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Abstract: In this paper, we study the synchronization problem for complex dynamical networks
with switching topology. The synchronization problem is transformed into the stability problem
for a time-varying switched system. We address two basic problems: synchronization under
arbitrary switching topology, and synchronization via design of switching within a pre-given
collection of topologies when synchronization can not be achieved by using any topology
alone in this collection. For the both problems, we first establish synchronization criteria for
general connection topology. Then, under the condition of simultaneous triangularization of
the connection matrices, a common Lyapunov function and a single Lyapunov function are
systematically constructed respectively by those of several lower-dimensional dynamic systems.

1. INTRODUCTION

Complex networks exist in many fields of sciences, engi-
neering and society, and have attracted tremendous atten-
tion in recent years (see Boccaletti et al. [2006], Strogatz
[2001] and the references therein). As the major collective
behavior, synchronization is one of the key issues that have
been extensively addressed. A vast number of papers on
the topic have appeared (Barahona et al. [2002], Comellas
et al. [2007], Hill et al. [2006]).

For a network, when the connection matrix is a constant,
symmetric and irreducible, synchronization criteria can be
easily given in terms of checking simultaneous stability
of several lower-dimensional dynamic systems (Boccaletti
et al. [2006]). The classical constant connection topology
is of course very restrictive and only reflects a few ideal
situations. Time-varying connection topology is more re-
alistic and covers more situations in practice. A number of
synchronization criteria and methods are put forward for
time-varying connection topology (see for example, Belykh
et al. [2004], Boccaletti et al. [2006], Lü et al. [2005] and
Stilwell et al. [2006]). In these results the time-varying
connection is taken as a “slow-varying” structure, namely,
the connection matrix changes continuously with time and
usually an upper bound of the “change rate” is known.
Often, a nominal value of the connection matrix is taken as
a basis and robustness analysis is undertaken to produce
synchronization conditions. Commutative topologies are
assumed to give simultaneous diagonalization of connec-
tion matrices (Boccaletti et al. [2006]).

In the real world, the connection topology of a network
may change very quickly–even jumps or switches might
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occur. Switching connection topology is often due to link
failures or new creation in a network. Taking a power
grid as an example, when a severe fault happens in
a local power system, the transmission line connecting
the local power system with the global power grid is
automatically cut off by a relay protection device. This
makes the connection structure jump suddenly– switch
from one topology to another. Switching topology also
happens when some nodes in a network are connected
or disconnected purposely. Again, consider a power grid,
we may cut off or connect a few local power systems for
certain purpose. In this case, switching is designable. The
switching signal being a designable variable is natural
and important in practice. Consider a synchronizable
network that has been working for some time. If one
or more connection links are removed from a network
permanently and thus synchronization is broken, then
comes a question: can we still achieve synchronization by
adjusting the remainder of links? According to certain
physical requirements of the network, some links are not
allowed to change. Usually, disconnecting more changeable
links permanently can not achieve synchronization. In
this case, synchronization could be achieved by suitably
switching on and off some links.

Inherently, switching topology is discontinuously “fast-
varying” topology and in general can not be handled
as general time varying topology. Several methods have
been put forward to deal with switching topology in the
special network studies. Consensus problems are addressed
in Olfati-Saber et al. [2004] by introducing a simple dis-
agreement function for directed networks with switching
topology. State consensus problems for discrete-time mul-
tiple agent systems with switching topology and delays
are discussed in Xiao et al. [2006]. Flocking in switching
networks is considered in Tanner et al. [2007]. Hong et al.
[2007] gives a Lyapunov-based approach to a multiple
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agent system consisting of double integrators with switch-
ing connection. When switching is fast enough, an average
model can be applied with certain properties of the original
network preserved (Stilwell et al. [2006]). A problem of
master-slaver synchronization with switching communi-
cation is addressed in Mastellone et al. [2006]. Synchro-
nization in oscillator networks with switching topology is
discussed in Papachristodoulou et al. [2005].

In this paper we study the local and global synchronization
problem for complex dynamical networks with switching
topology from a switched system viewpoint. Two basic
problems are addressed: synchronization under arbitrary
switching topology, and synchronization via design of a
switching signal between pre-given topologies when for
each individual topology alone the synchronization prob-
lem is not solvable. These two problems are of particular
significance for the following reasons. Firstly, just as a
switched system may be unstable even all its subsystems
are stable, a network with switching topology may not syn-
chronize even each individual connection topology, if put
in use alone, can bring synchronization. Therefore, seeking
for synchronization criteria for arbitrary switching topol-
ogy is not trivial. Once synchronization under arbitrary
switching topology is assured, collapse can be avoided
when interconnection among nodes changes. Therefore, we
are able to arbitrarily adjust the interconnection to reach
other desirable network performances without worry about
destroying synchronization. Secondly, when synchroniza-
tion is impossible for each individual connection topology,
synchronization may still be achieved via switching be-
tween these connection topologies. This certainly increases
the possibility of synchronizability.

Compared with the vast existing literature on network
synchronization, the results of this paper have two distinct
features. First of all, a network with switching topology is
regarded as a switched system and thus switched system
theories and methods may be applied. To the best of
our knowledge, no results have appeared using switching
between different connection topologies to enhance syn-
chronization. The second one is that unlike non-switching
topology and time-varying topology where diagonalizabil-
ity or simultaneous diagonalizability for different time is
a basic assumption, we adopt a mild assumption: simulta-
neous triangularizability of the connection matrices. This
appears not to have been seen in the literature so far.

2. PRELIMINARIES

We consider a dynamical network with switching topology
described by:

ẋi = f(xi) + c

N
∑

j=1

a
σ(t)
ij Γxj , i = 1, 2, · · · , N, (1)

where xi = (xi1, xi2, · · · , xin)T ∈ Rn is the state variable
of the i-th node, Γ is the inner-coupling matrix between
two connected nodes, f : Rn → Rn is a continuously
differentiable mapping, σ : [0,∞) → M = {1, 2, · · · ,m}
is a switching signal. For each k ∈ M, Ak = (ak

ij) is an
N×N matrix representing an outer coupling configuration

of the network so totally there are m such outer coupling

configurations. Assume ak
ii = −

N
∑

j=1,j 6=i

ak
ij . For each k ∈ M

ẋi = f(xi) + c

N
∑

j=1

ak
ijΓxj , i = 1, 2, · · · , N (2)

is called the k-th subnetwork of the network (1), which is
a usual network.

Let s(t) be a solution of each isolated node, that is, s(t)
satisfies ṡ(t) = f(s(t)). Let ηi = xi − s. The network (1)
is said to synchronize under the switching signal σ(t) if
limt→∞ ηi = 0, i = 1, 2, · · ·m. We can easily have

η̇i = Df(s(t))ηi + c

N
∑

j=1

a
σ(t)
ij Γηj + gi(t, ηi), (3)

where Df(·) is the Jocobian of f and

gi(t, ηi) =

1
∫

0

(Df(s(t) + τηi) − Df(s(t))) ηidτ.

Denote η =
(

ηT
1 , ηT

2 , · · · , ηT
n

)T
, we can obtain

d

dt
η = (IN ⊗ Df(s) + cAσ ⊗ Γ) η + g(t, η) (4)

where IN is the N -order identity matrix, g(t, η) =
(g1(t, η1)

T , · · · , gN (t, ηN )T )T , and ⊗ is the Kronecker
products of matrices.

Dropping g(t, η) from (4) produces the linearized network
dynamics:

d

dt
η = (IN ⊗ Df(s) + cAσ ⊗ Γ) η. (5)

If Ak are diagonalizable, then there exist non-singular
matrices Φk such that

Φ−1
k AkΦk = diag{λk

1 , λk
2 , · · · , λk

N}, (6)

where λk
i are eigenvalues of Ak. If we set

wk =
(

(wk
1 )T , (wk

2 )T , · · · , (wk
N )T

)T
=

(

Φ−1
k ⊗ IN

)

η,

then, under wk-coordinates, the k-th subnetwork of (2) is

ẇk =
(

IN ⊗ Df(s(t)) + c(Φ−1
k AkΦk) ⊗ Γ

)

wk, (7)

or equivalently,

ẇk
i =

(

Df(s(t)) + λk
i cΓ

)

wk
i , i = 1, 2, · · · , N. (8)

Unlike networks with a single connection topology where
a similar expression to (6) can be always used to test
synchronizability, here (6) is only useful for testing the
synchronizability of each individual subnetwork. In order
to make use of (6) to study the synchronizability of the
network with switching topology, (6) must be valid in the
same coordinate frame, that is, Φk = Φ, k = 1, · · · ,m,
for some Φ. In other words, Ak must be simultaneously
diagonalizable. This is only possible when the matrices Ak

are pairwise commutative. Obviously, this is a very strong
constraint and most networks do not satisfy this. We will
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not adopt this constraint in the present paper. Moreover,
Ak do not to be diagonalizable.

Giving up this constraint means that we have to work
directly on the expression (4) or (5), which is in general
very difficult. We consider a weaker constraint than simul-
taneous diagonizability, namely, simultaneous triangular-
ization.

Proposition 2.1. Suppose that there exists a nonsingular
matrix Φ = (φij)N×N with Φ−1 = (ψij)N×N such that

Φ−1AkΦ =











bk
11, bk

12, bk
13, · · · bk

1N

0, bk
22, bk

23, · · · bk
2N

...
...

. . .
...

0, 0, 0, · · · bk
NN











= Λk, (9)

with bk
ii = λk

i the eigenvalues of Ak. Then, (3) can be
expressed as

ẇ1 =
(

Df + λk
1cΓ

)

w1 + bk
12cΓw2 + · · ·

+bk
1NcΓwN + ψ11g1(t, η1) + · · ·

+ψ1NgN (t, ηN ),
ẇ2 =

(

Df + λk
2cΓ

)

w2 + bk
23cΓw3 + · · ·

+bk
2NcΓwN + ψ21g1(t, η1) + · · ·

+ψ2NgN (t, ηN ),
· · ·

ẇN−1 =
(

Df + λk
N−1cΓ

)

wN−1

+bk
(N−1)NcΓwN + ψ(N−1)1g1(t, η1) + · · ·

+ψ(N−1)NgN (t, ηN ),

ẇN =
(

Df + λk
NcΓ

)

wN + ψN1g1(t, η1) + · · ·
+ψNNgN (t, ηN ).

(10)

Proof. Applying the coordinates transformation w =
(

wT
1 , wT

2 , · · · , wT
N

)T
=

(

Φ−1 ⊗ IN

)

η gives the results.

Remark 2.2. There are several ways to check simultane-
ous triangularizability. The most useful method is to test
nilpotency of {Ak}LA, the Lie algebra generated by the
connection matrices {Ak}.

Let PCn×n (PC1
n×n) be the linear space of the uni-

formly bounded continuous (continuously differentiable)
real matrix-valued functions defined on [0,∞). For any
P ∈ PCn×n, the norm of P is defined by ‖P‖ =
max

0≤t<∞
{‖P (t)‖}. A time-varying matrix Q : [0,∞) →

Rn×n is said to be positive definite (semi-definite), denoted
by Q > 0 (Q ≥ 0), if there exists α > 0 such that
vT Q(t)v ≥ α‖v‖2 (vT Q(t)v ≥ 0) for any v ∈ Rn, t ≥ 0.

3. ARBITRARY SWITCHING

In this section, we consider the case that switching between
subnetworks is arbitrary. We will develop conditions under
which synchronization is always maintained.

First of all, we can easily have the following condition.

Proposition 3.1. Global synchronization of (1) is achieved
under arbitrary switching signal σ(t) if there exists a nN×
nN positive definite matrix P (t) ∈ PC1

nN×nN satisfying

ηT (Ṗ + (I ⊗ Df(s(t)) + cAi ⊗ Γ)T P
+P (I ⊗ Df(s(t)) + cAi ⊗ Γ))η
+2ηT Pg(t, η) < 0, ∀t ≥ 0, η 6= 0, i = 1, 2, · · · ,m.

(11)

If instead,

Ṗ + (I ⊗ Df(s(t)) + cAi ⊗ Γ)
T

P
+P (I ⊗ Df(s(t)) + cAi ⊗ Γ) < 0, i = 1, 2, · · · ,m

holds, then the network (1) locally synchronizes under
arbitrary switching.

In fact, ηT Pη is a common Lyapunov function for (4).
However, to find such a P is very difficult in general. No
effective approach is available for the general case. We now
consider how to construct such a P from lower-dimensional
dynamics in the case that all Ak are simultaneously
triangularizable.

Theorem 3.2. Suppose that

(i) there exists an nonsingular constant matrix Φ =
(φij)N×N with Φ−1 = (ψij)N×N which makes (9) hold.

(ii) there exist positive definite matrix Pi(t) ∈ PC1
n×n,

constants αi > 0 such that

Ṗi(t) +
(

Df(s(t)) + cλk
i Γ

)T
Pi

+Pi

(

Df(s(t)) + cλk
i Γ

)

+αiI < 0, 1 ≤ i ≤ N, 1 ≤ k ≤ m.

(12)

(iii) there exist a constant l > 0 such that

‖gi(t, ηi)‖ ≤ l‖ηi‖. (13)

Define: ᾱi = αi −2l‖Pi‖
∑N

k=1 |ψikφki| , δ1 = 1, P̄1 = δ1P1,

µ1j = 2 max
1≤q≤m

∣

∣b
q
1jc

∣

∣ δ1‖P1Γ‖ + 2lδ1‖P1‖

N
∑

k=1

|ψ1kφkj | .

If we have δi−1, P̄i−1 and µ(i−1)j , we now define

δi =
(N − 1)

2ᾱi

∑

p<i

µ2
pi

ᾱp

+ 1, P̄i = δiPi

µij = 2 max
1≤q≤m

∣

∣b
q
ijc

∣

∣ δi‖PiΓ‖ + 2lδi‖Pi‖

N
∑

k=1

|ψikφkj | .

If ᾱi > 0 and ᾱi − (N − 1)
∑

j>i

µ2
ji

ᾱj

> 0 for i = 1, 2, · · · , N,

then the dynamical network (1) globally synchronizes
under arbitrary switching.

Proof. Applying the coordinates transformation w =
(Φ−1 ⊗ IN )η we have the expression (10). It follows from
(13) that

‖ψi1g1(t, η1) + · · · + ψiNgN (t, ηN )‖
≤ l (|ψi1|‖η1‖ + · · · + |ψiN |‖ηN‖) .

(14)

Since ηj = φj1w1 + · · · + φjNwN we have

‖ηj‖ ≤ |φj1|‖w1‖ + · · · + |φjN |‖wN‖.

Substituting this into (14) yields

‖ψi1g1(t, η1) + · · · + ψiNgN (t, ηN )‖

≤ l

N
∑

j=1

(

N
∑

k=1

|ψikφkj |

)

‖wj‖.
(15)

Choose V1(w1) = wT
1 P̄1w1. Then, when the q-th subnet-

work is connected, using (15) we have
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V̇1 = wT
1 (Ṗ1 + (Df + λ

q
1cΓ)T P1

+P1(Df + λ
q
1cΓ))w1 + 2b

q
12cw

T
1 P1Γw2 + · · ·

+2b
q
1NcwT

1 P1ΓwN + 2wT
1 P1

N
∑

p=1

ψ1pgp(t, ηp)

≤ −α1‖w1‖
2 + 2|bq

12c|‖P1Γ‖‖w1‖‖w2‖ + · · ·
+2|bq

1Nc|‖P1Γ‖‖w1‖‖wN‖

+2l‖P1‖

N
∑

j=1

(

N
∑

k=1

|ψ1kφkj |

)

‖w1‖‖wj‖

= −

(

α1 − 2l‖P1‖
N

∑

k=1

|ψ1kφk1|

)

‖w1‖
2

+2
N

∑

j=2

(

|bq
1jc|‖P1Γ‖ + l‖P1‖

N
∑

k=1

|ψ1kφkj |

)

×‖w1‖‖wj‖

≤ −ᾱ1‖w1‖
2 +

N
∑

j=2

µ1j‖w1‖wj‖.

(16)

According to Young’s inequality we have

‖w1‖‖wj‖ ≤
ᾱ1

2µ1j(N − 1)
‖w1‖

2 +
µ1j(N − 1)

2ᾱ1
‖wj‖

2. (17)

Therefore,

V̇1 ≤ −
1

2
ᾱ1‖w1‖

2 +

N
∑

j=2

µ2
1j(N − 1)

2ᾱ1
‖wj‖

2. (18)

In general, after having Vi−1(wi−1), we define Vi(wi) =
wT

i P̄iwi and thus we have

V̇i ≤ −





(N − 1)

2

∑

p<i

µ2
pi

ᾱp

+
ᾱi

2



 ‖wi‖
2

+

N
∑

j=1,j 6=i

µ2
ij(N − 1)

2ᾱi

‖wj‖
2.

(19)

Let V (w) =
N

∑

i=1

Vi(wi). In view of ᾱi − (N −1)
∑

j>i

µ2
ji

ᾱj

> 0

and ᾱi > 0, it holds that

V̇ ≤ −
1

2

N
∑

i=1



ᾱi − (N − 1)
∑

j>i

µ2
ji

ᾱj



 ‖wi‖
2, (20)

which completes the proof.

Corollary 3.3. If only conditions (i) and (ii) in Theorem
3.2 hold, then the network (1) locally synchronizes under
arbitrary switching.

Proof. Apply Theorem 3.2 to the linearized network (5),
we find that l = 0, ᾱi = αi > 0. Note that b

q
ij = 0,∀q, j >

i, it is clear that µji = 0, j > i. Then, the network (1)
achieves local synchronization under arbitrary switching.

4. DESIGN OF SWITCHING

In this section, we discuss how to realize synchronization
by suitable design of switching between connection topolo-
gies.

For simplicity, we only address the problem for the lin-
earized network dynamics (5) and thus give local synchro-
nization results. All results in this section can be easily
extended to the global case if certain constraints similar
to the condition (iii) in Theorem 3.2 are imposed.

Proposition 4.1. Let P (t) ∈ PC1
nN×nN be a positive

definite matrix. If the sets

Ωk = {(t, η)|ηT (Ṗ + (I ⊗ Df(s(t)) + cAk ⊗ Γ)T P
+P (I ⊗ Df(s(t)) + cAk ⊗ Γ))η < 0}

make a partition of [0,∞)×RnN , i.e.,
⋃m

k=1 Ωk = [0,∞)×
RnN , then, synchronization of (1) is achieved under the
switching law

σ = σ(t, η) = i, if (t, η) ∈ Ωi. (21)

Proof. It is straightforward to show that ηT P (t)η is a
time-varying Lyapunov function for (5) under the switcing
law (21).

Proposition 4.1 gives only a general principle to check
synchronizability by a single Lyapunov function. The key
point is how to fund such a P. In the following, we give a
convex combination based method for finding such a P.

Proposition 4.2. Let αk ≥ 0 be constants with
m

∑

k=1

αk = 1

and Ā =
∑m

k=1 αkAk. If there exists a positive definite
matrix P (t) ∈ PC1

nN×nN satisfying

Ṗ +
(

I ⊗ Df(s(t)) + cĀ ⊗ Γ
)T

P

+ P
(

I ⊗ Df(s(t)) + cĀ ⊗ Γ
)

< 0,
(22)

then, synchronization of (1) is achieved under the switch-
ing law

σ = σ(t, η)

= arg min
1≤k≤m

{ηT (Ṗ + (I ⊗ Df(s(t)) + cAk ⊗ Γ)T P

+ P (I ⊗ Df(s(t)) + cAk ⊗ Γ))η}.

(23)

Proof. It follows from Proposition 4.1

Unlike Proposition 4.1, Proposition 4.2 is implementable
since we only need to solve the matrix inequality (22)
for P. Further, we want to construct P from some lower-
dimensional dynamics.

Theorem 4.3. Let Ā =
∑m

k=1 αkAk with αk ≥ 0 and
∑m

k=1 αk = 1 be triangularizable. Suppose there exist
positive definite matrices Pi(t) ∈ PC1

n×n satisfying

Ṗi(t) + (Df(s(t)) + cλiΓ)
T

Pi

+ Pi (Df(s(t)) + cλiΓ) < 0, 1 ≤ i ≤ N,
(24)

where λi are eigenvalues of Ā. Then, the network (1)
synchronizes under some switching law.

Proof. Since Ā is triangularizable, there exists a non-
singular matrix Φ such that

Φ−1ĀΦ =









b11, b12, b13, · · · b1N

0, b22, b23, · · · b2N

...
...

. . .
...

0, 0, 0, · · · bNN









= Λ, (25)
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with bii = λi, the eigenvalues of Ā. Applying the co-

ordinates transformation w =
(

wT
1 , wT

2 , · · · , wT
N

)T
=

(

Φ−1 ⊗ IN

)

η transforms the localized convex combination

network η̇ =
(

IN ⊗ Df(s) + cĀ ⊗ Γ
)

η into

ẇ1 = (Df + λ1cΓ) w1 + b12cΓw2 + · · ·
+b1NcΓwN ,

ẇ2 = (Df + λ2cΓ) w2 + b23cΓw3 + · · ·
+b2NcΓwN ,

· · ·
ẇN−1 = (Df + λN−1cΓ) wN−1 + b(N−1)NcΓwN ,
ẇN = (Df + λNcΓ) wN .

(26)

Using a process similar to the proof of Theorem 3.2, we

can construct V (w) =

N
∑

i=1

Vi(wi) with Vi(wi) = wT
i P̄iwi

such that V̇ < 0 for any w 6= 0, which is equivalent to

˙̄P + (I ⊗ Df(s(t)) + cΛ ⊗ Γ)
T

P̄
+ P̄ (I ⊗ Df(s(t)) + cΛ ⊗ Γ) < 0, i = 1, 2, · · · ,m

(27)

with P̄ = diag{P̄1, P̄2, · · · , P̄N}. Multiplying both sides of
(27) by (ΦT )−1⊗IN and Φ−1⊗IN respectively shows that
(22) is satisfied with P =

(

(ΦT )−1 ⊗ IN

)

P̄
(

Φ−1 ⊗ IN

)

.

5. EXAMPLES

In this section, we present two examples showing how to
achieve synchronization under arbitrary switching and by
design a switching law, respectively.

Example 5.1. Consider the dynamic network

ẋi = f(xi) +
2

∑

j=1

a
σ(t)
ij xj , σ ∈ {1, 2}, (28)

where xi =

(

xi1

xi2

)

, f(xi) =

(

−10xi1 + sin(xi2)
−10xi2

)

, A1 =

(a1
ij)2×2 =

(

−1 1
2 −2

)

and A2 = (a2
ij)2×2 =

(

1 −1
−2 2

)

.

It is easy to see that all the conditions of Theorem 3.2
are satisfied and thus synchronization under arbitrary
switchings is guaranteed. Fig.1 gives the state response
under the periodic switching of 0.1 second.

Example 5.2. Consider the dynamic network

ẋi = f(xi) +

3
∑

j=1

aσ
ijxj , σ ∈ {1, 2}, (29)

where, xi = (xi1, xi2, xi3)
T ,

f(xi) =

(

−2x1 + x2 + sin(x2)
−2x2 + x3 + sin(x3)

−2x3

)

, Df =

(

−2 2 0
0 −2 2
0 0 −2

)

,

A1 =

(

−3.5 1 2.5
0 2.7 −2.7
0 0 0

)

, A2 =

(

0 −2 2
0 −3 3
0 0 2

)

.

Obviously, neither subnetwork 1 nor subnetwork 2 syn-
chronizes. We now design a switching law by the single
Lyapunov function method to achieve synchronization.
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Fig. 1. State response of (28) under an arbitrary switching

Choose Ā = 1
2A1 + 1

2A2. Applying Theorem 4.3 gives
synchronization. The simulation results with

x0 = (0.5,−2, 1, 2,−1.5,−2.5, 2.5,−0.5, 1.5)T are shown in
Fig.2.-Fig.5.
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Fig. 2. Synchronization errors of the subnetwork 1 of (29).
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Fig. 3. Synchronization errors of the subnetwork 2 of (29).
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Fig. 4. Synchronization errors of the switched network
(29).
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Fig. 5. Switching signal of the switched network (29).

6. CONCLUSIONS

We have established several synchronization criteria and
design methods for complex dynamical networks with
switching topology. For the case of arbitrary switching
topology, synchronization is always preserved under the
proposed conditions. When we are given a family of “poor
topologies” with each of which the synchronization is
impossible, switching in this family of topologies may
achieve synchronization. This substantially increases the
possibility of synchronizability.

For topological structure of the connection matrices, di-
agonalizability or even symmetry are no longer assumed.
Instead, simultaneous triangularizability is assumed.
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