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Abstract: This paper deals with the asymptotic stability problem of uncertain T-S fuzzy
systems with time-varying delay by employing a further improved free-weighting matrix
approach. The relationship among the time-varying delay, its upper bound and their difference
is taken into account. As a result, some less conservative LMI-based delay-dependent stability
criteria are obtained without ignoring any useful terms in the derivative of Lyapunov-Krasovskii
functional. Finally, two numerical examples are given to demonstrate the effectiveness and the
merits of the proposed methods.

1. INTRODUCTION

During the past two decades, the stability for Takagi-
Sugeno(T-S) fuzzy systems(Takagi [1985]) has been at-
tracted an increasing attention since it can combine the
flexibility of fuzzy logic theory and rigorous mathemat-
ical theory of linear or nonlinear system into a unified
framework. Lots of asymptotic stable criteria of T-S fuzzy
systems have been expressed in linear matrix inequali-
ties(LMIs) via various stability analysis methods(see Chen
[2000], Tanaka [1994], Teixeira [1999], Wang [1996], and
the reference therein). However, all the aforementioned cri-
teria aim at time-delay free T-S fuzzy systems. In practice,
time-delays often occur in many dynamic systems such as
chemical processes, metallurgical processes, biological sys-
tems, and mechanics. Furthermore, the existence of time-
delays is usually a source of instability and deteriorated
performance. As a result, to study the stability analysis
for T-S fuzzy systems has not only important theoretical
interesting but also practical value, which has received
more interesting in recent years( Akar [2000], Cao [2001],
Chang [2004], Guan [2004], Jiang [2005], Li [2004]), Tian
[2006], Yoneyama [2003].

Among these literatures, stability criteria for T-S fuzzy
systems can be classified into two types: delay-dependent
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criteria and delay-independent criteria. Since delay-depend
-ent criteria make use of information on the length of
delays, they are less conservative than delay-independent
ones, especially when time-delay is small. The delay-
dependent stabilization was first discussed in Guan [2004]
for nominal T-S fuzzy time-delay systems with time-
invariant delay based on Lyapunov-Krasovkii functional
approach and Moon et al’s inequality. Although the sta-
bility problem of uncertain T-S fuzzy systems with time-
varying delay has been studied in Li [2004], there also re-
tain further room to research. For example, the derivative
of

∫ 0

−h

∫ t

t+θ
ẋT (s)Zẋ(s)dsdθ with 0 ≤ d(t) ≤ h is usually

estimated as hẋT (t)Zẋ(t) − ∫ t

t−d(t)
ẋT (s)Zẋ(s)ds and the

term
∫ t−d(t)

t−h
ẋT (s)Zẋ(s)ds is ignored, which may lead to

considerable conservativeness. Besides, the delay term d(t)
with 0 ≤ d(t) ≤ h is often enlarged as h, and another term
h − d(t) is also regarded as h, i.e. h = d(t) + h − d(t) is
enlarged as 2h, which may also lead to conservativeness.

Recently, a free-weighting matrix approach (He et al.
[2004], He et al. [2007] ) has been employed to study the
stability problem for delay systems, and some less conser-
vative stability criteria have been derived. Enlightened by
it, in this paper, we discuss the asymptotic stability for
T-S fuzzy system with a time-varying delay by employing
free-weighting matrix approach. Under considering the re-
lationship among the time-varying delay, its upper bound
and their difference, some improved LMI-based asymp-
totic stability criteria for uncertain T-S fuzzy system with
a time-varying delay are obtained without ignoring any
useful terms in the derivative of a Lyapunov-Krasovkii
function. Finally, two numerical examples are given to
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demonstrate the effectiveness and merits of the proposed
method.

Notion: Through this paper, N T and N−1 stands for
the transpose and the inverse of the matrix N , respec-
tively; Rn denotes the n−dimensional euclidean space;
P > 0 means that the matrix P is positive definite;

diag{· · ·} denotes a block-diagonal matrix;
[

X Y
∗ Z

]
stands

for
[

X Y
Y T Z

]
; ‖x‖ is the Euclidean norm of x.

2. SYSTEM DESCRIPTION

Consider fuzzy system with a time-varying delay, which
is represented by a T-S fuzzy model composed of a set of
fuzzy implications, and each implication is expressed by a
linear system model. The ith rule of this T-S fuzzy model
is of the following form:

Rule i:

If Θ1(t) is µi1 and · · · and Θp(t) is µip then
{

ẋ(t) = (Ai + ∆Ai(t))x(t) + (Adi + ∆Adi(t))x(t− d(t))
x(t) = φ(t) t ∈ [−h, 0] i = 1, 2, . . . , r

(1)

where µij is the fuzzy set; x(t) ∈ Rn is the state vector;
Ai and Adi are constant real matrices with appropriate
dimensions; scalar r is the number of IF-Then rules;
Θ1(t),Θ2(t), · · · ,Θp(t) are the premise variables; d(t), is
the time-varying delay satisfying

0 ≤ d(t) ≤ h (2)

ḋ(t) ≤ µ (3)

where µ and h are constants. In addition, the matrices
∆Ai(t) and ∆Adi(t) denote the uncertainties in the system
and take the form of

[∆Ai(t) ∆Adi(t)] = DF (t)[Ei Edi] (4)

where D,Ei and Edi are known constant matrices and F (t)
is an unknown matrix function with Lesbesgue measurable
elements bounded by:

FT (t)F (t) ≤ I, ∀t, (5)

where I is an appropriately dimensioned identity matrix.
By fuzzy blending, the overall fuzzy model is inferred as
follows:



ẋ(t)=
∑r

i=1wi(θ(t))[(Ai+∆Ai(t))x(t)+(Adi+∆Adi(t))x(t−d(t))]∑r
i=1 wi(θ(t))

=
∑r

i=1
ρi(θ(t))[(Ai + ∆Ai(t))x(t)

+(Adi + ∆Adi(t))x(t− d(t))]

= Āix(t) + Ādx(t− d(t))
x(t) = φ(t), t ∈ [−h, 0]

(6)

where θ = [θ1, θ2, . . . , θp];wi : Rp → [0 1], i = 1, . . . , r, is
the membership function of the system with respect to the
plant rule i; ρi(θ(t)) = wi(θ(t))/

∑r
i=1 wi(θ(t)); and Āi =∑r

i=1 ρi(θ(t))(Ai + ∆Ai(t)), Ād =
∑r

i=1 ρi(θ(t))(Adi +
∆Adi(t)). It is obvious that the fuzzy weighting functions
ρi(θ(t)) satisfy ρi(θ(t)) ≥ 0,

∑r
i=1 ρi(θ(t)) = 1.

In order to obtain the main results, the following lemmas
will be employed in the proofs of our results.

Lemma 1 (Schur complement): Given constant matrices
Ω1,Ω2 and Ω3 with appropriate dimensions, where Ω1 =
ΩT

1 and Ω2 = ΩT
2 , then

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0

if and only if [
Ω1 ΩT

3
∗ −Ω2

]
< 0

or [−Ω2 Ω3

∗ Ω1

]
< 0.

Lemma 2 : Let Q = QT ,H, E, R = RT > 0 and F (t)
satisfying FT (t)F (t) ≤ I are appropriately dimensional
matrices,, then the following inequality

Q + HF (t)E + ET FT (t)HT < 0

is true, if and only if the following inequality holds for any
ε > 0,

Q + ε−1HHT + εET RE < 0.

3. MAIN RESULTS

In this section, we shall obtain the stability criteria for
T-S fuzzy system with a time-varying delay based on
the improved free-weighting matrix approach. Our first
result in this paper deals with the stability of (1) with
∆Ai(t) = 0, and ∆Adi(t) = 0, i.e.,{

ẋ(t) = Ax(t) + Adx(t− d(t))
x(t) = φ(t), t ∈ [−h, 0] (7)

where A =
∑r

i=1 ρi(θ(t))Ai, Ad =
∑r

i=1 ρi(θ(t))Adi.

Based on the Lyapunov-Krasovkii stability theorem, the
following main result is obtained.
Theorem 1. For given a scalar h ≥ 0 and µ, the system
(7) with a time-delay d(t) satisfying (2) and (3) is stable
if there exist P = PT > 0, Q = QT > 0, W =

WT > 0, Z = ZT > 0, X =
[

X11 X12

XT
12 X22

]
≥ 0, and any

appropriately dimensioned matrices, N = [NT
1 NT

2 ]T , and
M = [MT

1 MT
2 ]T , such that the following LMIs are feasible

for i = 1, 2, . . . , r:

Φi =




Φ11 Φ12 −M1 hAT
i Z

∗ Φ22 −M2 hAT
diZ

∗ ∗ −W 0
∗ ∗ ∗ −hZ


 < 0 (8)

Ψ1 =
[

X N
∗ Z

]
≥ 0 (9)

Ψ2 =
[

X M
∗ Z

]
≥ 0 (10)

where

Φ11 = PAi + AT
i P + Q + W + N1 + NT

1 + hX11

Φ12 = PAdi −N1 + NT
2 + M1 + hX12
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Φ22 = −(1− µ)Q−N2 −NT
2 + M2 + MT

2 + hX22.

Proof : Choose the fuzzy weighting-dependent Lyapunov-
Krasovskii functional candidate as:

V (xt) = xT (t)Px(t) +

t∫

t−d(t)

xT (s)Qx(s)ds

+

t∫

t−h

xT (s)Wx(s)ds +

0∫

−h

t∫

t+θ

ẋT (s)Zẋ(s)dsdθ,

(11)

where P = PT > 0, Q = QT > 0, W = WT > 0, and
Z = ZT > 0 are to be determined.

Using the Newton-Leibniz formula, for any appropriately
dimensioned matrices N, M , the following equation is true:

0 = 2ζT
1 (t)N ·


x(t)− x(t− d(t))−

t∫

t−d(t)

ẋ(s)ds


 (12)

0 = 2ζT
1 (t)M ·


x(t− d(t))− x(t− h)−

t−d(t)∫

t−h

ẋ(s)ds


 (13)

where

ζ1(t) = [xT (t) xT (t− d(t))]T .

.

On the other hand, for any semi-positive definite matrix

X = XT =
[

X11 X12

∗ X22

]
≥ 0

the following equation holds:

0 =

t∫

t−h

ζT
1 (t)Xζ1(t)ds−

t∫

t−h

ζT
1 (t)Xζ1(t)ds

= hζT
1 (t)Xζ1(t)−

t∫

t−d(t)

ζT
1 (t)Xζ1(t)ds

−
t−d(t)∫

t−h

ζT
1 (t)Xζ1(t)ds.

(14)

In addition, it is clear that the following equation is also
true:

t∫

t−h

żT (s)Zż(s)ds =

t∫

t−d(t)

żT (s)Zż(s)ds

+

t−d(t)∫

t−h

żT (s)Zż(s)ds

(15)

Using (15) and calculating the derivatives of V (xt) defined
in (11) along the trajectories of system (7) yields

V̇ (xt)=xT (t)[PA + AT P ]x(t)
+2xT (t)PAdx(t− d(t)) + xT (t)Qx(t)
−(1− ḋ(t))xT (t− d(t))Qx(t− d(t))
+xT (t)Wx(t)− xT (t− h)Wx(t− h)

+hẋT (t)Zẋ(t)−
t∫

t−h

ẋT (s)Zẋ(s)ds

=xT (t)[PA + AT P ]x(t)
+2xT (t)PAdx(t− d(t)) + xT (t)Qx(t)
−(1− ḋ(t))xT (t− d(t))Qx(t− d(t))
+xT (t)Wx(t)− xT (t− h)Wx(t− h)

+hẋT (t)Zẋ(t)−
t∫

t−d(t)

ẋT (s)Zẋ(s)ds

−
t−d(t)∫

t−h

ẋT (s)Zẋ(s)ds

(16)

Then, adding the terms on the right of equations (12),
(13), and (14) to V̇ (z(t)) yields:

V̇ (xt)≤xT (t)[PA + AT P ]x(t)
+2xT (t)PAdx(t− d(t)) + xT (t)Qx(t)
−(1− µ)xT (t− d(t))Qx(t− d(t))
+xT (t)Wx(t)− xT (t− h)Wx(t− h)

+hẋT (t)Zẋ(t)−
t∫

t−d(t)

ẋT (s)Zẋ(s)ds

−
t−d(t)∫

t−h

ẋT (s)Zẋ(s)ds

+2ζT
1 (t)N ·


x(t)−x(t− d(t))−

t∫

t−d(t)

ẋ(s)ds




+2ζT
1 (t)M ·


x(t−d(t))− x(t− h)−

t−d(t)∫

t−h

ẋ(s)ds




+hζT
1 (t)Xζ1(t)−

t∫

t−d(t)

ζT
1 (t)Xζ1(t)ds

−
t−d(t)∫

t−h

ζT
1 (t)Xζ1(t)ds

(17)

= ζT (t)Ξζ(t)−
t∫

t−d(t)

ηT (t, s)Ψ1η(t, s)ds

−
t−d(t)∫

t−h

ηT (t, s)Ψ2η(t, s)ds

(18)

where

ζ(t) = [xT (t) xT (t− d(t)) xT (t− h)]
η(t, s) = [ζT (t) ẋT (s)]T
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Ξ =




Φ̃11 + hAT ZA Φ̃12 + hAT ZAd −M1

∗ Φ̃22 + hAT
d ZAd −M2

∗ ∗ −W




Φ̃11 = PA + AT P + Q + W + N1 + NT
1 + hX11

Φ̃12 = PAd −N1 + NT
2 + M1 + hX12

Φ̃22 = −(1− µ)Q−N2 −NT
2 + M2 + MT

2 + hX22

and Ψi(i = 1, 2) are defined in (9) and (10). If Ξ < 0
and Ψi ≥ 0, (i = 1, 2), then V̇ (z(t)) < −ε ‖x(t)‖2 for a
sufficiently small ε > 0. By Schur complement, Ξ < 0 is
equivalent to the following inequality is true.

Φ̃ =




Φ̃11 Φ̃12 −M1 hAT Z

∗ Φ̃22 −M2 hAT
d Z

∗ ∗ −W 0
∗ ∗ ∗ −hZ


 < 0. (19)

That is to say, if Φ̃ < 0 and Ψi(i = 1, 2) ≥ 0, then
V̇ (z(t)) < −ε ‖x(t)‖2 for a sufficiently small ε > 0.
Furthermore, (8) implies

∑r
i=1 ρi(θ(t))Φi < 0, which is

equivalent to (19). Therefore, if LMIs(8), (9) and (10)
are feasible, the system (7) is asymptotically stable. This
completes the proof of Theorem 1.

Based on Theorem 1, we have the following result for
uncertain T-S fuzzy system (1).
Theorem 2. For given a scalar h ≥ 0 and µ, the system (1)
with uncertainty described by (4) is stable if there exist
P = PT > 0, Q = QT > 0, W = WT > 0, Z = ZT > 0,

X =
[

X11 X12

XT
12 X22

]
≥ 0, and any appropriately dimensioned

matrices, N = [NT
1 NT

2 ]T , and M = [MT
1 MT

2 ]T and a
scalar λ > 0, such that the following LMIs are feasible for
i = 1, 2, . . . , r:




Φ11 + λET
i Ei Φ12 + λET

i Edi −M1

∗ Φ22 + λET
diEdi −M2

∗ ∗ −W
∗ ∗ ∗
∗ ∗ ∗

hAT
i Z PD

hAT
diZ 0
0 0

−hZ hZD
−λD


 < 0

(20)

Ψ1 =
[

X N
∗ Z

]
≥ 0 (21)

Ψ2 =
[

X M
∗ Z

]
≥ 0 (22)

where Φ11,Φ12,Φ13, and Ψi(i = 1, 2) are defined in (8),
(9) and (10).

Proof : Replacing A and Adi with Ai +DF (t)Ei and Adi +
DF (t)Edi in (8), respectively, the corresponding formula
of (8) of the system (1) can be written as follows:

Φ +




PD
0
0

hZD


F (t) [ Ei Edi 0 0 ]

+




ET
i

ET
di
0
0


FT (t)

[
DT P 0 0 hDT Z

]
< 0.

(23)

According to Lemma 2, it is easy to know that (23) is
true if there exist a positive number λ > 0 to make the
following inequality hold:

Φ + λ−1




PD
0
0

hZD




[
DT P 0 0 hDT Z

]

+ λ




ET
i

ET
di
0
0


 [ Ei Edi 0 0 ] < 0.

(24)

By Schur complement, (24) is equivalent to (20). This
completes the proof of Theorem 2.
Remark 3. In Li [2004], in the derivative of Lyapunov-
Krasovkii function for T-S fuzzy systems with a time-
varying delay, were employed fixed weighting matrices
to express the relationships between the terms in the
Newton-Leibniz formula, which may lead conservativeness.
In contrast, the proofs of Theorem 1 and Theorem 2
employ two free-weighting matrices N, M to express the
relationships between the terms in the Newton-Leibniz
formula, which may reduce the conservativeness of system.
Remark 4. In the derivative of Lyapunov-Krasovkii func-
tion for T-S fuzzy systems with a time-varying delay in Li
[2004], the negative term

∫ t−d(t)

t−h
ẋT (s)Zẋ(s)ds in V̇ (x(t))

is ignored, which may lead to conservatism. In contrast,
the proof of Theorem 1 and Theorem 2 show that this
negative term is retained and a new free-weighting matrix
M is introduced, which considers the relationship among
h, d(t) and their difference.

4. NUMERICAL EXAMPLES

This section provides two numerical examples that demon-
strate the effectiveness of the criteria presented in this
paper.

Example 1: Consider a time-delayed fuzzy system without
uncertainty. The T-S fuzzy model of this fuzzy system is
of the following form:

ẋ(t) =
2∑

i=1

ρi(Aix(t) + Adix(t− d(t)))

where

A1 =
[−2 0

0 −0.9

]
, Ad1 =

[−1 0
−1 −1

]
,

A2 =
[−1.5 1

0 −0.75

]
, Ad2 =

[−1 0
1 −0.85

]
,

h1 = sin2(θ(t)), h2 = cos2(θ(t)).
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Employing the LMIs in Li [2004] and those in Theorem
1 yield upper bounds on h that guarantee the stability of
system (7) for various µ, which are listed in Table 1.

Table 1. allowable upper bound of h for µ

µ 0 0.01 0.1 0.5 unknown µ

Li [2004] 1.196 − − − −
Theorem 1 1.348 1.340 1.280 1.135 1.099

It is clear that when the delay is time-invariant, i.e. d = 0,
the obtained result in Theorem 1 is better than in Li [2004].
Furthermore, when the delay is time-varying, the corollary
of Li [2004] fails to verify that the system is stable, while
the Theorem 1 in this paper can obtain the upper bounds
which guarantee the stability of the above fuzzy system.

Example 2: Consider a time-delayed fuzzy system with
uncertainty. The T-S fuzzy model of this fuzzy system is
of the following form:

ẋ(t) =
2∑

i=1

ρi(Ai + ∆Ai(t))x(t) + (Adi + ∆Adi(t))x(t− d(t)))

where

A1 =
[−2 1

0.5 −1

]
, Ad1 =

[−1 0
−1 −1

]
,

A2 =
[−2 0

0 −1

]
, Ad2 =

[−1.6 0
0 −1

]
,

E1 =
[

1.6 0
0 0.05

]
, Ed1 =

[
0.1 0
0 0.3

]
,

E2 =
[

1.6 0
0 −0.05

]
, Ed2 =

[
0.1 0
0 0.3

]
,

D =
[

0.03 0
0 −0.03

]
, I =

[
1 0
0 1

]
.

Employing the Theorem 1 of Li [2004] and those in
Theorem 2 of this paper yield upper bounds on h that
guarantee the stability of system (1) with uncertainty for
various µ, which are listed in Table 2.

Table 2. allowable upper bound of h for µ

µ 0 0.01 0.1 0.5 unknown µ

Li [2004] 0.950 0.944 0.892 0.637 −
Theorem 2 1.353 1.348 1.303 1.147 1.081

It is shown that when µ is known, our obtained results
are better than those in Li [2004]; when µ is unknown, the
Theorem 1 of Li [2004] fails to verify that the system is
stable, while the Theorem 2 of this paper can also obtain
the upper bound of stability is 1.081.

The reason is that our results not only retain any terms in
the derivative of Lyapunov-Krasovskii function, but also
consider the relationship among h, d(t) and h− d(t).

5. CONCLUSION

In this paper, some less conservative LMI-based asymp-
totic stability criteria are obtained without ignoring any
terms in the derivative of Lyapunov-Krasovskii function
for T-S fuzzy system with a time-varying delay. two nu-
merical examples demonstrate that the proposed method
is an improvement over the existing ones.
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