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Abstract: Dynamic programming, one of the most powerful solution methodologies to achieve
optimality for separable optimization problems, suffers heavily from the notorious “curse of
dimensionality”, which prevents its direct applications when the dimension of the state space
is high. By aggregating multiple constraints into a single surrogate constraint, the surrogate
constraint formulation offers an ideal platform for powerful utilization of dynamic programming,
although often with a price of a presence of duality gap. In this paper, we propose a novel
convergent dynamic programming algorithm by integrating a domain cut scheme with the
surrogate constraint formulation, thus enabling elimination of the duality gap gradually in the
solution process.

1. INTRODUCTION

By invoking a decomposition scheme based on the ground-
breaking principle of optimality, dynamic programming
pioneered by Richard Bellman in 1950’s is one of the
most powerful solution methodologies for separable opti-
mization problems. The past four decades have witnessed
great success of applications of dynamic programming and
also many extensions of it, for example, nonserial dynamic
programming (Esogbue (1972)), multi-objective dynamic
programming (Li and Haimes (1987), Liao and Li (2002)),
and nonseparable dynamic programming (Li and Haimes
(1990)).

Although dynamic programming is a universal solution
scheme for separable optimization problems, it suffers
heavily from the notorious “curse of dimensionality” as
named by Bellman himself, which prevents a direct appli-
cation of dynamic programming when the state space is
large.

Mitigating the curse of dimensionality in dynamic pro-
gramming has been a challenging research task in front
of the control and optimization community for many
years. There exist a few papers concerning mitigation of
curse of dimensionality for discrete dynamic programming.
Recognizing a relationship between the optimal solutions
and the efficient solutions in the constraint space, a hy-
brid method was developed in Dyer et al. (1995), Korner
(1989), Marsten and Morin (1978) and Morin and Esogbue
(1974) with a purpose to fathom in the solution process
inefficient and incomplete feasible solutions by bounds
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and dominance rules. Many attempts have been made to
mitigate the curse of dimensionality of dynamic program-
ming in its control applications. A successive approxima-
tion technique was proposed in Larson (1965) and Larson
and Korsak (1970) in which a single state is perturbed
each time on the incumbent trajectory, resulting in a
sequence of scalar-state dynamic programming problems.
Differential dynamic programming developed in Jacobson
and Mayne (1970), Liao and Shoemaker (1991), Mayne
(1966) and Yakowitz and Rutherford (1984) is a second-
order method that successively improves the incumbent
trajectory under a convexity assumption. The idea of re-
gion reduction was adopted in Luus (1998) by successively
refining a coarse grid assignment of the state space. Note
that the curse of dimensionality disappears when an an-
alytical form of the cost-to-go function can be achieved.
Thus, different numerical methods, such as linear and
spline interpolation in Johnson et al. (1993) and neural
computing in Bertsekas and Tsitsiklis (1996), have been
suggested in the literature to approximate the cost-to-go
by an analytical form. The state-of-the-art of the battle
against the curse of dimensionality is still far below a
satisfactory level, in terms of the present computational
power for high-dimensional dynamic programming.

We consider dynamic programming in this paper as a
solution method for the following general class of multiply
constrained separable integer programming problems:

(P ) min f(x) =
n

∑

j=1

fj(xj)
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s.t. gi(x) =
n

∑

j=1

gij(xj) ≤ bi, i = 1, . . . ,m,

x ∈ X = X1 × X2 × · · · × Xn,

where fj ’s and gij ’s are real-valued functions defined on R,
and all Xj ’s are finite integer sets in R. Problem (P ) has a
wide variety of applications, including resource allocation
problems and nonlinear multi-dimensional knapsack prob-
lems (see Li and Sun (2006) and the references therein). At
the same time, problem (P ) covers very general situations
of nonlinear integer programming problems as no addi-
tional property such as convexity, concavity, monotonicity
or differentiability is assumed in (P ).

To apply dynamic programming to (P ), we first introduce
a stage variable k, 0 ≤ k ≤ n, and a state vector at stage
k, sk ∈ R

m, satisfying the following recursive equation:

sk+1 = sk + gk(xk), k = 1, . . . , n − 1,

with an initial condition s1 = 0, where gk(xk) =
(g1k(xk), . . . , gmk(xk))T . Assume that the constraints are
integer-valued, then we only need to consider integer
points in the state space. Furthermore, the feasible region
of the state vector at stage k with 2 ≤ k ≤ n + 1 can be
confined to sk ≤ sk ≤ s̄k, where for i = 1,. . .,m,

(sk)i =
k−1
∑

t=1

min
xt∈Xt

git(xt),

(s̄k)i = min{
k−1
∑

t=1

max
xt∈Xt

git(xt), bi −
n

∑

t=k

min
xt∈Xt

git(xt)}.

For a given state s at stage k, 1 ≤ k ≤ n, we define the
cost-to-go function as follows,

tk(s) = min
n

∑

j=k

fj(xj),

s.t. s +
n

∑

j=k

gj(xj) ≤ b,

xj ∈ Xj , j = k, . . . , n.

It is obvious that v(P ) = t1(0), where v(·) is the optimal
value of an optimization problem (·). Based on Bellman’s
principle of optimality, the cost-to-go function satisfies the
following backward recursive relation for k = n− 1, . . ., 1,

tk(s) = min
xk∈Xk

{fk(xk) + tk+1(s + gk(xk))}

with boundary condition

tn(s) = min
xn∈Xn

{fn(xn) | s + gn(xn) ≤ b}.

The backward dynamic programming starts at k = n −
1 and moves backwards to k = n − 2, . . ., 1. The cost-to-
go functions are calculated recursively for every s at each
stage k between sk and s̄k and finally stops at s1 = 0.
The tracing process is then carried out in a forward way
to identify the optimal solution(s) of (P ).

The above classical dynamic programming algorithm suf-
fers from the “curse of dimensionality” even when the
number of constraints is relatively large. More specifically,

at each stage k, we need to calculate the cost-to-go at
∏m

i=1[(s̄k)i − (sk)i + 1] possible states, which grows expo-
nentially with respect to m.

In this paper, we develop a novel solution framework to
overcome the curse of dimensionality in dynamic pro-
gramming. More specifically, as dynamic programming
remains an efficient solution scheme for singly constrained
problems, we build up our convergent dynamic program-
ming algorithms on the platform of a surrogate constraint
formulation. Domain cut scheme is then introduced to
gradually remove “active” infeasible solutions that attain
optimality in the surrogate constraint formulation, thus
reducing the duality gap successively and eventually elim-
inating it.

2. SURROGATE CONSTRAINT FORMULATION

The surrogate constraint formulation (Glover (1965)) is
formed by aggregating multiple constraints into a single
surrogate constraint,

(Pµ) min f(x)

s.t. µT (g(x) − b) ≤ 0, x ∈ X,

where µ = (µ1, . . . , µm)T ∈ R
m
+ is a vector of surro-

gate multipliers, g(x) = (g1(x), . . . , gm(x))T and b =
(b1, . . . , bm)T . The surrogate constraint formulation pro-
vides a platform for battling against curse of dimensional-
ity.

Denote by S and S(µ) the feasible regions of (P ) and (Pµ),
respectively. Since, for any µ ∈ R

m
+ , S(µ) is an enlargement

of the feasible set of the primal problem, i.e., S ⊆ S(µ),
(Pµ) is a relaxation of the primal problem (P ). By weak
duality, solving (Pµ) offers a lower bound of the optimal
value of (P ):

v(Pµ) ≤ v(P ), ∀ µ ∈ R
m
+ .

The surrogate dual is to seek the best lower bound gener-
ated by (Pµ):

(DS) max
µ∈R

m

+

v(Pµ).

In general, the quality of a dual scheme should be judged
by two measures. The first is how easier the relaxation
problem can be solved when compared with the primal
problem. The second is how tight the best lower bound
(optimal dual value) can be, in other words, how small
the duality gap can be. Note that surrogate constraint
formulation (Pµ) is a singly constrained separable integer
programming problem which can be efficiently solved by
dynamic programming. Moreover, it can be shown that
the lower bound generated by the surrogate dual (DS) is
tighter than the bound by the conventional Lagrangian
dual (see Li and Sun (2006)).

It is easy to see that if an optimal solution to (Pµ) for
some µ ∈ R

m
+ happens to be feasible to (P ), then it is also

optimal to the primal problem (P ), i.e., strong duality
holds. However, the presence of attaining strong duality
is rare in surrogate dual search. Achieving the primal
feasibility for an optimal solution to some revised surrogate
relaxation problem via domain cut is the primal goal of the
research presented in this paper.
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3. DOMAIN CUT UNDER SURROGATE
CONSTRAINT FORMULATION

The motivation behind the proposed solution scheme is to
gradually remove some “active” infeasible solutions of (P )
that attain optimal positions in the surrogate constraint
formulation. More specifically, a domain cut approach is
adopted to cut off sub-domains in the feasible region
of the surrogate formulation (Pµ) that contain “active”
infeasible solutions and “non-promising” feasible solutions
from further consideration.

Let α and β be integer vectors in R
n. Denote 〈αj , βj〉 =

{xj | αj ≤ xj ≤ βj , xj integer} and 〈α, β〉 = Πn
j=1〈αj , βj〉.

Let ⌊t⌋ denote the maximum integer less than or equal to
t and ⌈t⌉ the minimum integer greater than or equal to t.

When the duality gap is nonzero, domain cut can be
implemented to cut off some infeasible integer sub-boxes
whose objective values dominate the feasible region of
the surrogate constraint formulation. Repeatedly carrying
out such a procedure gradually reduces the duality gap
and eventually eliminates it. The solution of this iterative
process converges to the optimal solution of the primal
problem. The following theorem gives conditions under
which the above domain cut procedure can be applied.

Theorem 1. Let x̃ be a solution to (Pµ) on 〈α, β〉. If x̃ is
infeasible to (P ), more specifically, gk(x̃) > bk for some k
∈ {1, . . . ,m}, then the following hold.

(i) If f is concave, then the following integer subbox 〈γ, δ〉

with, for i = 1, . . ., n, γi = x̃i and δi = βi if ∂f(x̃)
∂xi

< 0, γi

= αi and δi = x̃i if ∂f(x̃)
∂xi

> 0, and γi = αi and δi = βi if
∂f(x̃)
∂xi

= 0, contains no feasible solution of (P ) and can be

removed from 〈α, β〉.

(ii) If f is a convex quadratic function taking the following
form: f(x) =

∑n
j=1(

1
2cjx

2
j + djxj) with all cj > 0, j = 1,

. . ., n, then the following integer subbox 〈γ, δ〉 with, for i
= 1, . . ., n, γi = ⌈−di

ci

−|x̃i+
di

ci

|⌉ and δi = ⌈−di

ci

+|x̃i+
di

ci

|⌉

contains no feasible solution of (P ) and can be removed
from 〈α, β〉.

(iii) If f is a concave quadratic function taking the fol-
lowing form: f(x) =

∑n
j=1(

1
2cjx

2
j + djxj) with all cj <

0, j = 1, . . ., n, then the optimal solution can only be in
the following integer region 〈ρ, σ〉 \ 〈γ, δ〉 with, for i = 1,

. . ., n, ρi = ⌈−di/ci −

√

∣

∣

∣
2(f(x̃) +

∑n
j=1 d2

j/(2cj))/ci

∣

∣

∣
⌉, σi

= ⌈−di/ci +

√

∣

∣

∣
2(f(x̃) +

∑n
j=1 d2

j/(2cj))/ci

∣

∣

∣
⌉, and γi = x̃i

and δi = βi if ∂f(x̃)
∂xi

< 0, γi = αi and δi = x̃i if ∂f(x̃)
∂xi

> 0,

and γi = αi and δi = βi if ∂f(x̃)
∂xi

= 0.

(iv) If f is a monotone function of x, i.e., for all i, i = 1,
. . ., n, f is either increasing or decreasing with respect to
xi, then the following integer subbox 〈γ, δ〉 with, for i =

1, . . ., n, γi = x̃i and δi = βi if ∂f(x̃)
∂xi

< 0, γi = αi and

δi = x̃i if ∂f(x̃)
∂xi

> 0, and γi = αi and δi = βi if ∂f(x̃)
∂xi

=

0, contains no feasible solution of (P ) and can be removed
from 〈α, β〉.

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

f(x) = f(x̃)

x̃

Domain to be cut

x1

x2

f(x) > f(x̃)

f(x) < f(x̃)

Fig. 1. Domain cut when f is concave

(v) If gk is convex, then the following integer subbox 〈γ, δ〉

with, for i = 1, . . ., n, γi = x̃i and δi = βi if ∂gk(x̃)
∂xi

> 0,

γi = αi and δi = x̃i if ∂gk(x̃)
∂xi

< 0, and γi = αi and δi = βi

if ∂gk(x̃)
∂xi

= 0, contains no feasible solution of (P ) and can

be removed from 〈α, β〉.

(vi) If gk is a convex quadratic function of x taking
the following form: gk(x) =

∑n
j=1(

1
2ckjx

2
j + dkjxj) with

all ckj > 0, j = 1, . . ., n, then the optimal solu-
tion 〈α, β〉 can only be in the following integer region
〈ρ, σ〉 \ 〈γ, δ〉 with, for i = 1, . . ., n, ρi = ⌈−dki/cki −
√

∣

∣

∣
2(gk(x̃) +

∑n
j=1 d2

kj/(2ckj))/cki

∣

∣

∣
⌉, σi = ⌈−dki/cki +

√

∣

∣

∣
2(gk(x̃) +

∑n
j=1 d2

kj/(2ckj))/cki

∣

∣

∣
⌉ and γi = x̃i and δi

= βi if ∂gk(x̃)
∂xi

> 0, γi = αi and δi = x̃i if ∂gk(x̃)
∂xi

< 0, and

γi = αi and δi = βi if ∂gk(x̃)
∂xi

= 0.

(vii) If gk is a concave quadratic function of x taking the
following form: gk(x) =

∑n
j=1(

1
2ckjx

2
j +dkjxj) with all ckj

< 0, j = 1, . . ., n, then the following integer subbox 〈γ, δ〉
with, for i = 1, . . ., n, γi = ⌈−dki

cki

− |x̃i + dki

cki

|⌉ and δi =

⌈−dki

cki

+ |x̃i+
dki

cki

|⌉, contains no feasible solution of (P ) and

can be removed from 〈α, β〉.

(viii) If gk is a monotone function of x, then the following
integer subbox 〈γ, δ〉 with, for i = 1, . . ., n, γi = x̃i and

δi = βi if ∂gk(x̃)
∂xi

> 0, γi = αi and δi = x̃i if ∂gk(x̃)
∂xi

< 0,

and γi = αi and δi = βi if ∂gk(x̃)
∂xi

= 0, contains no feasible

solution of (P ) and can be removed from 〈α, β〉.

Proof. We will give separate proofs for all of the above
eight cases.

(i) When f is concave, the set {x ∈ 〈α, β〉 | f(x) ≥ f(x̃)}
is a convex set as shown in Figure 1, outside of which all
points have an objective value strictly less than f(x̃). Note
that f(x̃) is a lower bound of v(P ) on 〈α, β〉 and, by the
weaker duality, no point outside of {x ∈ 〈α, β〉 | f(x) ≥
f(x̃)} can be optimal. Based on the sign of the normal
vector of f at x̃, the box 〈γ, δ〉 with, for i = 1, . . ., n, γi =

x̃i and δi = βi if ∂f(x̃)
∂xi

< 0, γi = αi and δi = x̃i if ∂f(x̃)
∂xi

> 0, and γi = αi and δi = βi if ∂f(x̃)
∂xi

= 0, is outside of

{x ∈ 〈α, β〉 | f(x) ≥ f(x̃)} and can be removed.

(ii) Consider the following ellipse contour of f :
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f(x) = f(x̃)

x̃

x1

x2

Domain to be cut

f(x) > f(x̃)

f(x) < f(x̃)

Fig. 2. Domain cut when f is convex and quadratic

f(x) =
n

∑

j=1

[(1/2)cjx
2
j + djxj ] = f(x̃). (1)

Clearly, the center of ellipse (1) is

o = (−d1/c1, . . . ,−dn/cn)T . (2)

See Figure 2. Let E(x̃) be the ellipsoid formed by the
above ellipse contour. Since f is convex, all points inside
E(x̃) possess an objective value smaller than f(x̃). By the
weaker duality, no point inside E(x̃) can be feasible. By
the symmetry of E(x̃), the integer box 〈γ, δ〉, with

γ = (⌈o1 − |x̃1 − o1|⌉, . . . , ⌈on − |x̃n − on|⌉)
T , (3)

δ = (⌊o1 + |x̃1 − o1|⌋, . . . , ⌊on + |x̃n − on|⌋)
T , (4)

is inside E(x̃) and can be removed.

(iii) Consider the ellipse contour of f given in (1) with the
center specified in (2). Note that the length of the i-th axis
of the ellipse contour is

2ri = 2

√

√

√

√

√

∣

∣

∣

∣

∣

∣

2(f(x̃) +
n

∑

j=1

d2
j/(2cj))/ci

∣

∣

∣

∣

∣

∣

. (5)

See Figure 3. Let E(x̃) be the ellipsoid formed by the
above ellipse contour. Since f is concave, all points outside
E(x̃) possess an objective value smaller than f(x̃). The
minimum rectangle that encloses the ellipsoid E(x̃) is [ρ, σ]
with

ρ = (o1 − r1, . . . , on − rn)T ,

σ = (o1 + r1, . . . , on + rn)T ,

and the optimal solution cannot be outside of this mini-
mum rectangle. We can further cut off integer subbox 〈γ, δ〉
from 〈ρ, σ〉 based on the argument given in Item (i).

(iv) If f is monotone, then any point in the subbox 〈γ, δ〉

with, for i = 1, . . ., n, γi = x̃i and δi = βi if ∂f(x̃)
∂xi

< 0,

γi = αi and δi = x̃i if ∂f(x̃)
∂xi

> 0, and γi = αi and δi = βi

if ∂f(x̃)
∂xi

= 0, has an objective level not greater than f(x̃).

Since f(x̃) is a lower bound of problem (P ) on 〈α, β〉, no
point inside 〈γ, δ〉 can be optimal. See Figure 4.

(v) When gk is convex, the set {x ∈ 〈α, β〉 | gk(x) ≤ gk(x̃)}
is a convex set as shown in Figure 5, outside of which all
points have a gk value strictly larger than gk(x̃). In other
words, no point outside of {x ∈ 〈α, β〉 | gk(x) ≤ gk(x̃)}
can be feasible. Based on the sign of the normal vector

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x̃

x1

x2

Domain
to be cut

Domain to be cut

f(x) < f(x̃)

f(x) > f(x̃)

f(x) = f(x̃)

Fig. 3. Domain cut when f is concave and quadratic
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0

0.5
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Domain to be cut

f(x) = f(x̃)

x̃

x1

x2

f(x) < f(x̃)

f(x) > f(x̃)

Fig. 4. Domain cut when f is monotone

−4 −2 0 2 4 6

−4

−2

0

2

4

6

x1

x2

gk( x) < gk( x̃) > bk

*

Domain to be cut

gk( x) > gk( x̃) > bk

gk( x) =gk( x̃) > bk

x̃

Fig. 5. Domain cut when gk is convex

of gk at x̃, the box 〈γ, δ〉, with, for i = 1, . . ., n, γi = x̃i

and δi = βi if ∂gk(x̃)
∂xi

> 0, γi = αi and δi = x̃i if ∂gk(x̃)
∂xi

< 0, and γi = αi and δi = βi if ∂gk(x̃)
∂xi

= 0, is outside of

{x ∈ 〈α, β〉 | gk(x) ≤ gk(x̃)} and can be removed.

(vi) Consider the following ellipse contour of gk:

n
∑

j=1

[(1/2)ckjx
2
j + dkjxj ] = gk(x̃). (6)

Clearly, the center of ellipse (6) is

o = (−dk1/ck1, . . . ,−dkn/ckn)T (7)

and the length of the j-th axis of ellipse (6) is

2rj = 2

√

√

√

√

∣

∣

∣

∣

∣

2(gk(x̃) +

n
∑

l=1

d2
kl/(2ckl))/ckj

∣

∣

∣

∣

∣

. (8)

See Figure 6. Let E(x̃) be the ellipsoid formed by the
above ellipse contour. Since gk is convex, all points outside
E(x̃) possess a gk value larger than gk(x̃). The minimum
rectangle that encloses the ellipsoid E(x̃) is [ρ, σ] with
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gk(x) =gk(x̃) >b k
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Domain to be cut

Fig. 6. Domain cut when gk is convex and quadratic
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Domain to be cut

Fig. 7. Domain cut when gk concave and quadratic
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Fig. 8. Domain cut when gk monotone

ρ = (o1 − r1, . . . , on − rn)T ,

σ = (o1 + r1, . . . , on + rn)T ,

and the optimal solution cannot be outside of this mini-
mum rectangle. We can further cut off integer subbox 〈γ, δ〉
from 〈ρ, σ〉 based on the argument given in Item (v).

(vii) Consider the ellipse contour of gk given in (6) with
the center specified in (7). See Figure 7. Let E(x̃) be the
ellipsoid formed by the above ellipse contour. Since gk is
concave, all points inside E(x̃) possess a gk value larger
than gk(x̃), thus all infeasible. By the symmetry of E(x̃),
the integer box 〈γ, δ〉, with

γ = (⌈ok1 − |x̃1 − ok1|⌉, . . . , ⌈okn − |x̃n − okn|⌉)
T , (9)

δ = (⌊ok1 + |x̃1 − ok1|⌋, . . . , ⌊okn + |x̃n − okn|⌋)
T , (10)

is inside E(x̃) and can be removed.

(viii) If gk is monotone, then any point in the subbox 〈γ, δ〉

with, for i = 1, . . ., n, γi = x̃i and δi = βi if ∂gk(x̃)
∂xi

> 0,

γi = αi and δi = x̃i if ∂gk(x̃)
∂xi

< 0, and γi = αi and δi =

βi if ∂gk(x̃)
∂xi

= 0, has a gk level not less than gk(x̃), thus
infeasible. See Figure 8. 2

Note that cutting out 〈γ, δ〉 from 〈α, β〉 results in a non-
box domain which can be expressed as a union of multiple
integer boxes. A key issue is how to partition a non-
rectangular domain into a union of integer boxes such
that the surrogate constraint dynamic programming can
be applied to every newly generated integer sub-box after
a cutting process. We have the following result from Li and
Sun (2006).

Lemma 2. Let A = 〈α, β〉 and B = 〈γ, δ〉, where α, β, γ,
δ ∈ Z

n and α ≤ γ ≤ δ ≤ β. Then A\B can be partitioned
into at most 2n integer boxes.

A \B

=
{

∪n
j=1

(

Πj−1
i=1 〈αi, δi〉 × 〈δj + 1, βj〉 × Πn

i=j+1〈αi, βi〉
)}

∪
{

∪n
j=1

(

Πj−1
i=1 〈γi, δi〉 × 〈αj , γj − 1〉 × Πn

i=j+1〈αi, δi〉
)}

.

Since problem (P ) is separable, we can apply Theorem 1
separately when f or gk satisfies one condition with respect
to xi and satisfies another condition with respect to xj ,
with j 6= i.

4. CONVERGENT SURROGATE CONSTRAINT
DYNAMIC PROGRAMMING

Integrating the domain cut scheme with the surrogate
constraint formulation under a framework of branch-and-
bound, we now formally describe the solution algorithm.

Step 0 (Initialization). Select a surrogate multiplier µ
and use dynamic programming to solve (Pµ). Let x0

be the solution to (Pµ). If x0 is feasible, then x0 is the
optimal solution of (P ) and stop. Otherwise, calculate
f(x0). Let X0 = X, k = 0, xopt = ∅ and fopt = −∞.

Step 1 (Sub-Domain Selection) Select an integer subbox
Xkj from Xk with the smallest objective value of (Pµ),
f(xkj). Let Xk = Xk \ Xkj .

Step 2 (Cut and Partition) Cut out from Xkj certain
integer boxes of infeasible solutions that include xkj

using one of the formula in Theorem 1 and partition
the remaining domain, Zk, into a union of integer sub-
boxes.

Step 3 (Evaluation) Solve (Pµ) on every integer subbox
in Zk by using dynamic programming. Remove all the
integer subboxes from Zk whose solution is feasible in
(P ). Update xopt and fopt if a feasible solution found
possesses an objective function value smaller than fopt.
Let Xk+1 = Xk ∪ Zk.

Step 4 (Fathoming) Remove all the integer subboxes in
Xk+1 whose objective function value is larger than fopt.

Step 5 (Optimality Check and Termination) If Xk+1 is
empty, stop and xopt is optimal to (P ) with fopt as the
objective function value. Otherwise, set k = k + 1 and
go back to Step 1.

To illustrate the solution process of the proposed con-
vergent surrogate constraint dynamic programming using
domain cut, let us consider the following example.

min f(x) = 3x2
1 + 2x2

2

s.t. g1(x) = 2x1 + 3x2 ≤ 7

g2(x) = (7 − 2x1) + (8 − 2x2) ≤ 10,
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x ∈ X =
{

x ∈ Z
2 | 0 ≤ xi ≤ 3, i = 1, 2

}

.

Applying the surrogate constraint formulation to the
above example problem yields,

min f(x) = 3x2
1 + 2x2

2

s.t. µ1(2x1 + 3x2) + µ2(15 − 2x1 − 2x2) ≤ 7µ1 + 10µ2,

x ∈ X =
{

x ∈ Z
2 | 0 ≤ xi ≤ 3, i = 1, 2

}

.

Setting µ∗ = (0, 1)T gives a feasible half-space in x and
yields a solution x0 = (1, 2)T which violates g1(x) ≤ 7.
As f is an increasing function, 〈(1, 2)T , (3, 3)T 〉 should be
removed by case (iv). Let X1 = X0 \ 〈(1, 2)T , (3, 3)T 〉 =
X1

1 ∪X1
2 = 〈(0, 0)T , (0, 3)T 〉 ∪ 〈(1, 0)T , (3, 1)T 〉. See Figure

9.

Solving (Pµ∗) with µ∗ = (0, 1)T on X1
1 and X1

2 , respec-
tively, yields a solution on X1

1 , x1
1 = (0, 3)T , and a solution

on X1
2 , x1

2 = (2, 1)T . Note that (2, 1)T is feasible with f(x1
2)

= 14. Set (2, 1)T as the incumbent and remove X1
2 from

further consideration. Solution (0, 3)T violates the first
constraint and we cut 〈(0, 3)T , (0, 3)T 〉 from X1

1 , resulting

X2
1 = X1

1 \ 〈(0, 3)T , (0, 3)T 〉 = 〈(0, 0)T , (0, 2)T 〉

Problem (Pµ∗) with µ∗ = (0, 1)T is infeasible on X2
1

and X2
1 is removed from further consideration. No more

integer box is left and the solution process for the example
terminates with the incumbent (2, 1)T as the optimal
solution with v(P ) = 14.

5. CONCLUSIONS

This paper presents a solid step forward in tackling curse of
dimensionality in dynamic programming. Curse of dimen-
sionality vanishes when embedding the primal problem
into its surrogate constraint relaxation. However, as a
price, dynamic programming needs to be carried out in
many sub-domains and in an iterative fashion. Although
preliminary computational results are promising, further
investigation on many implementation issues is necessary.
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