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Abstract: This paper focuses on a new type of control laws for oriented mechanical systems. The
starting point is dual quaternion and its properties. Logarithm of dual quaternion is defined,
based on which control laws are developed, tackling both regulation and tracking problems
using logarithmic feedback. The control laws are shown to have several merits, including
global asymptotically convergence, computational efficiency, and proper handling of the coupling
between rotation and translation. Simulation results validate our design.

Keywords: Mechanical systems control, Geometric Control, Nonlinear control, PD control,
Dual quaternion.

1. INTRODUCTION

Mechanical systems have always been a source of chal-
lenges for control theory. The abundant characteristics of
mechanical systems bring various difficulties, one of which
is control of the orientation. As the rotation group has a
topology different from Euclidean space, the orientation of
a rigid body cannot be obtained through integration of the
angular velocity. For this reason attitude control has been
studied for years, see Wen and Delgado (1991), Arambel
and Manikonda (2000).

In more complicated applications, such as task-space con-
trol of manipulators, control of mobile robots or underwa-
ter vehicles, rotation and translation of a mechanism are
controlled simultaneously. In Bullo et al. (2000) configu-
ration of these mechanisms is formulated as a Riemannian
manifold. In many cases the manifold is actually the Spe-
cial Euclidean group SE(3). Control laws are designed on
Riemannian manifold and SE(3) in Bullo et al. (2000)
and Bullo and Murray (1995) respectively. A typical re-
sult is the generalized proportional-derivative(PD) laws
using logarithmic feedback developed on SE(3) and its
subgroups.

A conventional way to perform control on SE(3), called
double geodesic control law, is also addressed in Bullo and
Murray (1995). Its main idea is to control translation and
rotation separately. Compared to the geometric method,
the conventional method is less attractive, because the
former can take the coupling between translation and
rotation into consideration, making the resulting trajec-
tory more natural. However, using matrices to describe
rigid transformations leads to complex computation, which
prevents the existing geometric control laws from practical
application.

Fortunately matrix is not the only tool to describe rigid
transformation. Dual quaternion is a good substitution. It
has been shown that dual quaternion is a compact and
efficient tool for representation and computation(Wu et
al. (2005)). This paper will rebuild the control laws using
dual quaternion. The new control laws, which are also
geometric, are more accessible than the former results.

Like the role of se(3) in Bullo and Murray (1995), the
logarithm of dual quaternion, which is defined using the
logarithm of unit quaternion and the logarithm of dual
number, is of great importance in our design. The newly
proposed definition, which embodies the geometric struc-
ture of dual quaternion, is of importance itself, having the
potential to be used in related problems such as task space
trajectory planning.

Since its invention, dual quaternion has been applied in
various fields, such as inertial navigation, mechanical de-
sign, robotics, and other related problems(Dooley and Mc-
Carthy (1993), Goddard (1997), Daniilidis (1999), Perez
and McCarthy (2004), Wu et al. (2005)). To summarize,
dual quaternion is mostly used for kinematic analysis,
except for Dooley and McCarthy (1991), where dynamics
of spatial rigid body is formulated in dual quaternion. It
is well known that quaternion contributes a lot to attitude
control. As a generalization of quaternion(Hsia and Yang
(1981)), dual quaternion seldom plays a role in the control
of oriented mechanisms. This paper is also an effort to fill
this gap.

This paper is organized as follows. Necessary mathematical
preliminaries are given in Section II, where logarithm of
dual quaternion is defined and discussed in detail. Control
laws using logarithmic feedback are developed in Section
III. Section IV shows simulation results and Section V
concludes the paper.
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2. MATHEMATICAL PRELIMINARIES

This section presents a brief review of unit quaternion and
dual quaternion. Readers are referred to Bottema (1979)
and Wu et al. (2005) for more details.

2.1 Unit Quaternion

A unit quaternion usually has the form
q = (qs, qv)

where qs is a scalar, qv is a vector.

Basic operations of quaternions are listed as below:

q∗ = (qs,−qv) (1)

‖ q ‖2= qq∗

q−1 = q∗/‖ q ‖2
q1
q2

= q1q∗2
‖q2‖2 (2)

Rotation about a unit axis n with angle φ is expressed as
q = (cos (φ/2), sin (φ/2)n) (3)

q obtained in this way is naturally a unit quaternion. On
the contrary, any unit quaternion can be expressed using
(3). In the following a symbol Qu is used to represent all
unit quaternions.

The kinematic equation of rotation is given in Wu et al.
(2005):

2q̇ = q ◦ ωb (4)
where ωb represents the body angular velocity, explicitly
expressed as

ωb = 2q∗ ◦ q̇ (5)

2.2 Dual Vector

A dual vector is defined as
v̂ = l + εm, with ε2 = 0 but ε 6= 0

where l and m are both 3-dimensional real vectors.

Given two dual vectors V̂1 = l1 + εm1, V̂2 = l2 + εm2,
the dot product and the cross product can be defined:

V̂1 · V̂2 = l1 · l2 + ε(m1 · l2 + l1 ·m2)

V̂1 × V̂2 = l1 × l2 + ε(l1 ×m2 + m1 × l2)

For future design a new type of dot product is defined
between a dual vector and a 6-dimensional real vector.
Given a 6-dimensional real vector K, it can be divided
into two 3-dimensional real vectors Ka, Kb:

K = (k1, k2, k3, k4, k5, k6) , (Ka,Kb)
Then the special dot product is defined as

K · V̂ = Ka · l + εKb ·m (6)

2.3 Dual Quaternion

A dual quaternion is defined as
q̂ = (q̂s, q̂v)

where q̂s is a dual scalar, q̂v is a dual vector.

Operations of dual quaternion are similar to that of
quaternion, only adding ˆ to each elements:

q̂∗ = (q̂s,−q̂v) (7)

‖ q̂ ‖2= q̂q̂∗

Note that the norm here is a dual number.

A dual quaternion can also be defined as
q̂ = q + εqo (8)

where q and qo are both quaternions.

Suppose there is a rotation q succeeded by a translation
p . The whole transformation can be represented using a
dual quaternion(Wu et al. (2005)) with

qo = 1
2q ◦ p (9)

For convenience the quaternion (0,p) is identified with the
vector p. Kinematic equation of a rigid body expressed in
dual quaternion is

2 ˙̂q = q̂ ◦ ω̂b (10)
where

ω̂b = 2q̂∗ ◦ ˙̂q = ωb + ε(ṗ + ωb × p) (11)
represents the generalized body velocity. ω̂b is also called
the twist.

Given q̂ = q + εqo, if q · q0 = 0, q̂ is said to be
normalized(Ge and Raveni (1994)). It can be verified
that, dual quaternion acquired through (9) is naturally
normalized. Therefore, a definition is presented

DQu = {q̂|q̂ is normalized and has unit norm}
DQu is a manifold with 3 dual dimensions. In the rest of
this paper, unless otherwise stated, by dual quaternion we
mean an element in DQu. When p = 0, DQu is simplified
as Qu.

2.4 Logarithm of Unit Quaternion

Given a unit quaternion expressed as (3), its logarithm was
presented in Kim and Kim (1996). With some modification
the formula is restated as

log q = (0, φ
2n), 0 6 φ 6 2π

It can be simplified as
log q = 1

2φn (12)

When φ = 0, q = (1, 0, 0, 0) , O; When φ = 2π,
q = −O. Arbitrary n fits these two cases. Their logarithms
are defined specially as log O = log (−O) = (0, 0, 0).
From the viewpoint of control, both O and −O are
equilibriums(Arambel and Manikonda (2000)).

Note that φ ± 2kπ also satisfies (12) for arbitrary integer
k. Using ∨3 to denote the 3-dimensional vector space,
elements in Qu are mapped into ∨3 by the logarithmic
operation.

2.5 Logarithm of Normalized Dual Quaternion

Given a dual quaternion, an interesting conclusion is given
in Bottema (1979):

q + εq0 = qeεγ ,with γ = q0/q (13)
Substituting (9) one obtains

γ = 1
2p
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Computing the logarithm on both sides of (13) gives

log (q + εq0) = log q + ε 1
2p

Let p =‖ p ‖, s = p/p, it follows that
log q̂ = 1

2 (φn + εps) (14)
Logarithm of a dual quaternion is a vector with 3 dual
dimensions. In future discussion, a symbol ∨̂3 is used to
represent all 3-dimensional dual vectors.

Let Ô = (1, 0, 0, 0) + ε(0, 0, 0, 0). Just like the case of
Qu, the equilibriums of system (10) are Ô and −Ô. Their
logarithms are defined as (0, 0, 0) + ε(0, 0, 0).

2.6 More Definitions and Discussions

Given q ∈ Qu, q̂ ∈ DQu and their logarithms, a reasonable
definition of the inner products on ∨3, ∨̂3 is

< log q, log q > = 4 log q · log qT

< log q̂, log q̂ > = 4 log q̂ · (log q̂)T

With the inner products a new type of norm for dual
quaternions can be defined:

R(q̂) =
√

< log (q̂), log (q̂) > (15)

For all q̂ ∈ DQu, v̂ ∈ ∨̂3, adjoint mapping Ad is defined as
Adq̂ v̂ = q̂v̂q̂∗ (16)

Given two dual quaternions q̂1, q̂2, their difference is eval-
uated by

ê = q̂∗1 ◦ q̂2 (17)
Note that q̂1 = q̂2 implies ê = Ô.

Let q̂1 = q1+ 1
2q1◦p1, q̂2 = q2+ 1

2q2◦p2, it can be calculated
that

ê = qe + 1
2qe ◦ pe

qe = q∗1 ◦ q2

pe = p2 −Adq∗e p1 (18)

Given a sequence of transformation q̂(t) ∈ DQu,

r̂(t) = log q̂(t) and ω̂b(t) = 2q̂∗ ◦ ˙̂q
can now be computed. A useful lemma follows.
Lemma 1.

1
2

d
dtR2(q̂) = 2 < r̂, ω̂b > (19)

Proof is given in Appendix A.

For the special case of Qu, equation (19) is simplified as
1
2

d
dtR2(q) = 2 < r, ωb > (20)

For Qu there is another lemma.
Lemma 2.

< 2ṙ, ωb > 6 < ωb, ωb > (21)

Proof is given in Appendix B.

Remark: The relation between DQu and ∨̂3(or Qu and ∨3)
deserves further research. Their relation has in common
with the relation between a Lie group and its Lie algebra.
Therefore, DQu and ∨̂3 together embodies the geometric
structure of dual quaternion.

3. CONTROL LAW DESIGN

A unified model for all oriented mechanisms can be written
as

2 ˙̂q = q̂ ◦ ω̂b

˙̂ωb = f(q̂, ω̂b) + Û
(22)

f(q̂, ω̂b) and Û are dynamics related terms, varying with
different mechanisms. Differentiating (11) yields

˙̂ωb = ω̇b + ε(p̈ + ωb × ṗ + ω̇b × p) (23)
Then

f(q̂, ω̂b) = εωb × ṗ (24)

Û = ω̇b + ε(p̈ + ω̇b × p) , U + εUo (25)

As ω̇b and p̈ are caused by torques and forces respectively,
the vector U corresponds to the acting torques on a
moving rigid body, while Uo corresponds to both forces
and torques. In this paper we take Û as the input variable
to be designed. To execute a control law, one need to solve
the forces and torques from Û . This procedure is possible
as long as the mechanism is fully-actuated. Now we are on
the way to design control laws. The procedure starts from
the kinematic model (10).

3.1 The Regulation Problem

To stabilize system (10), a control law using logarithmic
feedback is presented:

ω̂b = −2kp log q̂ (26)
To prove the stability, consider the candidate Lyapunov
function:

W (q̂) = 1
2R2(q̂) (27)

Differentiating (27) and substituting (19)(26) gives

Ẇ (q̂) =< 2 log q̂,−2kp log q̂ >= −kpW

Thus the logarithmic control law ensures exponential sta-
bility.

Here “exponential stability” means that log q̂ converges
to zero exponentially. That is, (26) will drive any initial
posture to Ô. Note that there is an exception. If the initial
posture is −Ô, by (26) q̂ will stay at −Ô.

Actually Ô and −Ô are physically identical. When the
initial posture q̂0 is near −Ô, that is to say, when the
scalar part of q̂0’s quaternion part is negative, it is more
reasonable to take −Ô as the equilibrium; otherwise the
system will follow a “longer” trajectory leading to Ô. To
handle this multi-equilibrium problem, for a given initial
posture

q̂(0) = (qs0, qv0) + ε(q0
s0, q

0
v0)

a parameter λ is introduced:

λ =
{

1, if qs0 > 0
−1, otherwise (28)

Then a revision of (26)

ω̂b = −2kpλ log (λq̂) (29)

will drive the system to Ô or −Ô as demanded.
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To control (22), both R(q̂) and ω̂b should be driven to
zero. The following control law is a possible choice:

Û = −2kp log (q̂)− kdω̂
b − f(q̂, ω̂b) (30)

Formula (30) can be divided into two parts: the real part
and the dual part. The real part leads to stability of pure
rotation control. By the dual part stability of translation
will be guaranteed.

The real part of (30) is written as

U = −2kp log q − kdω
b − f(q, ωb)

It implies that

ω̇b = −2kp log q − kdω
b (31)

Let r = log q. Borrowing the skill used in Wen and Bayard
(1988), a candidate Lyapunov function is constructed by
introducing a cross term:

Wε = 1
2 (< 2r, 2r > + 1

kp
< ωb, ωb >)

+ ε < r, ωb > (32)

where ε is a small positive scalar.

Differentiating (32) and applying (20) yields
d
dtWε = 2 < r, ωb > + 1

kp
< ωb, ω̇b >

+ ε < r, ω̇b > +ε < ṙ, ωb >

Substituting (31) and (21) gives
d
dtWε 6− kd

kp
< ωb, ωb > −2kpε < r, r >

− kdε < r, ωb > + ε
2 < ωb, ωb >

Rearranging the terms yields
d
dtWε 6− kp

2 εWε

+ (ε− kd

kp
)(< ωb, ωb > +kpε < r, ωb >)

Choosing ε to be small enough so that ε− kd

kp
< 0 holds, it

follows that
d
dtWε 6 −kp

2 εWε (33)
Thus the rotational part is asymptotically stable. When
ε > 0, exponential convergence is achieved.

Applying the dual part of (30) and substituting (11)(23)
yields

p̈ = −kpp− kdṗ + kpr× p− ωb × ṗ (34)

As the rotational part is stabilized, ωb and r approach
zeroes as time passes by. Then (34) implies the convergence
of p.

To summarize, if the initial posture is not−Ô, formula (30)
will drive the dynamic system (22) to Ô asymptotically.
Thus asymptotical stability is proved.

Similar skill as in (29) is used to handle the multi-
equilibrium problem:

Û = −2kpλ log (λq̂)− kdω̂
b − f(q̂, ω̂b) (35)

It is well known that at least 4 parameters are needed
to get a description of orientation without singularity.
Though the logarithm of a unit quaternion has only three
elements, the control laws are still singularity-free due to
the use of the indicator λ.

3.2 The Tracking Problem

Given a reference trajectory q̂d(t), the tracking error is
express as

ê = q̂∗d ◦ q̂ (36)
Let ω̂d = 2q̂∗d ◦ ˙̂qd, it is the demanded velocity. As q̂d is
normalized, it can be verified that 2 ˙̂q∗d = −ω̂d ◦ q̂∗d.

Differentiating (36) yields

2 ˙̂e = ê ◦ ω̂e (37)

ω̂e = ω̂b −Adê∗ ω̂d (38)
Given the facts

2 ˙̂e∗ = −ω̂e ◦ ê∗ and ω̂e ×Adê∗ ω̂d = −Adê∗ ω̂d × ω̂e

The term Adê∗ ω̂d can be differentiated as
(Adê∗ ω̂d)′ = Adê∗Ω̂d + Adê∗ ω̂d × ω̂e , Ûtr (39)

where Ω̂d is the demanded acceleration. Here Ûtr repre-
sents the compensation brought by the reference trajec-
tory.

Differentiating (38) yields
˙̂ωe = f(q̂, ω̂)− Ûtr + Û (40)

Equation (37) together with (40) constitute the dynamic
error system. Applying (30) yields the tracking control law:

Û = −2kp log (ê)− kdω̂e + Ûtr − f(q̂, ω̂b) (41)

In the control laws designed, kp and kd are positive scalars.
Thanks to the special inner product defined by (6), the
parameters can be replaced by 6-dimensional vectors Kp

and Kd with positive elements.

The newly built control laws are similar to the results
developed in Bullo and Murray (1995). With the discussion
about Lie group and Lie algebra being avoided, our result
is more accessible. Moreover, in the formulas vectors are
used instead of matrices, and matrix multiplications are
replaced by cross products between vectors, making the
control laws computationally more efficient. As logarithm
is not defined for some matrices, control laws derived in
Bullo and Murray (1995) demands kp to have a lower
bound to avoid singularities. The restriction is unnecessary
here, as logarithm is properly defined everywhere on DQu.
Such improvements make the development in this paper
more than a simplified version of the former geometric
design.

4. SIMULATION RESULTS

Firstly the regulation law (35) will be tested. Taking
kp = 1.5, kd = 0.8, starting with zero velocity and

q̂(0) = (−0.6628, 0.0885, 0.2654, 0.6946)

+ε(0.2079, 1.9701, 0.2111,−0.5300)
The simulation results are shown in Fig. 1(a) and Fig. 1(b).
Notice that q0 converges to −1 monotonically as expected.

To test the tracking law (41), a reference trajectory q̂dl(t)
is selected as

q̂dl(t) = (0.7775, 0.3631, 0.3631, 0.3631)

+ε(−0.10890.0777, 0.0777, 0.0777)t

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3839



(a) The quaternion part (b) The translation part

Fig. 1. Convergence of the posture q̂(t) = q(t) + q0(t). On
the left is the quaternion part q(t), on the right is the
translation part p = 2q0(t) ◦ q∗(t)

which actually represents a line, expressed in Cartesian
coordination as

x = 0.2t θ1 = π
4

y = 0.2t θ2 = π
4

z = 0.2t θ3 = π
4

where (θ1, θ2, θ3) = 2 log q.

Starting from the initial posture
q̂0 = (1, 0, 0, 0) + ε(0,−2, 0, 0)

with zero initial velocity, formula (41) is applied to track
q̂dl(t). The tracking error q̂e is given in Fig. 2. When q̂e

converges to Ô, or log q̂e converges to zero, tracking is
accomplished.

Fig. 2. The tracking error q̂e = q + εq0

To give an intuitionistic result, we consider an omnidi-
rectional robot moving on the x-y plane while rotating
about the z-axis. The posture of the robot is described by
q̂ = q + 1

2q ◦ p with p = (x, y, 0) and 2 log q = (0, 0, θ3).
Actually the transformations constitute SE(2).

Firstly (35) is applied to regulating the robot. Initially the
robot is at the positions

{(xi, yi)|xi = ±1 or 0, x2
i + y2

i = 1}
with θ3 = π

2 and with zero velocities. The gains kp, kd are
chosen as

kp = (1, 1, 1, 8, 8, 8)

kd = (0.5, 0.5, 0.5, 4, 4, 4)
Using two perpendicular bars to indicate the heading angle
θ3, simulation results are shown in Fig. 3(a).

The double geodesic regulation law using equivalent gains,
is also applied to do the simulations, and the results are
given in Fig. 3(b).

Compared to the new regulation law, the double-geodesic
law generates a spiraling (x, y) motion. Recall that all the

control laws are built from (11). In conventional methods
the term ωb × p is omitted. That is to say, the rota-
tion’s influence on translation is not taken into account.
However, the influence is not always neglectable. For ex-
ample, in task space control, while the end-effector of a
manipulator moves in the task space, all its configurations
form SE(3). A notation swept volume is used to denote
the space covered by the end-effector when it turns and
twists(Abrams and Allen (1995)). If applied to task space
control of manipulators, the new method can result in
less swept volume, which is desired in applications such
as collision avoidance in a clattered environment.

(a) Results of the new regulation law

(b) Results of the double geodesic
law

Fig. 3. Comparison of the new regulation law and the
double geodesic law. A rigid body moving on the x-y
plane is driven to the origin. The frames attached to
the curve indicate the heading angle.

5. CONCLUDING REMARKS

Based on dual quaternion a new method for the control of
oriented mechanisms is developed. Compared to the con-
ventional method, the control laws can handle the coupling
inside a motion, achieve harmony between rotation and
translation. Compared to the preceding geometric results,
complicated discussion on Lie group and Lie algebra is
avoided and global convergence is achieved.

Due to its computational efficiency, dual quaternion is a
wonderful algebraic tool for motion design. This paper
reveals the geometric structure of dual quaternion and
presents new geometric control laws. Combining dual-
quaternion based trajectory planning schemes with these
control laws will make a prospective solution for many
applications, such as industrial robots and cooperative
manipulators, which will be covered by future research.

Appendix A. PROOF OF LEMMA 1

Starting from (15), standard calculation gives
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1
2

d
dtR2(q̂) = < 2 log (q̂), 2 d

dt log (q̂) >

2 d
dt log (q̂) = (φ̇n + εṗs) + (φṅ + εφṅ)

, Cq + C⊥

As n and s are both unit vectors,
n · ṅ = s · ṡ = 0

Together with (14) it follows that
< 2 log (q̂), C⊥ >= 0

1
2

d
dtR2(q̂) =< 2 log (q̂), Cq >

Following (3)(5)(11), ω̂b is calculated as

ω̂b = (φ̇n + εṗs) + (sinφṅ + 2 sin2 φ
2 ṅ× n)

+ε(pṡ + ṗφ̇n× s + pφ̇n× ṡ + φṗṅ× s)

+ε(φpṅ× ṡ + 2 sin2 φ
2 ṅ× s× ṡ)

, Cq + C̄⊥

Obviously
< 2 log (q̂), C̄⊥ >= 0

Thus
< 2 log (q̂), ω̂b >=< 2 log (q̂), Cq >

Then (19) follows.

Appendix B. PROOF OF LEMMA 2

Given q = [cos (φ/2), sin (φ/2)n],
2r = 2 log q = φn

It follows that

2ṙ = φ̇n + φṅ , Dq + D⊥

ωb = φ̇n +
[
sinφṅ + 2 sin2 φ

2 ṅ× n
]

, Dq + D̄⊥

As n is a unit vector, ṅ · n = 0 holds. Moreover,
< ṅ× n, ṅ× n >=< ṅ, ṅ >

Therefore,

< 2ṙ, ωb > = < Dq, Dq > + < D⊥, D̄⊥ >

< ωb, ωb > = < Dq, Dq > + < D̄⊥, D̄⊥ >

< D⊥, D̄⊥ >−< D̄⊥, D̄⊥ >

= (φ sinφ− sin2 φ− 4 sin4 φ
2 ) < ṅ, ṅ >

When −2π < φ 6 2π, it can be verified that

φ sinφ− sin2 φ− 4 sin4 φ
2 6 0

So
< 2ṙ, ωb > 6 < ωb, ωb >

Now (21) is proved.
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