
 
 

 

  

Abstract—The problem of robust H∞ tracking control is 
considered for a class of linear system with time-varying 
uncertainties. The bounds of varying uncertainty 
ellipsoidal are obtained by set membership identification 
method. Using adaptive method, a new variable gain 
controller is designed to compensate the effect of 
uncertainty on systems. Then an application of this result 
to rotorcraft-based unmanned Aerial Vehicles (RUAVs) 
mounted on an experiment platform has demonstrated 
the effectiveness of the proposed method. 
 
 

I. INTRODUCTION 
esearch of Rotorcraft-based Unmanned Aerial Vehicles 
(RUAVs) has grown over the last decade as the 
operational requirements for such vehicles have 

increased in both military and civilian sectors. Potential 
applications of such unmanned vehicles include surveillance, 
reconnaissance and monitoring missions in an urban 
environment. RUAVs can also be used to test and validate a 
variety of technologies and techniques. Helicopter has 
complex dynamics associated with the interaction of the main 
rotor wake and the empennage, along with the 
aeroservoelastic couplings between the rotor and control 
system. RUAVs are typically much smaller and more agile 
than their full-scale counterparts, and have a particular 
challenge when compared to the full scale helicopters. The 
overall goal of the research is to determine the effectiveness 
of the stabilizing and robustness properties of control design 
techniques on RUAVs. 

 RUAV is a naturally unstable system with nonlinear 
dynamics. The complicated dynamics of helicopter lead to 
both parametric and dynamic uncertainty, so the controller 
should be designed to robust to those effects and advanced 
control strategies need to be used in order for a RUAV to fly 
autonomously. During last decade, a large number of robust 
controller design methods have been investigated [1-4]. Also, 
many robust controllers achieving some robust performances, 
such as H∞ disturbance attenuation, guaranteed cost control 
method and so on have been presented [5-8]. If there are 
uncertainties in the system model, the norm H∞ can be a 
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desirable measure of a system’s robust performance. The 
theoretic motivation for the H∞ control problem and 
important results about output feedback control can be found 
in [9,10] and the references therein. 

Recently, the author of this paper presented an adaptive 
robust H∞ tracking control method for the helicopter control 
with time-invariant uncertainty [11]. Using adaptive method, 
a variable gain controller is designed to reduce conservatism 
inherent in fixed gains. Then, in [12], time-varying ellipsoidal 
uncertainty obtained by set membership identification 
method is considered in adaptive robust H2 tracking control. 
To guarantee the  asymptotic stability and H2 performance of 
closed-loop system, an adjustable target model is introduced. 
Based on the error equation between state model and 
adjustable target model an uncertainty parameters adaptive 
law is obtained to construct variable gain controller. The 
application to the yaw control of a small-scale helicopter has 
shown the effectiveness of this method.  
 In this paper we will further consider an adaptive robust H∞ 
tracking controller design with simpler structure than [12] for 
linear systems with time-varying uncertainty. The 
time-varying ellipsoidal uncertainty obtained by set 
membership identification method [13]. The aim of this paper 
is to combine robust control and adaptive control to realize 
their individual advantages. Without introducing adjustable 
target model, a simple variable gain robust controller is 
designed directly for augmented systems. It consists of a 
fixed gain and a variable gain. The fixed gain is determined 
by using the nominal system and the variable gain controller 
is designed to compensate effect of uncertainty on systems 
using adaptive mechanism. The resultant closed-loop systems 
possess the designed characteristic of robust and good 
performance. Sufficient conditions for the existence of 
adaptive robust H∞ tracking controllers with variable gains 
are given in terms of LMIs and adaptive laws. An application 
of the proposed controller design for the rotorcraft-based 
unmanned Aerial Vehicles (RUAVs) mounted on an 
experiment platform is also given to show its effectiveness. 

The paper is organized as follows. In Section II, the yaw 
dynamic of helicopter and the simplified model are given, 
followed by the robust tracking controller design in Section 
III. The application of the proposed controller to the yaw 
control of RUAV is discussed in Section IV. Finally, some 
conclusions are made at end of this paper. 

II. MODELING YAW DYNAMIC OF HELICOPTER 
In this paper a framework of the simulation model for the 

helicopter-platform (see Fig. 1) is set up using rigid body 
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equations of motion of the helicopter fuselage. In hovering 
and low-velocity flight, the torque generated by main and 
force generated by tail rotor are dominant [14]. By 
simplifying the fuselage and vertical fin damping, the yaw 
dynamics can be rewritten as: 

1 2zz mr tr tr

r
I r Q T l b r b
ϕ =⎧
⎨ = − + + + ϕ⎩

       (1) 
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Fig.1 helicopter coordination 

where mrQ is the torque of main rotor, trT is the thrust of tail 
rotor, ltr is the distance between the tail rotor and z-axis, b1 
and b2 are damping constants. The expressions of trT and 

mrQ has been given in [12]: 

21
1 2 2 2 12 ( 4 )tr tr trT C C C C C= θ + + + θ  (2) 

with 
2 3 31

1 tr06 ( )tr tr tr tr trC a b c R R= ρ Ω −   

2 2 21
2 08 2 / ( )tr tr tr tr tr tr trC a b c R R R= ρ Ω ρπ −  

where ρ, atr, btr, ctr, Ωtr, θtr, rtr, vtr1 Atr are respectively, 
density of air, slope of the lift curve, number of the rotor, 
chord of the blade, speed of the tail rotor, pitch angle, radial 
distance , induced speed of the tail rotor and area of the tail 
rotor disc. 
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 (3) 
with          2 3 31

3 06 ( )C abc R R= ρ Ω −   

       2 2 21
4 08 2 / ( )C abc R R R= ρ Ω ρπ −  

where R, θmr are respectively, radial and pitch angle of 
main rotor, , ,a α 1, , , ,r c vφ Ω are respectively slope of the 
lift curve, the angle of attack of the blade element, speed 
radial distance, chord of the blade, inflow angle, induced 
speed and rotor speed of the main rotor. 
 From (1) we can see that there exist couplings between 
main rotor torque Qmr and tail rotor thrust Ttr. And (2) and (3) 
further demonstrate that the models are highly nonlinear and 
too complex to be used for control design. Instead of the 
dynamics described by (2) and (3), a simplified model is 
proposed for control design : 

By plotting the torque vs pitch angle, we can find that 
relation between Qmr and mrθ  approximated with  quadratic 
polynomial (see Fig.2) 

2 1 0

2
mr Q mr Q mr QQ k k k= θ + θ +  

where
2Qk ,

1Qk and 
0Qk depend on the shape of the blades 

and the speed of main rotor Ω , while Ω are  constant. So, 
0Qk , 

2Qk and 
1Qk are constants.  

Similarly,  the lift of tail rotor, trT (see Fig.3), can be written:  
2

2 1 0tr T tr T tr TT k k k= θ + θ +  
Then we can obtain the following nonlinear model: 

 
2 1 0

2
zz

2
2 1 0 1 2

( )

( )
Q mr Q mr Q

T tr T tr T tr

r
I r k k k

k k k l b r b

⎧ ϕ =
⎪

= − θ + θ +⎨
⎪

+ θ + θ + + + ϕ⎩

(4) 

For the yaw control , the force generated by main rotor can be 
treated with disturbance, so the yaw dynamic can be 
described by : 
 

2
1 2 3 4 5tr tr tr

r
r k r k k k k

=⎧
⎨ = + + + Ω +⎩

ϕ
θ θ θ ϕ

  (5) 
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Fig. 2 Torque of main rotor with Quadratic Polynomial Fitting 
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Fig. 3 Thrust of tail rotor with Quadratic Polynomial Fitting 

 
The nonlinear dynamic can be presented by the following 

state space description 
( , )x f x u=  

where, [ ]Tx r= ϕ , tru = θ .  

Furthermore (4) can be linearized at a trim point ( 0 0,x u )  

 x Ax Bu= +  (6) 
with 

0 0,
5 1

0 1
|x u

f
k kx
⎡ ⎤∂ = ⎢ ⎥∂ ⎣ ⎦

A= ,
0 0,

0
|x u

f
au
⎡ ⎤∂ = ⎢ ⎥∂ ⎣ ⎦

B=  

where, a= 3 0 2 42 trk k kθ + + Ω . 

III. ADAPTIVE ROBUST TRACKING CONTROLLER DESIGN 
In this section, we propose the control method for linear 

systems with time-varying ellipsoidal uncertainty. This result 
can not only  be used in this paper to solve the adaptive robust 
H∞ tracking control for the rotorcraft-based unmanned Aerial 
Vehicles (RUAVs) mounted on an experiment platform, but 
also can be applied to other related problems due to its 
general formulation. 

 

A. Problem statement and preliminaries 
Consider the following linear uncertainty model described 

by  

 
1

( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )
( ) ( )

x t A t x t B t u t B t t
y t C x t

ωθ θ θ ω= + +
=

 (7) 

where nRtx ∈)( is the state, mRtu ∈)( is the control input , 

( ) py t R∈  is the measured output  and ( ) lt Rω ∈ is an 

exogenous disturbance which belongs to 2[0, )L ∞ , 
respectively. The system matrices have the following 
time-varying structure  

0
1

( ( )) ( )
N

i i
i

A t A t Aθ θ
=

= +∑  

0
1

( ( )) ( )
N

i i
i

B t B t Bθ θ
=

= +∑  

0
1

( ( )) ( )
N

i i
i

B t B t Bω ω ωθ θ
=

= +∑  

 where 0 1 0 1 0 1, , , , ,N N NA A A B B B B B Bω ω ω are 
known constant matrices. The time-varying parameter vector 

( ) Nt Rθ ∈  represents unknown parameters which belong to 
the N-dimensional ellipsoidal set expressed as 
 2{ | ( ) ( ) 1}N TR t t−Δ ≡ ∈ Σ ≤θ θ θ  (8) 

 1diag( , )NΣ = σ σ  (9) 

where N NR ×Σ ∈ represents the size of the ellipsoid. 
The ellipsoidal set can be obtained by set membership 

identification method. Set membership identification is one 
of the identification technique that use a priori assumptions 
about a parametric model to constrain the solutions to certain 
sets. . In this approach, uncertainty is described by means of 
an additive noise which is known only to have given bounds. 
The motivation for this approach is that in many practical 
cases the Unknown but Bounded (UBB) error description is 
more realistic and less demanding than the statistical 
description. In Section IV, the Fogel-Huang Algorithm [15] 
is used for the parameter identification. 

Control objective: design a robust controller such that: 
1. The closed-loop system is stable for all ( )tθ ∈ Δ with 

a guaranteed level of disturbance attenuation. 
2. The output ( )y t  tracks the reference signal ( )dr t  

with zero steady-state error, that is lim ( ) 0
t

e t
→∞

=   

where ( ) ( ) ( )de t r t y t= − . 
3.         Satisfactory transient performance in time-response by 
adding a controller with adaptation mechanism. 

It is well known that integral control can effectively 
eliminate the steady tracking error. In order to obtain a robust 
tracking controller with state feedback plus tracking error 
integral, the following augmented state-space description is 
introduced.  

( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )ax t A t x t B t u t B t tωθ θ θ ω= + +  (10) 
where 

0
( ) ( ( )d ) ( )

Tt T Tx t e x tτ τ⎡ ⎤= ⎢ ⎥⎣ ⎦∫ , ( ) [ ( ) ( )]T T T
a dt r t tω ω=  

And 

10
( ( ))

0 ( ( ))
C

A t
A t

θ
θ
−⎡ ⎤

=⎢ ⎥
⎣ ⎦

, 0
( ( ))

( ( ))
B t

B t
θ

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 0
( ( ))

0 ( ( ))
I

B t
B tω

ω

θ
θ

⎡ ⎤
=⎢ ⎥
⎣ ⎦

 

Choose the controlled output ( ) qz t R∈ , defined by 

 ( ) ( ) ( ) ( )az t Cx t Du t t= + + Γω  (11)  
where C and D are constant weighting matrices which can be 
adjusted to achieve satisfactory response.  

Then the design problem can be reduced to the following: 
Find a robust controller ( )u t  such that: 
1. The augmented closed-loop system is robust for stable 
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for all ( )tθ ∈ Δ . 
2. Transient performance improves in time-response. 

Next, we will propose the robust control method with 
adaptation mechanism. 

B. Controller design 
In order to obtain on-line information on the parameter 
uncertainty, we introduce the vector ˆ( ) Nt R∈θ , denotes the 

adjustable parameter vector, and let the matrices ˆ( )A θ and 
ˆ( )B θ have the same structure as the system matrices of (10).  

0
1

0
1

ˆ ˆ( ( )) ( )

ˆ ˆ( ( )) ( )

N

i i
i=

N

i i
i

A t A t A

B t B t B

θ θ

θ θ
=

= +

= +

∑

∑
 

The input ( )u t is determined so as to improve the output 

( )z t according to the adjustable parameter ˆ( )tθ . 
By considering the control input  

ˆ( ) ( ) ( )u t K x tθ=  
with  

N

0
1

ˆ ˆ( ) i i
i

K K Kθ θ
=

= +∑  

then the closed-loop system (10) is written as  
 ˆ( ( ) ( ) ( )) ( ) ( )ax A B K x B tωθ θ θ θ ω= + +   (12) 
Furthermore, 

0 0
1 1 1

0 0
1 1 1

0 0
1 1

ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )( )

N N N

i i i i i i i
i i i

N N N

i i i i i i i i
i i i

N N

i i i i i i
i i

A B K

A A B B K K

A A B K B K B K

A B K B K A B K

θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

= = =

= = =

= =

+

= + − + + +

= + − + + − +

= + + + − +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑
(13) 

So, the system (12) can be written as 

0 0
1 1

0 0
1 1

0 1 2
1

ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( )( )) ( )

ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ) ( )( ) ( )

ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ) ( )( ) ( )

N N

i i i i i i a
i i
N N

i i i i i i a
i i
N

i i a
i

x A B K B K A BK x B t

A B K B K x A BK x B t

A B K B K x E E B t

ω

ω

ω

θ θ θ θ θ θ ω

θ θ θ θ θ θ ω

θ θ θ θ θ θ ω

= =

= =

=

= + + + − + +

= + + + − + +

= + + + + − +

∑ ∑

∑ ∑

∑

 

(14) 
with ( )

1
n p NE R + ×∈ , ( )

2
n p NE R + ×∈ , are given by 

1 1 | | NE A x A x⎡ ⎤= ⎣ ⎦ , 2 1 0 0| | NE B K x B K x⎡ ⎤= ⎣ ⎦  

Here, for the system(14), we determine the parameter 

vector ˆ( )tθ and the gain matrix ˆ( )K θ so as to ensure 

quadratic stability and an 2L gain bound 0>γ from the 

exogenous signal aω to the output error signal z ,i.e. 

2
a 20 0

d d  for all  and [0, )T T
a az z t t Lγ ω ω θ ω

∞ ∞
≤ ∈Δ ∈ ∞∫ ∫  (15) 

for zero-state initial conditions. 
 

Theorem 1: The closed-loop system (14) is stable and 
its H∞  disturbance attenuation is no more than γ if there 

exist , 0iY i N=  and P > 0 such that 

2

ˆ( ) ( ( ))
* 0
* *

T T

T

M M B CX DY
I

I

ω θ θ
γ

⎡ ⎤+ +
⎢ ⎥

− Γ <⎢ ⎥
⎢ ⎥−⎣ ⎦

  

 for all ˆ( ),  ( )t tθ θ ∈Δ  (16) 
where, * denotes the symmetric part , 

1,X P−= 0
=1

ˆ ˆ( )
N

i i
i

Y Y Yθ θ= +∑ , 

0 0Y K X= , i iY K X= ， 1i N= . 

0
1

ˆ ˆ ˆ( ) ( ) ( )
N

i i
i

M A X B Y B Yθ θ θ θ
=

= + +∑  

and also if ˆ( )tθ is determined according to the adjustment 
law 

2 T T
T T1 2
1 2T T

1 2

T T
1 2

[ ]   if [ ] 0
ˆ [ ]( )

ˆ( )                    if [ ] 0

E E Px E E Px
E E Pxt

t E E Px

θ

θ −

⎧Σ + + ≠⎪ Σ +=⎨
⎪ + =⎩

(17) 

where 0, 0lim ( )t tτ τ τ−
> →= −  and the initial guess of the 

parameter ˆ( )tθ , denoted by ˆ(0)θ , is supposed to be chosen 
from on the boundary surface of the ellipsoidal set Δ . 
Proof:  

Choose the following candidate Lyapunov function 
 ( ) ( )TV x t Px t=  (18) 

Then from the derivative of V along the system (14) with 
0aω = , we can get  

 

T
0

1

0
1

1 2
2

1 2

ˆ ˆ ˆ[( ( ) ( ) ( ) )

ˆ ˆ ˆ( ( ) ( ) ( ) )]

ˆ2 ( )( )
ˆ2 ( )( )

N
T

i i
i

N

i i
i

T

T

V x A B K B K P

P A B K B K x

x P E +E

x x P E +E

θ θ θ θ

θ θ θ θ

θ θ

α θ θ

=

=

= + +

+ + +

+ −

≤ − + −

∑

∑  (19) 

where  

0
1

0
1

max
ˆ ˆ ˆ[( ( ) ( ) ( ) )

ˆ ˆ ˆ    ( ( ) ( ) ( ) )] 0

N
T

i i
i

N

i i
i

A B K B K P

P A B K B K

θ

α θ θ θ θ

θ θ θ θ

λ
=∈Δ

=

= − + +

+ + + >

∑

∑
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Setting the parameter adjustment law as (17) results 

in
2V xα≤ − , because using (8) the following relation 

holds 
1

1 2 1 2

1 2

1 2

( ) ( )

( )

ˆ( )

T T

T

T

x P E +E x P E +E

x P E +E

x P E +E

θ θ

θ

−≤ Σ Σ

≤ Σ

=

 

Therefore the stability of the e system (14) is ensured. 
Furthermore, suppose that (0) 0x = we have 

 

2

0

2

0

(z z )d

d(z z ( ))d ( ) ( )
d

T T
a a

T T T T
a a

J t

x Px t x Px
t

γ ω ω

γ ω ω

∞

∞

= −

= − + − ∞ ∞

∫

∫
   

 

1 20
ˆ( ) ( ) 2 ( )( ) dT T T

a
a

x
x x P E +E tω φ θ θ θ

ω
∞⎡ ⎤⎛ ⎞

≤ + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫   

 (20) 
where  

2

ˆ( ) ( ( ))( )
*

T

T

PB C DK
I

ω θ θφ θ
γ

⎡ ⎤Λ + + Γ= ⎢ ⎥
− + Γ Γ⎣ ⎦

 

with 

0 0
1

1

ˆ ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ) ( ( ) ( )

ˆ ˆ ˆ( ) ) ( ( )) ( ( ))

N
T

i i
i

N
T

i i
i

A B K B K P P A B K

B K C DK C DK

θ θ θ θ θ θ

θ θ θ θ

=

=

Λ = + + + +

+ + + +

∑

∑
 

By using Schur complement formula, ( ) 0φ θ < is 
equivalent to 

2

ˆ( ) ( ( ))
* 0
* *

T

T

PB C DK
I

I

ω θ θ
γ

⎡ ⎤Ψ +
⎢ ⎥

− Γ <⎢ ⎥
⎢ ⎥−⎣ ⎦

(21) 

with 

0
1

0
1

ˆ ˆ ˆ( ( ) ( ) ( ) )

ˆ ˆ ˆ( ( ) ( ) ( ) )

N
T

i i
i

N

i i
i

A B K B K P

P A B K B K

θ θ θ θ

θ θ θ θ

=

=

Ψ = + +

+ + +

∑

∑
 

By pre-and post-multiplying (21) 

by ( )1diag , ,P I I− , we can get that ( ) 0φ θ < is 

equivalent to (16).  

Remark 1: The adjustable parameter ˆ( )tθ satisfies 
2ˆ ˆ( ) ( ) 1t tθ θ−Σ = , which means that ˆ( )tθ is adjusted on the 

boundary surface of the prespecified ellipsoidal set Δ . 
Remark 2:  In order to transform (14)  to a convex 

problem, a substitute set for the ellipsoidal set Δ  can be used 
in Theorem 1, that is 

{ ( ) | ( ) , 1 }N
i it R t i Nθ θ σΔ = ∈ ≤ =  

Then since ( ),tθ ˆ( )tθ appear affinely in (14), the problem 

can be reduced to check (16) for all ( ),tθ ˆ( ) vextθ ∈ Δ , 

where { |  or }N
vex i i i iRθ θ σ θ σΔ = ∈ = = −  denotes 

the set of 2N vertices of Δ . 
Next, a algorithm is given to choose the control gains . 
Algorithm:  
Step 1: Design 0K by using the standard H∞ control theory 
[16] for the nominal augmented system  

0 0 0( ) ( ) ( ) ( )x t A x t B u t B tω ω= + +  
Step 2: Solving the following optimization 

min     δ s.t.     (16)  and 0M >  

where  2δ γ= . 

The feedback gains 1 NK K  are obtained by 

, 1i iK Y X i N= = . 

IV. SIMULATIONS  
The proposed control algorithm is verified by the 

simulation model obtained from the helicopter-on-arm 
platform, shown as Fig.4. A small-scale electrical helicopter 
is mounted at the end of a two-DOF arm, while the weight of 
the helicopter is perfectly balanced at the other side of the arm. 
First, the parameters of the nonlinear yaw dynamic model are 
identified and followings are the result: 

 2
1 2 3 4 5tr tr tr

r
r k r k k k k

=⎧
⎨ = + + + Ω +⎩

ϕ
θ θ θ ϕ

 (22) 

with, k1 = -1.38, k2  = 63.09, k3 = 11.65, k4 = -0.14, k5 = -3.33, 
1200Ω = . System (22) can be linearized, and system 

matrices are as follow:  

0

0 1
3.33 1.38

A
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 1

0 0
3.33 0

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

2

0 0
0 1.38

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 3

0 0
0 0

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

0

0
72.32

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1

0
0

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2

0
0

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 3

0
72.32

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Parameter uncertainty  
2 1, (0.5,0.3,0.2)T diagθ θ−Σ ≤ Σ =  

We choose the controlled output matrices as 
4 0 0
0 1 0
0 0 1

C
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,

0
0
1

D
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

In the following simulations, the initial conditions are: 
(0) 0 ϕ = ，  (0) 0r = . The tracking command of ϕ  is 
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off20,    0 t tdϕ = ≤ ≤  
and the following disturbance is used: 

1

5     3 t 4( )
0        else

s≤ ≤⎧
ζ = ⎨

⎩
 

A robust tracking controller with adaptive compensation 
input is designed to control yaw model of the helicopter using 
the proposed approach in Section III. We can get the gains of 
robust controller: 

K0 = [39.18   -22.72   -1.29] 
K 1  = [0.56    -0.31      -0.02] 
K 2 = [-0.88    0.54       0.03] 
K 3 = [-6.46    3.75        0.20] 

Fig.5 and Fig.6 are the response curves of the yaw and the 
yaw velocity with the proposed controller and standard H∞ 
controller for nominal system, respectively. It is easy to see 
that using the proposed robust controller the closed-loop 
system is stable even in presence of disturbance. The robust 
controller with adaptive compensation input can improve the 
performance the system with uncertainty. 

V. CONCLUSIONS 
 In this paper, we have first solved an adaptive robust H∞ 
tracking control problem for a class of linear systems with the 
varying uncertainty. A new variable gains controller with 
simple structure is proposed to guarantee the asymptotic 
stability and H∞ tracking performance of closed-loop system. 
Then we apply this result to solve the yaw tracking control 
problem of RUAV. Simulation results have demonstrated the 
effectiveness. 
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Fig.4 Helicopter on arm 
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Fig. 5 yaw response curve with nominal controller and the proposed 

robust controller 
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Fig.6  yaw velocity response curve with nominal controller and the proposed 

robust controller 
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