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Abstract: Subspace predictive control (SPC) is recently seen in the literature for joint system
identification and control design. This combination enables automatically tuning the parameters
in conventional model predictive control (MPC); and therefore provides a solution to the problem
of fault tolerant MPC design. The existing SPCs either deal with open-loop data or depend on
the information of the controller in a closed loop. In this paper we introduce a new closed-loop
SPC method, which is independent of any controller information. Both the analytic solution
to the unconstrained case and the quadratic programming problem for the constrained case
are formulated. A recursive solution for updating the SPC control law is proposed. A fault
tolerant MPC scheme is then developed based on the recursive algorithm, whose effectiveness
is demonstrated on tolerating a fault in a steer-by-wire actuator.

1. INTRODUCTION

Conventional model predictive control (MPC) is based
on system models either built from physical principles or
identified; or a sequence of impulse or step response coeffi-
cients. The subspace predictive control (SPC) approaches
as recently seen in Favoreel et al. (1998, 1999); Woodley
(2001), circumvents the modeling step, and directly seeks
the predictors of future outputs from data. The N4SID
algorithm, van Overschee and de Moor (1994), is applied
to estimate such predictors in both studies. The SPC
algorithms do not proceed further to recover the state
space matrices from the estimated state sequences as does
in N4SID, which is again an estimation problem and may
need to choose model order. Favoreel et al. (1998) focuses
on LQG design; while Woodley (2001) extends SPC to
H∞ control. However, these algorithms are based on open-
loop identification. In Favoreel et al. (1999), the authors
extends their previous results to handle closed-loop data
using the closed-loop identification of van Overschee and
de Moor (1996), which requires computing instrumental
variables based on the impulse response coefficients of
the controller, and is thus more prune to errors and fails
to work in case the controller is not LTI, e.g. a con-
strained MPC controller. To overcome these drawbacks,
the updating of a predicted controller is renewed based on
the VARX (vector autoregressive with exogenous inputs)
algorithm, developed in Chiuso (2007a,b) for closed-loop
identification.

The capability of MPC in reconfiguring controllers is
recognized in Maciejowski (1997, 1998), when there are
actuator redundancies in a system. As also argued in
Maciejowski (1997), to handle partial actuator failures,
automatic re-estimation of the system model is necessary,
which is known as the FDI (fault detection and isolation)
step in fault tolerant control (FTC). The combination of
closed-loop subspace identification and predictive control

provides such an opportunity for online reconfiguring MPC
controllers when a system is time varying or subject to
faults. It is thus the purpose of this paper to provide a
solution to this problem.

The paper is organized as follows. We introduce the nec-
essary technical details of the VARX algorithm in Section
2. The main results of this paper is presented in Section 3,
where the analytical solution for the unconstrained prob-
lem is derived; and the constrained problem is formulated.
The recursive solution is developed in Section 4, where
the computational complexity of the recursive algorithm
is also analyzed. Based on this recursive solution, a fault
tolerant MPC scheme is then proposed. The application
of this scheme on a steer-by-wire actuator is presented as
a case study in Section 5. The paper concludes in Section
6 with the direction for future research.

2. CLOSED-LOOP SUBSPACE IDENTIFICATION

Consider the innovation type state space model:

x(k + 1) = Ax(k) + Bu(k) + Ke(k) (1)

y(k) = Cx(k) + e(k), (2)

where e(k) is assumed to be a zero-mean white noise with a
non-singular variance of EET . The dimensions are assumed
to be x(k) ∈ R

n, y(k) ∈ R
l, and u(k) ∈ R

m. We make
the following assumption on the plant, which is commonly
assumed in subspace identification.

Assumption 1. Φ � A − KC is stable, and the system is
minimal. �

In the sequel, we denote by s, f respectively the past and
future horizon (s ≥ f), in both identification and control.
N represents the number of columns in the identification
data matrices. Let t be the current time instant in the
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formulation of the identification problem. We shall denote
by k the current time instant in the control formulation.

The first step in identifying the state space model (1) and
(2) is to solve the following least square problem,

Yt = CΦsXt−s + Ξ0Z[t−s,t) + Et. (3)

Ξ0 �
[
CΦs−1B CΦs−1K · · · CB CK

]
contains the Markov

parameters of the system. Yt =
[
y(t) y(t+1) · · · y(t+N−

1)
]
and Et =

[
e(t) e(t+1) · · · e(t+N−1)

]
are respectively

the future output and innovation sequence. The past I/O
data are collected in the matrix

Z[t−s,t) =










u(t − s) u(t − s + 1) · · · u(t − s + N − 1)

y(t − s) y(t − s + 1) · · · y(t − s + N − 1)

u(t − s + 1) u(t − s + 2) · · · u(t − s + N)

y(t − s + 1) y(t − s + 2) · · · y(t − s + N)

.

.

.
.
.
.

.

.

.

u(t − 1) u(t) · · · u(t + N − 2)

y(t − 1) y(t) · · · y(t + N − 2)










.

The subscript “[t − s, t)” stands for the range of the
time index along the first column of the Z matrix; while
the number of columns, N , is omitted to simplify the
notations.

Xt−s =
[
x(t − s) x(t − s + 1) · · · x(t − s + N − 1)

]
is

the sequence of the unknown initial states, which induces
a bias to the identification of Ξ0. Due to the scaling by
CΦs, this bias can in fact be made arbitrarily small by
choosing a relatively large s. Note that in (3), each column
of Et is at least one step ahead in the future of the I/Os
along the corresponding column of Z[t−s,t). Due to the

causality of the system, limN→∞ Et · Z
T
[t−s,t) = 0. This

requires to take a large N . We assume N, s are so large
that both the two sources of bias are negligible. We shall
refer to Chiuso (2007b) for the asymptotic behavior of
the subspace identification; while postpone the rigorous
treatment of the finite-horizon case (finite N, s, f) in Dong
and Verhaegen (2008). We shall only focus on this paper
to formulate the nominal SPC and its recursive solution
for fault tolerant MPC design.

Now, with the biases neglected, solving (3) in a least square
(LS) sense results in a consistent estimate of Ξ0, no matter
the data are from open or closed loop experiments; i.e.

Ξ̂0 = Yt · Z
†
[t−s,t), (4)

where “†” stands for pseudo inverse. To ensure Z†
[t−s,t) is

unique, we need to make the following assumption, which
is the necessary and sufficient condition for persistently
exciting the system of any order.

Assumption 2. Chiuso (2007b), the spectrum of the joint

input and output signals z(k) =
[
uT (k) yT (k)

]T
(denoted

by Φz) is bounded and bounded away from zero on the
unit circle, i.e. ∃0 < c ≤ M < ∞, s.t. cI ≤ Φz(e

jω) ≤
MI, ∀ω ∈ [0, 2π). �

With the identified Markov parameters in Ξ̂0, we are able
to proceed to develop the new closed-loop SPC in the
following sections.

3. CLOSED-LOOP SUBSPACE PREDICTIVE
CONTROL

3.1 The output predictor

Let the prediction horizon be f . To distinguish with
Z[t−s,t) in the identification problem, we use Z̄[k−s,k) =
[
u(k−s)T y(k−s)T · · · u(k−1)T y(k−1)T

]T
to represent

the past I/Os in the control problem. It is shown in Chiuso
(2007b) that the future f step ahead output predictor
takes the following form,

ŷ[k,k+f) ≈






Ξ0

Ξ1

.

.

.

Ξf−1




Z̄[k−s,k) +






0

Ψ1 0

.

.

.
.
.
.

. . .

Ψf−1 Ψf−2 · · · Ψ1 0




 ·







u(k)

y(k)

.

.

.

u(k + f − 1)

y(k + f − 1)







+






CΦ
s
x(k − s)

CΦ
s+1

x(k − s)

.

.

.

CΦ
s+f−1

x(k − s)






︸ ︷︷ ︸

bx

, (5)

where Ψτ � CΦτ−1
[
B K

]
, τ = 1, · · · , f − 1; and Ξi =

[
0l×i(m+l) CΦs−1B CΦs−1K · · ·CΦiB CΦiK

]
is simply

a right-shifted and zero-padded version of Ξ0. Here we use
0m×n to represent an m-by-n zero matrix; and Im an m-
dimensional identity matrix. The predictor can therefore
be derived based on the estimate Ξ̂0.

Remark 1. Note that the above approximate equality is
due to ignoring the higher order terms, CΦs+τ

[
B K

]
, 0 ≤

τ < i in Ξi, ∀0 < i < f . In fact, since

i−1∑

τ=0

CΦs+τ · [ B K ] ·

[
u(k − s + i − 1 − τ)
y(k − s + i − 1 − τ)

]

+ CΦs+ix(k − s) = CΦs · x(k − s + i),

the approximate equality can be replaced with an equality
by changing bx to

[
(CΦsx(k − s))T , (CΦsx(k − s +

1))T , (CΦsx(k− s+ f − 1))T
]T

. If the closed-loop system
is internally stable before the time instant k, by choosing a
large enough s, this unknown bias term can be neglected,
based on Assumption 1. �

Denote ŷ[k,k+f) �
[
ŷT (k) ŷT (k + 1) · · · ŷT (k + f − 1)

]T
;

and by u[k,k+f−1) �
[
uT (k) uT (k+1) · · · uT (k+f −2)

]T

the future control inputs. The following lemma constructs
the output predictor from the identified Markov parame-
ters in Ξ̂0.

Lemma 1. If the closed-loop system is internally stable
before the time instant k and s is so large that ‖Φs‖2 ≪ 1,
then the future f outputs are predicted by

ŷ[k,k+f) =







Γ0

Γ1

Γ2

.

.

.

Γf−1







︸ ︷︷ ︸

Γ

Z̄[k−s,k) +










0





Λ1

Λ2 Λ1

.

.

.
.
.
.

. . .

Λf−1 Λf−2 · · · Λ1






︸ ︷︷ ︸

Λ










·u[k,k+f−1),
(6)
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where the parameters, {Γi, Λj |i, j = 1, · · · , f − 1}, are
derived from

Γi = Ξ̂i +
i−1∑

τ=0

CΦi−τ−1K · Γτ , Γ0 = Ξ̂0,

Λj = CΦj−1B +

j−1
∑

τ=1

CΦj−τ−1K · Λτ , Λ1 = CB,

(7)

where CΦτB and CΦτK, τ = 0, · · · , f − 2, are the block
elements of the estimate, Ξ̂0; and Ξ̂i =

[
0l×i(m+l) CΦs−1B

CΦs−1K · · ·CΦiB CΦiK
]
. �

Proof See Appendix A for a sketch of proof. �

Since ŷ(k) does not depend on u, the first block row in (6)
can be deleted, which can then be reduced to

ŷ[k+1,k+f) = Γ̃ · Z̄[k−s,k) + Λ · u[k,k+f−1), (8)

where Γ̃ =
[
ΓT

1 ΓT
2 · · · ΓT

f−1

]T
.

3.2 Unconstrained closed-loop SPC

Consider first the unconstrained SPC problem. Assume
the future reference signals, r[k+1,k+f) = [rT (k+1) rT (k+

2) · · · rT (k+f −1)]T , are known. Define a quadratic cost
function,

J(k + 1) = ‖r[k+1,k+f) − ŷ[k+1,k+f)‖
2
Q + ‖∆u[k,k+f−1)‖

2
R,
(9)

where ∆u(k + i) = u(k + i) − u(k + i − 1) is the input
change at instant k + i. Q, R ≻ 0 are weighting matrices.
‖v‖2

Q � vT Qv defines a weighted 2-norm. Define the
following structure matrices,

S∆ =







Im

−Im Im

. . .
. . .

−Im Im







, and

Sk−1 =

[

0m×(s−1)(m+l) Im 0m×l

0(f−2)m×(s−1)(m+l) 0(f−2)m×m 0(f−2)m×l

]

.

Then one can write the f − 1 control changes as

∆u[k,k+f−1) = S∆ · u[k,k+f−1) − Sk−1 · Z̄[k−s,k). (10)

The unconstrained closed-loop SPC design problem reads

u[k,k+f−1) = arg min
u[k,k+f−1)

J(k + 1), (11)

whose solution is derived in the following theorem.

Theorem 1. The analytic solution to the unconstrained
closed-loop SPC design problem, (11), is

u∗
[k,k+f−1) =

[
ΛT QΛ + ST

∆RS∆

]−1[
ΛT Q

(
r[k+1,k+f)

−Γ̃Z̄[k−s,k)

)
+ ST

∆RSk−1Z̄[k−s,k)

]
. (12)

�

Note that since Q,R ≻ 0, ΛT QΛ � 0 and ST
∆RS∆ � 0.

Furthermore, since S∆ is a full-rank square matrix, S∆ ·
v �= 0, ∀ v ∈ R

(f−1)m �= 0; and therefore ST
∆RS∆ ≻ 0. This

leads to the conclusion that ΛT QΛ + ST
∆RS∆ is positive

definite, and hence invertible.

3.3 Constrained closed-loop SPC

When inequality constraints have to be imposed to Prob-
lem (11), no analytic solution exists. Furthermore, the
controller is no more a linear function of r[k+1,k+f) and

Z̄[k−s,k), depending on whether the constraints are active
or not. In this case, an online optimization problem has
to be solved. In this paper, we consider two types of
constraints, the limits on inputs and outputs. Other linear
constraints such as the input incremental constraints can
be incorporated in the same way.

Denote α(k + 1) = Γ̃Z̄[k−s,k) − r[k+1,k+f) and β(k) =

Sk−1Z̄[k−s,k) =
[
uT (k − 1) 0 · · · 0

]T
. Then the quadratic

cost function in (9) can be rewritten in a standard
quadratic form as

J(k + 1) = uT
[k,k+f−1) · [Λ

T QΛ + ST
∆RS∆] · u[k,k+f−1)

+[2αT (k + 1)QΛ − 2βT (k)RS∆] · u[k,k+f−1)

+αT (k + 1)Qα(k + 1) + βT (k)Rβ(k). (13)

Suppose the input limits are umin ≤ u(k + i) ≤ umax; and
the outputs constraints are ymin ≤ y(k + i) ≤ ymax. Then
the quadratic programming (QP) problem is summarized
in the following proposition.

Proposition 1. The linear inequality constrained closed-
loop SPC design is the following convex QP problem,

min
u[k,k+f−1)

(13) subject to (14)






Λ
−Λ

I(f−1)m

−I(f−1)m




 · u[k,k+f−1) ≤







yf−1
max − Γ̃Z̄[k−s,k)

Γ̃Z̄[k−s,k) − y
f−1
min

uf−1
max

−u
f−1
min







,(15)

where yf−1
max �

[

yT
max · · · yT

max

]T
(same definition for

u
f−1
min , uf−1

max, and y
f−1
min . The operator “≤” is element-

wise. �

To see the problem is indeed convex, note that ΛT QΛ +
ST

∆RS∆ ≻ 0; and the linear constraints in (15) define a
convex set.

Now, we are ready to compare the new closed-loop SPC
design with Favoreel et al. (1999). We shall denote the
two algorithms respectively by CLSPC and FDGV99 in
the sequel.

3.4 A Comparison between CLSPC and FDGV99

As a comparison, we use the same example as in Favoreel
et al. (1999); except that we impose a saturation unit to
the initial linear controller in the loop; i.e. u(k) = 1 if
u(k) ≥ 1, and u(k) = −1 if u(k) ≤ −1. The saturation
changes the initial linear controller to a nonlinear one.
Since the saturation does not change the impulse response
coefficients of the initial controller itself, it leaves the iden-
tified plant Markov parameters in FDGV99 unchanged, as
if the saturation unit is absent. To identify the Markov
parameters, the system is excited by a reference signal
r(k), which is a zero-mean white noise with variance 1.
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The noise e(k) is a zero-mean white noise with a variance
of 1/9.

To test the two control algorithms 1 , we set the reference
to a constant, r(k) ≡ 100. The past and future horizons
are respectively s = 20, f = 10. The weighting matrices
are chosen as Q = 10I9 and R = I9. The simulation
results are shown in figure 1. It is clearly seen that, in this
constrained case, FDGV99 fails. This can be attributed
to the fact that, the identified Markov parameters in
FDGV99 are biased, since they are identified from the
closed-loop experiment, where the controller is nonlinear,
instead of LTI. This bias leads to a remarkable model-plant
mismatch, which then results in biased output prediction
in the implementation of FDGV99.

0 200 400 600 800 1000
−200

−150

−100

−50

0

50

100

150
outputs in the constrained case

samples

Fig. 1. A comparison between CLSPC and FDGV99 (solid
red: reference; dashed blue: CLSPC; dash-dotted pur-
ple: FDGV99). The first s = 20 I/Os initialize the
SPCs.

4. A FAULT TOLERANT MPC SCHEME

Based on a recursive implementation of the new closed-
loop SPC, a fault tolerant MPC design is developed in this
section. Specifically, at each sampling instant, the plant
Markov parameters are recursively identified; the output
predictor is updated; and finally the optimal control inputs
are computed.

4.1 Recursive identification

It is well known in the literature that the full rank least
square problem, (4), can be solved by QR factorization,
Golub and van Loan (1996). In fact, one can compute the
following LQ factorization to compress the data matrices,

[
Z[t−s,t)

Yt

]

=

[
L11 0
L21 L22

]

︸ ︷︷ ︸

L

·

[
O1

O2

]

︸ ︷︷ ︸

O

, (16)

where L is lower triangular and O is orthonormal. Then
(4) can simply be solved as

Ξ̂0 = L21 · L
−1
11 , (17)

where L11 ∈ R
s(m+l)×s(m+l) and L21 ∈ R

l×s(m+l). O ∈
R

N×N is not needed. Obviously, L11 has much smaller
1 FDGV99 has been modified to a constrained QP problem following
the same procedures in Section 3.3.

dimension than Z[t−s,t), because the data number N must
be much larger than s(m + l) to make Z[t−s,t) full row
rank. The number N is usually chosen to cover a duration
as long as at least 10 times the longest time constant of
a system, Verhaegen and Verdult (2007). It is clear that
when N must be large, a large memory in the on-board
computer is required to store Z[t−s,t) and Yt. In addition,
the computation time to solve (16) and (17) increases with
the dimension of Z[t−s,t). For large systems, a stand-alone
computing unit may be necessary to fulfill the real-time
requirement of the overall system. The recursive solution
to (16) and (17) can overcome these two drawbacks.

We shall refer to Hallouzi and Verhaegen (2007) for the
detailed implementation of the recursive LQ factorization
in SPCs. We only mention the key steps in this paper
for completeness. Assume the a priori knowledge of the
L matrix is L(k−1), where k represents the current time
instant. At time k, the new output measurement, y(k), is
available. Then the one-step Givens rotation for updating
L(k−1) can be computed as








L
(k)
11 0







0

0

.

.

.

0

0







L
(k)
21 L

(k)
22 ∗









=









√
λL

(k−1)
11 0







u(k − s)

y(k − s)

.

.

.

u(k − 1)

y(k − 1)







√
λL

(k−1)
21

√
λL

(k−1)
22 y(k)









·P (k)
.

(18)

λ ∈ [0.97, 1] is a forgetting factor. The orthonormal matrix
P (k) is the product of a sequence of Givens matrices,
eliminating the “new” data vector Z̄[k−s,k) �

[
uT (k −

s) yT (k − s) · · · uT (k − 1) yT (k − 1)
]T

. The ∗ in the
equation is not needed to compute.

At time instant k, the Markov parameters are updated by

Ξ̂
(k)
0 = L

(k)
21 · (L

(k)
11 )−1, (19)

where the inverse can be computed by the forward sub-
stitution algorithm, due to the lower triangular structure

of L
(k)
11 . The update of the predictor parameters can be

subsequently performed according to (7). Now, the control
inputs can be computed by solving (14) using a QP solver.

4.2 Computational complexity analysis

As a measure of the computational complexity, we count
the number of “flops”, as defined in Golub and van Loan
(1996); i.e. a flop is a floating point operation, including
+,−,×,÷. We use the notation O(nm) to represent terms
of order nm and lower. Without going into details, we
summarize the complexity of each computation step in the
following table, where n̄ � s(m + l) for simplicity. Obvi-
ously, the overall computational complexity is dominated
by computing (19).

Flops Order

(18) 7
2
n̄2 + 7n̄l + 7

2
n̄ + 1

2
(l2 + l) O( 7

2
n̄2)

(19)
n̄(n̄+1)(2n̄+1)

6
+ ln̄(n̄ + 1) O( n̄3

3
)

(7) (m + l)l(f − 1)[s(lf + 1) − f

2
]+ O(f2l2n̄)+

lm(f − 1)[l(f − 2) + 1] O(f2l2m)

total - O( n̄3

3
)

Table 1. Computational complexity analysis
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Algorithm 1. (Fault tolerant MPC based on Recursive CLSPC).

Inputs: s, f, Q, R, umin, umax, ymin, ymax, λ, reference signal,
and the L matrix of the nominal system, denoted as L(s).
Set k = s.

Step 1. Set k ← k + 1, collect the current output y(k).
Step 2. Run the Givens rotation algorithm, (18), to compute

L(k).
Step 3. Run the forward substitution algorithm to compute

(L
(k)
11 )−1.

Step 4. Compute the matrix multiplication (19) to get Ξ̂
(k)
0 .

Step 5. Update the predictor matrices Γ̃ and Λ according to
(7).

Step 6. Solve (14) for u[k,k+f−1) using a QP solver.
Output: u(k) at the current sampling time.

On the other hand, according to Golub and van Loan
(1996), the Givens QR factorization in the batch mode
of (16) has a complexity of

3 · (n̄ + l)2 · (N −
n̄ + l

3
) = O(3n̄2N) flops, (20)

which is usually much larger than that of the one-step
update, since N ≫ n̄. For the simulation case in Section
5, where s = f = 10, N = 2000, the recursive and batch
mode of solving (17) require respectively 6.2 × 103 and
2.4 × 106 flops.

4.3 The fault tolerant MPC scheme

The recursive solution to the closed-loop SPC combines
predictive control and automatic tuning of system parame-
ters, and consequently provides an adaptive way to control
a time varying system or a system subject to faults. The
information needed to tune the predictor parameters is
only the I/O signals from a running process, provided
the input signals can persistently excite the system. We
propose the fault tolerant MPC scheme in Algorithm 1.
The closed-loop control strategy is illustrated in figure 2,
where the following matrices are used to define some of its
blocks.

SZ =
[

0(s−1)(m+l)×(m+l) I(s−1)(m+l)

0(m+l)×(m+l) 0(m+l)×(s−1)(m+l)

]

,

Bu =

[
0(s−1)(m+l)×m

Im

0l×m

]

, By =
[

0((s−1)(m+l)+m)×l

Il

]

,

TZ =
[

Is(m+l)

0l×s(m+l)

]

, Ty =
[

0s(m+l)×l

Il

]

, Su = [ Im 0m×(f−2)m ] .

5. CASE STUDY OF A STEER-BY-WIRE
ACTUATOR

5.1 The steer-by-wire actuator

As a case study, we consider an SKF steer-by-wire (SbW)
system, as schematically shown in figure 3. The actuating
module is a steering rack (ball screw) driven by two
brushless DC motors (BDCMs). The control objective is
to follow the rack position setpoints given by a driver via
the hand wheel. The inputs to the system are the currents
to the two BDCMs. The current magnitude cannot exceed
40A. The rack cannot displace more than 80mm from its
central position to both sides.

The physical modeling of such a system is studied in Park
et al. (2005). Although the lateral forces acting on the front
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Fig. 2. The recursive Closed-loop SPC Scheme. The SPC
is a function of r[k+1,k+f) and Z̄[k−s,k), parameterized

by Γ̃,Λ, Q,R. The recursive tuning of the SPC takes
as input the signal vector, stacking Z̄[k−s,k) on top of
y(k).
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Fig. 3. The SKF Steer-by-Wire System.

tyres of a vehicle are nonlinear (and time variant), they can
still be well approximated by springs and dampers con-
nected to the rack. It is not the interest of this paper to go
through this modeling and estimate the parameters such
as the lateral stiffness of the front suspension. We shall, in-
stead, implement the proposed fault tolerant MPC scheme
on this system, which is in fact a model-free approach. To
make the experiment realistic, we incorporate the SbW
actuating module into a Dymola vehicle model. Dymola
simulates the overall vehicle dynamics, where the tyre-
road interaction is computed by the Magic formula. For
our experiment, only the rack displacement (the output of
the SbW system) and the current fed to the BDCMs (the
output of the CLSPC algorithm) are assumed measurable.
The parameters in the simulation model are all hidden.
To mimic the real situation, the measurement noise is
assumed to be white with a zero mean and a standard
deviation of 0.007mm, due to the limited resolution of the
position sensor.

The maneuver of the car is designed as follows. A 2-ton car
is driven on a dry asphalt road, at a constant longitudinal
speed of 30m/s. During the first 2 seconds, the car runs
along a straight line. From the third to the sixth second,
the car is steered to the right, following a trapezoidal rack
position command with a magnitude of 20mm. The car
continues running along a straight line during the seventh
second. Then from the eighth to the tenth second, the car
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is steered to the left, following a sinusoidal rack position
command with a magnitude of 40mm and a frequency of
0.1Hz. See figure 4.

We consider the loss of one BDCM after the first sec-
ond. This failure is injected to the simulation model by
disabling the motor. The fault tolerant MPC scheme in
Algorithm 1 runs during the entire simulation. To ensure
that the persistent excitation condition holds, as in As-
sumption 2, we impose a white noise signal to the rack
position command; i.e. to ensure that the reference signal
persistently excites the closed-loop system to a sufficient
order; i.e.

5 × 10−4n(t) [m] (21)
where n(t) has zero mean and unit variance. This noise can
be viewed as an emulation of the small perturbations from
the driver and the road. The parameters in the algorithm
are chosen as Q = 106I, R = 10−3I, s = f = 10, λ = 0.99.
The outputs of the closed-loop system are shown as the red
dash-dotted curve in Fig. 4. The fault tolerating perfor-
mance is compared against a PID controller (blue dashed
curve), with carefully tuned anti-windup parameters. It
can be clearly seen that the recursive closed-loop SPC
algorithm outperforms the PID controller, within the limit
of the remaining BDCM.
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Fig. 4. Comparison of the performance of the PID con-
troller and the fault tolerant MPC scheme, where one
BDCM fails at the first second.

6. CONCLUSION

We present in this paper a new closed-loop SPC algorithm,
together with its recursive solution for online implemen-
tations. A fault tolerant MPC scheme is then developed
and tested on a steer-by-wire system. The future research
shall be focused on ensuring the closed-loop stability and
considering the persistent excitation condition in designing
the control law.

Appendix A. PROOF OF LEMMA 1

It is straightforward to verify that when i = 0, 1, Lemma
1 holds. Now suppose ∀0 ≤ i < f − 1,

ŷ[k,k+i+1) =






Γ0

Γ1

.

.

.

Γi




Z̄[k−s,k) +






0 · · · 0

Λ1

.

.

.
. . .

Λi · · · Λ1




 · u[k,k+i).

Substitute ŷ[k,k+i+1) into the prediction of y(k + i + 1),

ŷ(k + i + 1) = Ξ̂i+1Z̄[k−s,k) + [ CΦiB · · · CB ] · u[k,k+i)

+[ CΦiK · · · CK ] · ŷ[k,k+i+1).

Then Lemma 1 follows by arranging the terms on the right
hand side.
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