to a fixed coordinate sys-
tem where all periodic coefficients vanish and are replaced
by modulation requirements on the input and output signals.
Since the simplified wind turbine model does not contain non-
coaxial state variables on the shaft or blades, the Coleman-
transformation of state variables does not apply.

The Coleman transformation can be described as

P =

(
1 sin(ψ1) cos(ψ1)
1 sin(ψ2) cos(ψ2)
1 sin(ψ3) cos(ψ3)

)
(7)

P−1 =
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(8)

( θ1 θ2 θ3 )
T

= P ( θcm1 θcm2 θcm3 )
T

(9)

( v1 v2 v3 )
T

= P ( vcm1 vcm2 vcm3 )
T

(10)

( Mcm1 Mcm2 Mcm3 )
T

= P−1 ( Mz1 Mz2 Mz3 )
T

(11)

Define system states, disturbances, inputs and outputs as fol-
lows:

( )H z

( )G z( )C z

e

r u y

v

Fig. 1. The wind turbine feedback system

x = ( Ωr xfa ẋfa xsd ẋsd γ γ̇ )
T

(12)

dcm = ( vcm1 vcm2 vcm3 )
T

(13)

ucm = ( θcm1 θcm2 θcm3 δTg )
T

(14)

ycm = ( Ωg ẋfa ẋsd δMzcm1 δMzcm2 δMzcm3 )
T

(15)

The system state space description

ẋ = Acmx + Bcm1dcm + Bcm2ucm (16)

ycm = Ccmx + Dcm1dcm + Dcm2ucm (17)

Further detailed modeling procedure can be found in (van
Engelen 2006).

3. CLOSED-LOOP IDENTIFICATION AND RESIDUAL
GENERATOR

3.1 Plant Modeling via Closed-loop Identification

Closed loop identification is necessary for our purpose, because
the open loop system is unstable and the system parameters
are probably not precise enough. Besides that we want to build
a model for wind speed. The controlled wind turbine system
can be simplified as the structure shown in Fig. 1, where v
represents the wind speed on the output signal and it is modeled
by a linear system driven (H(z)) by a white noise e. Internal
signals in the system represented by H(z) then correspond
to the (Coleman transformed) blade effective wind speeds in
equation (13). Since we only consider the fault detection issue
of the three blade root moments in this paper, the other outputs
{Ωr, ẋfa, ẋsd} are not included in the model afterwards.

The plant in Coleman domain can be parameterized in an
innovation form as the following:

xk+1 = Axk + Bucm
k + Kek (18)

ycm
k = Cxk + Ducm

k + ek (19)

The identification issue now is to determine the system ma-
trix set {A, B, C,D,K}. The advantage of using this model
structure is that the gain K can be directly utilized as the
steady Kalman filter gain. For more detailed explanation on
this model and its relation, please refer to our book (Verhaegen
and Verdult 2007). The method adopted in this work is the one
described in (Chiuso 2007). The identified model has a 20th
order. Validation results show that the identified model have
satisfied precision.

3.2 Residual Generation Based on Kalman Filter

Based on the identified model of the wind turbine in the Cole-
man domain, the residual generator for sensor fault detection
purpose is shown in Fig. 2, where CT and ICT represent the
Coleman transformation and inverse Coleman transformation
respectively. K is the controller. The sensor faults, f1 and f2,
can be additive faults or multiplicative sensor faults. It is worth
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to notice that the sensor faults have different expressions in
the original domain (before the variables are transformed into
Coleman domain) and in the Coleman domain. This will be
analyzed in the next section in details.

Meanwhile, two kalman filters (KF1 and KF2)are utilized to
generate innovations (r1 and r2) for fault detection correspond-
ing to the sensor sets (each set has three sensors) as shown in
Fig. 2.

4. FAULT MODELING AND DETECTION

4.1 Fault Modeling

The fault considered in this paper are the additive fault, multi-
plicative faults, sensor output stuck on a fixed value and slow
drifting fault and we assume that only one sensor fault appear
each time.

• Additive fault M
f
zi = Mzi + ∆Mzi

• Multiplicative fault M
f
zi = δMzi, where 0 ≤ δ ≤ ∞

• Output stuck M
f
zi = Co, Co is a constant.

• Slow drifting M
f
zi = Mzi + αt

where i = 1, 2, 3, α is a small variation rate and t is the time.

With inverse Coleman transformation, one sensor fault results
in the variation of all the virtual moments Mcm1,Mcm2,Mcm3

in the Coleman domain.




M
f
cm1

M
f
cm2

M
f
cm3


 =




Mcm1 +
1

3
∆Mzi

Mcm2 +
2

3
sin(ψi)∆Mzi

Mcm3 +
2

3
cos(ψi)∆Mzi




where i = 1, 2, 3.

4.2 Residual without sensor faulty

The identified model (discrete) with an innovation form can be
described as

xk+1 = Ãxk + B̃ucm
k + KP−1

k yk (20)

ycm
k = C̃xk + D̃ucm

k + ek (21)

yk = PkC̃xk + PkD̃ucm
k + Pkek (22)

where Ã = A − KC, B̃ = B − KD, C̃ = C, D̃ = D. Ã
has eigenvalues in the unit disc (Verhaegen and Verdult 2007,
Mangoubi 1998).

The Kalman filter can be expressed as:

x̂k+1 = Ãx̂k + B̃ucm
k + KP−1

k yk (23)

ŷcm
k = C̃x̂k + D̃ucm

k (24)

rk = PkC̃εk + Pkek (25)

where εk = xk − x̂k, εk ∼ (0, σε), ek is a white noise
sequence and its mean value E{ek} = 0 and its covariance
covar(ek) = σI .

4.3 Additive Fault Detection Based on Residual Mean Value

When the sensor has additive faults, the sensor output is

y
f
k = yk + V ifs

k−τ∗ (26)

where V i, i = 1, 2, 3 describes the sensor faulty direction.

Here we define V 1 = ( 1 0 0 )
′
, V 2 = ( 0 1 0 )

′
and V 3 =

( 0 0 1 )
′

represents that faults from three senors respectively.
f = V fs

k−τ∗ is the sensor fault. τ∗ is the time that the sensor
fault appear.

The output of the Kalman filter is

x̂
f
k+1 = Ãx̂

f
k + B̃ucm

k + KP−1
k y

f
k (27)

ŷ
f,cm
k = C̃x̂

f
k + D̃ucm

k (28)

ŷ
f
k = PkC̃x̂

f
k + PkD̃ucm

k (29)

Thanks to the linearity of the system, the states of Kalman filter
can be split into two parts which are excited by the system real
output yk and V ifs

k−τ∗ respectively. That is:

y
f
k = yk + f

x̂
f
k = x̂k − ξk

ε̂
f
k = ε̂k + ξk

ŷ
f
k = ŷk + gk−τ∗ν

the residual with sensor additive faults is

r
f
k = rk + gk−τ∗ν

where ν is the magnitude of the fault, r is the residual part
while system has no sensor faulty case, g is generated by the
following failure signature equations:

ξk+1 = Ãξk − KP−1
k V iss

k−τ∗ (30)

g
cm,i
k−τ∗ = C̃ξk + P−1

k V iss
k−τ∗ (31)

gi
k−τ∗ = PkC̃ξk + V iss

k−τ∗ (32)

where s is a unit step signal, i = 1, 2, 3
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In the absence of fault case, the residual gk is zero. But in the
presence of sensor faults, the residual will not be zero. Moni-
toring the mean value change, we can directly identify which
sensor has fault combining the direct comparison difference of
dual sensors.

Stop Ruling for Mean Value Detection The algorithm as
follows in (Gustafsson 2000) is utilized for the mean value
change detection of signal ζk.

Algorithm (CUSUM LS Filter)4.1

ϑ̂ =
1

t − t0

t∑

k=t0+1

ζk

εk,i = ζk − ϑ̂

s1
k = εk

s2
k =−εk

g1
k = max(g1

k−1 + s1
k − ν, 0)

g2
k = max(g2

k−1 + s2
k − ν, 0)

Alarm if g1
k > h or g2

k > h. After alarm, reset g1
k = 0,

g2
k = 0. Parameter ν and h need to be designed. ν is used

to prevent positive drifting of the mean value and it can be
chosen as one half of the expected change magnitude. The
robustness and decreased false alarm rate can be achieved by
requiring several g1

k > h or g2
k > h (Gustafsson 2000).

The estimate ϑ̂ is the bias between the two sensors at the
same blade root. An almost constant output means that one
sensor has bias fault. If the estimate is slowly drifting, it is
corresponding to the sensor slowly drifting fault. While the
estimate is proportional to the filtered output of one sensor, the
gain of one sensor is changed. For sensor output stuck case, one
sensor has an constant output.

The method presented here can be used for any additive fault.
But it takes time to send an alarm after the fault appears.

4.4 Abrupt jump fault detection based on generalized likelihood
ratio test (GLRT)

For abrupt jump fault case, it can also be detected by GLRT
presented in (Gustafsson 2000) where hypotheses test is used.

The hypotheses test can be expressed in terms of the innovation

H0 : ̺k = rk (33)

H1 : ̺k = rk + gi
k(τ∗)ν (34)

where rk is the residual in the absence of sensor normal case.
gk(τ∗)ν is the part generated by the sensor fault with magnitude
ν at time τ∗. gk is generated by the failure signature dynamical
equation. The primary principle behind is that for each time
instant k, check if there is a failure in the past time with
generalized likelihood ratio

Λi
k(τ∗, ν) =

p(̺k−L, ̺k−L+1, ..., ̺k|H1, τ
∗, V i, ν)

p(̺k−L, ̺k−L+1, ..., ̺k|H0)
(35)

=

j=k∏

j=k−L

p(̺j |Hj , τ
∗, V i, ν)

p(̺j |H0)
(36)

Taking the log of the above ratio,

λi
k(τ∗, ν) = logΛk(τ∗, V i, ν) (37)

= νχ(τ∗, V i) −
1

2
ν2Sk(τ∗, V i) (38)

where

χk(τ∗, V i) =
k∑

j=τ∗

g
i,′

j (τ∗)R−1
j ̺j (39)

Rj = CPjC
′

+ DD
′

(40)

Sk(τ∗, V i) =
k∑

j=τ∗

g
i,′

j (τ∗)R−1
j gj(τ

∗) (41)

Pj is the system noise covariance.

The generalized log likelihood ratio is given by

ℓi
k = max

τ∗∈(k−L,k)
max
ν∈R

λk(τ∗, ν, V i) (42)

where i = 1, 2, 3. For the detailed algorithm of GLRT, please
refer to (Gustafsson 2000).

4.5 Multiplicative Fault Detection Based on Variance Change
Detection

The sensor multiplicative faults can be described as

y
f
k = ∆iyk (43)

The estimated wind turbine model with the innovation form is
also used in this case as follows:

xk+1 = Ãxk + B̃ucm
k + KP−1

k yk (44)

ycm
k = C̃xk + D̃ucm

k + ek (45)

yk = PkC̃xk + PkD̃ucm
k + Pkek (46)

the sensor outputs is

y
f
k = ∆i(PkC̃xk + PkD̃ucm

k + Pkek) (47)

where ∆i is a diagonal matrix with all the elements 1 except
that one is δi and 0 < δi < +∞.

In this case, the residual is

r
f
k = PkC̃ε

f
k +(∆i−I)PkC̃xk +(∆i−I)PkD̃ucm

k +∆iPkek

The residual can be further split into two parts as in the additive
sensor fault case. At first, the sensor output is split into two

parts y
f
k = yk +(∆i − I)yk. The dynamics of the Kalman filter

can also be split into two parts in which one part is driven by the
sensor fault and the other part is the same as the sensor normal
case, that is, the dynamics excited by the sensor faulty part is

ξ̂k+1 = ξ̃x̂k + KP−1
k (∆i − I)yk (48)

ηcm
k = C̃ξ̂k (49)

ηk = PkC̃ξ̂k (50)

In sensor normal case, the residual is

rk = PkC̃εk + Pkek

Now we can obtain

r
f
k = rk + ηk + (∆i − I)PkC̃xk + (∆i − I)PkD̃ucm

k
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Sensor Fault Diagnosis Scheme

mean value changes while yk and/or uk have DC compo-
nents, mean value will change.

Variance changes The deterministic part from (∆i−I)PkD̃uk

does not contribute to the residual variance. However, ηk and

(∆i − I)PkC̃xk definitely cause the residual variance change.
Based on the variance change detection, it can easily be identi-
fied which sensor set has multiplicative fault. But it is not trivial
to determine the relation between the faults and the residual.
Fortunately, the isolation issue can be done by comparing the
outputs of the sensor pairs at each blade root.

Energy Detector for Variance Change Detection The residual
variance change detection can simply use the so called energy
detector in (Kay 1998) where the sum of the squared residual
in a sliding window is monitored. An alarm is generated if

V (ri) =
k∑

i=k−N+1

r2
i > h

where N is the window size and h is the threshold.

4.6 Sensor Fault Isolation Logic and Recombination

Fault Isolation Logic As shown in Fig. 3, there are two set of
sensors which send signals to two Kalman filters respectively.
The sensors are S1

1 , S2
1 , · · · , S1

3 , S2
3 , where the upper index

indicates the first sensor or the second sensor and the lower
index indicates the blade. For the two sensors at each blade,
they are compared all the time where the output γi = S1

i − S2
i

are the difference between their outputs. Since measured noise,
γi is not equal to zero even while the sensors are not faulty.
However, we can monitor the mean value change or variance
change of these residuals to detect the additive faults (sensor
output bias, slow drifting and output stuck) and multiplicative
faults(sensor gain change) respectively.

Suppose that each time only one set of the sensors can have
faults, that is, only one of the innovations r1

k or r2
k of the

two parallel Kalman filters can have change. This indicates in
which set the faulty sensors located. In the light of the direct
comparison of the dual sensor pairs, the faulty sensors can be
isolated. For instance, while the mean values of γ2 and r1

k have
changes and r2

k, γ1 and γ3 does not have change, S1
2 is faulty.

If both γ2 and γ1 have changes while r1
k has change, S1

2 and S1
1

are faulty.

Sensor Recombination or Selection As soon as a sensor fault
is detected and isolated and the faulty sensor is in the set which
is used in the feedback loop, a new set of sensor which are
in good condition should be selected to send correct signals to
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Fig. 4. Upper subplot shows the comparison output γ2 of the
sensors at the second blades. The lower subplot shows the
mean value change detection estimate from the CUSUM
LS filter, where the dashed line is the threshold.

0 100 200 300 400 500 600
0

1

2

3
x 10

5

g
k
(r

1
1
)

0 100 200 300 400 500 600
0

1

2

3
x 10

5

g
k
(r

1
2
)

0 100 200 300 400 500 600
0

1

2

3
x 10

5

g
k
(r

1
3
)

Time [Second]

Fig. 5. Mean value change detection results of the three innova-
tion outputs of Kalman filter 1 from the CUSUM LS filter.

the control system. There are eight possible combinations. The
diagnosis result can be recorded for maintenance purpose.

5. SIMULATION RESULTS

Fig. 4 shows the output difference of the sensor pair at the
second blade and the mean change detection output from the
CUSUM LS filter. While the sensor has abrupt jump change
since 188s, the detector begins to alarm repeatedly. The inno-
vation output of Kalman filter 1 (KF1) is also detected that it
has mean value change which is shown in Fig. 5, where the
thresholds are shown in dashed lines. Fig. 6 shows the results
of GLRT while assuming the jump faults are from the three
sensors respectively. It can be seen that under all these three
hypothesis, the outputs of all the GLRTs have a large peak
output after the abrupt jump fault appears. The reason for this
phenomena is that the three sensor jump fault has a very similar
signature output (see the signature equations.) Based on these
detection outputs, we can safely conclude that sensor S1

2 has a
abrupt jump change.

Fig. 7 shows the the comparison output γ2 of the sensors at
the second blades when one of the sensor has slow drifting
fault. The lower subplot shows the mean value change detection
estimate from the CUSUM LS filter, where the dashed line
is the threshold. It can be seen that the alarm frequency is
increasing after the slow drifting appears. The innovation mean
change detection of Kalman filter 1 are shown in Fig.8. The
mean value is changing very slowly. We can conclude that
sensor S1

2 has slow drifting fault.

The sensor S1
2 gain change detection results based on the energy

detector are shown in Fig. 9 and Fig. 10. While the sensor
gain is changed to its 1.5 times of its normal gain, the sum
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Fig. 7. Upper subplot shows the comparison output γ2 of the
sensors at the second blades while one of the sensor has
slow drifting fault. The lower subplot shows the mean
value change detection estimate from the CUSUM LS
filter, where the dashed line is the threshold.
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Fig. 8. Mean value change detection results of the three innova-
tion outputs of Kalman filter 1 from the CUSUM LS filter
while sensor S1

2 has slow drifting fault.

of the squared γ2 has gotten a large change while the fault
appears since 300s. The innovation variance is also detected
by the energy detector algorithm. It is not difficult to draw a
conclusion that the sensor S1

2 has multiplicative fault.

6. CONCLUSION

This paper concerns sensor fault detection issue of the rotor
blade moments of large scale wind turbine system. The un-
derlying system is extremely important for the load reduction
of wind turbines based on the individual pitch control system.
Simulation results show that the proposed methods are suitable
for the underlying sensor fault detection issue.
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Fig. 9. Upper subplot shows the comparison output γ2 of the
sensors at the second blades while sensor S1

2 has a a 1.5
times its normal gain. The lower subplot shows the mean
value change detection estimate from energy detector,
where the dashed line is the threshold.
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Fig. 10. Variance change detection results of the three innova-
tion outputs of Kalman filter 1 from the energy detector
while sensor S1

2 has a 1.5 times its normal gain, where the
dashed line is the threshold.
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