
Reinforcement Learning

for Elevator Control ⋆

Xu Yuan ∗ Lucian Buşoniu ∗∗ Robert Babuška ∗∗

∗ ASML Netherlands B.V., The Netherlands
(e-mail: xu.yuan@asml.com)

∗∗ Delft University of Technology, The Netherlands
(e-mail: i.l.busoniu@tudelft.nl, r.babuska@tudelft.nl)

Abstract: Reinforcement learning (RL) comprises an array of techniques that learn a control
policy so as to maximize a reward signal. When applied to the control of elevator systems, RL
has the potential of finding better control policies than classical heuristic, suboptimal policies.
On the other hand, elevator systems offer an interesting benchmark application for the study
of RL. In this paper, RL is applied to a single-elevator system. The mathematical model of
the elevator system is described in detail, making the system easy to re-implement and re-use.
An experimental comparison is made between the performance of the Q-value iteration and
Q-learning RL algorithms, when applied to the elevator system.

Keywords: reinforcement learning; elevator control; reinforcement learning benchmark.

1. INTRODUCTION

Today’s urban life cannot be imagined without elevators.
A large number of modern elevator systems have been in-
stalled in most high-rise buildings. The elevator controllers
assign elevators to service passengers requests in real-time
while optimizing the overall service quality, e.g., by mini-
mizing the waiting time and/or the energy consumption.

Classical examples of elevator control strategies include
the collective control strategy (Siikonen, 1993) and the
zone approaching strategy (Strakosch, 1983). With the
collective control strategy, an elevator services the near-
est call request in its current direction. However, with
this control strategy several elevators sometimes stop at
the same floor at the same time, and this increases the
waiting time of passengers on other floors. With the zone
approaching strategy, a building is divided into several ver-
tical zones, and elevators are assigned to serve passengers
in a particular zone. Elevators serve call requests within
their predeterminate zones when they are available, and
park there when they are idle. For the zone approaching
strategy, the number of zones and the number of eleva-
tors within a zone are usually determined a-priori, which
decreases the flexibility of this overall suboptimal control
strategy.

In addition to being suboptimal, heuristic control strate-
gies for elevator systems are difficult and costly to design.
They can also become inappropriate if new traffic patterns
arise that were not anticipated during the design process
(Walczak and Cichosz, 2006).

In an attempt to address these drawbacks, the application
of learning to elevator control was proposed (Crites and

⋆ This research was financially supported by Senter, Dutch Ministry
of Economic Affairs within the BSIK-ICIS project “Interactive
Collaborative Information Systems” (grant no. BSIK03024).

Barto, 1998; Makaitis, 2003). Reinforcement learning (RL)
in particular has been the focus of much research (Crites,
1996; Crites and Barto, 1998; Pepyne et al., 1996; Zhou
et al., 2005; Walczak and Cichosz, 2006). Rather than
relying on pre-designed control strategies, RL algorithms
learn control policies (strategies) on the fly (Sutton and
Barto, 1998; Kaelbling et al., 1996; Bertsekas, 2007). RL
can be applied to general nonlinear, stochastic processes,
and can obtain an optimal control policy without using a
model of the controlled process. It is therefore useful when
the control problem is complex or insufficiently known. For
elevator systems, this means that reinforcement learning
control can be applied without knowing in advance the
traffic patterns (i.e., how the passengers will arrive). An
optimal policy can be obtained that outperforms any
heuristic strategy. Furthermore, to a certain extent the
controller will be able to adapt on-line to time-varying
traffic patterns.

Some authors regard each elevator as an agent that makes
its own decisions autonomously, leading to a multi-agent
view of the elevator system (Crites and Barto, 1998;
Walczak and Cichosz, 2006). Using multi-agent learning
for the elevator system can benefit from the advantages of
distributed systems: scalability and robustness to single-
point failures.

From a different perspective, elevator systems can serve
as useful benchmark applications for the study of RL.
Elevator control is well-suited for RL, because reward
signals encoding relevant performance indices are easy to
obtain (e.g., maximum or average waiting times), but a
model of the task is difficult to derive, and an optimal
control policy is unknown (most policies used in practice
are heuristic). The passenger arrivals are best described as
stochastic variables, and RL is suited for stochastic control
tasks. The complexity of simulated elevator systems can
be varied significantly. For instance, the number of state

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 2212 10.3182/20080706-5-KR-1001.1520



variables can range from a few to the order of tens; discrete
variables (e.g., integer elevator positions), or continuous
variables (e.g., waiting times) can be included. When the
task is simple enough, exact RL algorithms can be applied,
whereas more complex variations can be used to study
approximate RL techniques. One or several elevators can
be considered, and in the latter case, multi-agent RL
algorithms can be employed.

In this paper, RL is applied to a single-elevator system.
The mathematical model of the elevator system is de-
scribed in detail, making the system easy to re-implement
and re-use. This is in contrast to other works on RL for
elevator systems, where the model is usually not fully
described (Crites and Barto, 1998; Pepyne et al., 1996).
In our experiments, we compare the performance of the
control policy computed with the model-based Q-value
iteration algorithm, with the performance of policies found
by the model-free Q-learning algorithm.

The rest of this paper is organized as follows. In sec-
tion 2, the necessary background on RL is introduced,
including the model-based Q-value iteration algorithm and
the model-free Q-learning algorithm. Section 3 describes
in detail our elevator system model. Section 4 presents
our RL experiments with the elevator system. Section 5
concludes and closes the paper.

2. REINFORCEMENT LEARNING

This section presents the necessary elements of reinforce-
ment learning (RL). RL searches for a control policy (a
mapping from states to control actions), so as to maxi-
mize a cumulative reward signal (Sutton and Barto, 1998;
Kaelbling et al., 1996).

In RL, the learning controller (agent) interacts with the
controlled process (environment) in discrete time. At time
step t, the controller measures directly the state xt ∈ X of
the environment, and applies an action ut ∈ U according
to its policy, ut = π(xt). The environment makes a transi-
tion to a new state, according to its stochastic dynamics:
the probability of ending up in xt+1 as a result of action
ut in xt is f(xt, ut, xt+1). Simultaneously, the controller
receives a scalar reward rt+1 = ρ(xt, ut, xt+1) that mea-
sures the quality of the state transition. The reward says
nothing directly about the long-term performance or how
it can be improved. Then the cycle repeats for the next
sample t + 1, and so on.

The learning goal is to maximize the expected value of the
return:

Rt =
∞
∑

i=0

γirt+i+1 (1)

where γ ∈ [0, 1) is the discount rate. The discount rate can
be regarded as encoding uncertainty about future events.
So, the goal of the agent is to maximize infinite-horizon
returns, while only receiving feedback about immediate
transitions.

This can be achieved by learning a state-action value
function. The value of the state-action pair (x, u) under
the policy π, denoted by Qπ(x, u), represents the expected
return when starting in state x, taking action u and
following policy π thereafter:

Table 1. The Q-value iteration algorithm

Input f , ρ, γ, convergence threshold θ

Initialize Q0 arbitrarily, e.g. Q0(x, u) = 0, for all x ∈ X, u ∈ U

k = 0
Repeat

For each x ∈ X, u ∈ U

Qk+1(x, u) =
∑

x′∈X

f(x, u, x′)[ρ(x, u, x′) + γ max
u′∈U

Qk(x′, u′)]

EndFor

k = k + 1
Until maxx,u |Qk(x, u) − Qk−1(x, u)| < θ

Output π∗(x) = arg maxu∈U Qk(x, u) ∀x ∈ X

Qπ(x, u) = Eπ{Rt|xt = x, ut = u} (2)

where Eπ{.} denotes expectation under the stochastic
dynamics f , given that the controller uses policy π.

The optimal action value function Q∗ is defined as the
maximum Q-function over all the policies:

Q∗(x, u) = max
π

Qπ(x, u). (3)

Once Q∗ is known, an optimal policy (i.e., one that
maximizes the return) can be found by a maximization
over the action argument:

π∗(x) = arg max
u∈U

Q∗(x, u). (4)

This is the greedy policy in Q∗.

A central result in RL states that the optimal value func-
tion Q∗ is the unique solution of the Bellman optimality
equation: 1

Q∗(x, u) =
∑

x′∈X

f(x, u, x′)[ρ(x, u, x′) + γ max
u′∈U

Q∗(x′, u′)].

(5)

The model-based Q-value iteration algorithm computes
the right-hand side of the Bellman equation iteratively,
starting from an arbitrary Q-function Q0. The algorithm
is given in Table 1. Although Q-value iteration has large
computational expenses, works only offline and requires
a model, it has some very useful properties. Namely, the
algorithm is deterministic, has only two parameters to set
(γ and θ), and ensures monotonous convergence to Q∗

(Bertsekas, 2007).

Among the algorithms that do not require a model of the
environment, one of the most widely used is Q-learning
(Watkins and Dayan, 1992). The Q-learning algorithm
iteratively estimates Q∗ from interaction with the envi-
ronment, using the update formula:

Qt+1(xt, ut) =Qt(xt, ut)+

αt[rt+1 + γmax
u∈U

Qt(xt+1, u)−Qt(xt, ut)]

(6)
Here, xt, xt+1, and rt+1 are state and reward values
observed by the controller while interacting with the
environment, and αt is the learning rate at time t. The
Q-learning algorithm is given in Table 2.

Under the following conditions, Q-learning converges to
Q∗ as t → ∞ (Watkins and Dayan, 1992; Jaakkola et al.,
1994):

1 A state space with a finite number of elements is assumed.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2213



Table 2. The Q-learning algorithm

Input γ, αt, exploration parameters (e.g., ε, τ)
Initialize Q0 arbitrarily, e.g. Q0(x, u) = 0, for all x ∈ X, u ∈ U

Initialize x0

Repeat at each time step t:
Choose ut in xt using policy derived from Qt

(e.g, Boltzmann)
Apply ut, observe rt+1, xt+1

Qt+1(xt, ut) =Qt(xt, ut)+

αt[rt+1 + γmax
u∈U

Qt(xt+1, u) − Qt(xt, ut)]

• Explicit, distinct values of the Q-function are stored
and updated for each state-action pair.

• The sum of the squares of αt is finite, whereas the
sum of αt is infinite.

• The controller keeps trying all actions in all states
with nonzero probability.

The last condition can be satisfied if the controller does not
always choose actions that are greedy for the current Q-
function, but also includes randomness in its action choice.
This is called exploration. In this paper, the controller
chooses at each step the greedy action (4) with probability
(1 − ε) where ε ∈ (0, 1), and with probability ε draws an
action from the Boltzmann distribution:

pt(x, u) =
eQt(x,u)/τ

∑

u′∈U eQt(x,u′)/τ
(7)

where pt(x, u) is the probability of selecting u in x, and
τ is called the temperature. The temperature typically
decreases over time. When τ → 0, (7) is equivalent with
greedy action selection (4). When τ → ∞, the action
selection is purely random. For τ ∈ (0,∞), higher-valued
actions have a greater chance of being selected than lower-
valued ones (Sutton and Barto, 1998).

To improve the learning speed of Q-learning, an eligibility
trace can be used. The resulting algorithm, called Q(λ),
updates at each time step not only the Q-value of the
last state-action pair, but also those of state-action pairs
previously encountered, with weights that decay exponen-
tially as the pairs go further back in time. The weights are
called eligibility values (Peng and Williams, 1996; Sutton
and Barto, 1998).

3. ELEVATOR SYSTEM MODEL

This section introduces the model of the elevator system
considered. The model is parameterized by the following
variables:

• The number of elevators (positive integer). In general,
there are several elevators in elevator systems. In
order to simplify the problem, we assume here that
the system consists of a single elevator.

• The number of floors (positive integer). Set here to 5.
• The height of a floor (positive real). Set here to 6 m.
• The elevator speed (positive real). Here we set it to

3 m/s. This means the elevator takes 2 s to travel
between two adjacent floors.

• The elevator capacity (positive integer). Set here to 4
passengers.

• The stop time, i.e., the sum of the intervals needed
by the passengers to enter and exit the elevator on a
floor. The stop time is set to 2 s. The fact that the

stop time is equal to the floor time ensures intervals
between decisions made by the controller are always
the same. This means that the elevator system can be
modeled as a discrete-time system with the sample
time of Ts = 2 s.

The size of the state space can be varied by changing the
number of elevators, the number of floors, and the elevator
capacity. The particular numbers chosen here ensure that
the cardinality of the state space is finite and relatively
small, allowing the direct application of RL algorithms
without resorting to less-understood, approximate versions
of these algorithms.

Our model contains a few simplifications with respect
to a real elevator system. We assume that at most one
passenger is waiting on each floor. In other words, if one
passenger arrives on a floor where there is already another
waiting passenger, the number of waiting passengers on
that floor is still viewed to be one. The assumption of
having at most one waiting passenger per floor makes it
reasonable to set the elevator capacity of 4.

In the sequel, a down-peak traffic pattern is assumed.
This pattern occurs in office buildings in the afternoon,
when people are leaving work for home. In down-peak
traffic, passengers have many departure floors and a single
destination floor, the ground floor. At each sample time,
passengers arrive probabilistically in the following way. A
sample is drawn from a discrete probability distribution
with support {0, 1, 2, 3, 4}, with the corresponding prob-
abilities of {0.6875, 0.0625, 0.09375, 0.09375, 0.0625}. The
event e = 0 means no passenger arrives; an event e > 0
means a passenger arrives at floor i = e. It is easy to
compute that the average passenger arrival rate is 1 person
every 6.4 seconds. Given this rate, the elevator is capable
to serve all the passengers.

3.1 State-Action Space and Performance Measures

The state space of the elevator system is discrete and has 7
dimensions. The state signal x is composed of the following
variables:

x = [c1, c2, c3, c4, p, v, o]T . (8)

where:

• ci, i = 1, 2, 3, 4 : Binary values, representing call
requests (call flags) on each floor i. There is no call
request on the ground floor in the down-peak traffic
scenario.

• p : Discrete elevator position, taking values in {0, 1, 2,
3, 4}.

• v : Discrete vertical velocity taking values in {−3, 0, 3}
m/s.

• o : Discrete elevator occupancy, taking values in
{0, 1, 2, 3, 4}. The number 0 means no passengers are
inside the elevator; the number 4 means that the
elevator is at its maximum capacity.

The cardinality of the state space is:

24 · 5 · 3 · 5 = 1200 (9)

The elevator controller can choose among three discrete
actions: {−1, 0, 1}. The −1 action accelerates the elevator
downwards, 1 accelerates it upwards, and 0 stops the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2214



elevator. Two constraints are enforced on actions, corre-
sponding to physical constraints in the elevator system.

(1) The controller cannot choose the action 1 when the
elevator is on the top floor. Similarly, it cannot choose
the action−1 when the elevator is on the ground floor.

(2) The elevator cannot switch directions during a single
sample. This means the 0 action must be taken
between the 1 and −1 actions.

The reward function is:

ρ(x) = −

4
∑

i=1

ci − o (10)

where ci is the call request on the i-th floor; o represents
the elevator occupancy. The reward at state xt is the
negative of the number of all the passengers waiting at
time t, including passengers waiting for the elevator on the
floors, and passengers inside the elevator waiting to exit
on the ground floor. In other words, the only situation for
which the reward is 0 is when no passengers are waiting
in the system. The optimal policy will attempt to drive
the system into this situation in minimum time, thereby
transporting passengers to their destination in minimum
time.

The controller efficiency is evaluated through the waiting
time of the passengers. One passenger’s waiting time is
the time since she arrives on some floor until she reaches
her destination, including the time spent waiting for the
elevator at the departure floor, and the time spent inside
the elevator waiting to exit at the destination floor. In the
sequel, the passengers’ waiting time is used to compute
two performance measures:

• The average waiting time, an instantaneous quantity
computed as the average of the waiting time over all
the passengers currently in the system.

• The trial waiting time, which characterizes an entire
run (trial) of the simulator. This is an average over all
the time samples in the trial of the (instantaneous)
average waiting time defined above. When computing
this quantity, it is assumed that the duration of the
trial is finite.

In both cases, a smaller value of the performance measure
indicates a better performance of the controller.

3.2 Elevator System Dynamics

Elevator motion. The elevator spends one sampling
interval (2 seconds) from one floor to the next. This period
is divided into 10 equal time intervals, denoted by the
integer numbers h (h = 1, 2, ..., 10), during which the
elevator moves in small increments between two adjacent
floors.

• When h = 1, elevator’s velocity v changes according
to the chosen action u:

v = 3 · u (11)

• At each time interval h, the elevator position y
between two floors is calculated as:

y = v
h

10
Ts (12)

This can be regarded as an Euler integration of the
(constant) velocity v with a time step of Ts/10.

• When h = 10, the elevator floor position changes as:

p← p +
y

6
(13)

where the height between floors is 6 m.

Passenger arrival and departure. In down-peak traffic,
passengers exit the elevator only at the ground floor, and
can enter the elevator at any non-zero floor, as long as the
total number of passengers in the elevator remains within
its capacity.

• When h = 0, an event e is drawn from the passenger
arrival distribution, and the call request flag ci on
each floor i changes as follows:

ci ←

{

1 if i = e

ci otherwise
(14)

• When h = 10, the call request flag changes as follows:

ci ←

{

0 if i = p, v = 0, and o < 4

ci otherwise
(15)

where o is the elevator occupancy. The occupancy
changes as:

o←







o + 1 if p > 0, v = 0, cp = 1, and o < 4

0 if p = 0 and v = 0

o otherwise
(16)

The elevator system simulator was implemented in Mat-
lab. Matlab was chosen because it offers powerful tools
for rapid development and analysis. A screenshot of the
graphical user interface (GUI) of the developed simulator
is shown in Figure 1.

4. EXPERIMENT: Q-VALUE ITERATION AND
Q-LEARNING

In this section, we apply the model-based Q-value iteration
algorithm and the model-free Q-learning algorithm to the
elevator system in down-peak traffic. The control policies
computed with the two algorithms are compared using the
average waiting time and the trial waiting time, which were
introduced in Section 3.1. Each trial has a duration of 500
seconds.

The following heuristic policy is designed as a baseline.
The controller randomly chooses a waiting passenger, and
takes that passenger to the ground floor without stopping
at any non-zero floor. This baseline policy yields trial
waiting times of up to 70 seconds.

In order to run the Q-value iteration algorithm (Table 2),
the transition probability function f was first computed.
The discount rate was set to γ = 0.99, and the convergence
threshold θ = 0.01. This optimal solution has a trial
waiting time of 5.13 seconds (computed as an average of
50 experiments, to account for the stochastic passenger
arrivals).

The online Q-learning algorithm was run with the same
discount rate, and a constant learning rate α = 0.38.
Boltzmann exploration and an eligibility trace were used,
as described in Section 2. The exploration probability
was set to ε = 0.8 in the first trial, and was annealed

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2215



0 01

1 1
2

0 03

0 04

number of
waiting passengers

call request flag

Elevator World

floor

0

Time [s]:

60.6

Passengers(#):

1

Action:

Up

Average          
waiting time [s]:

2.9

Fig. 1. Graphical user interface (GUI) of the elevator
system. On the left, the simulation time is displayed,
together with the current action chosen by the con-
troller. On the right, the number of passengers in the
elevator and the average waiting time is displayed.
Beside each black square is the number of waiting
passengers on that floor. Beside each gray square, the
call request flag at that floor is given. The large black
rectangle represents the position of the elevator.

Table 3. Parameter settings for the Q-learning
controller.

Parameters Value

Number of trials 50
Trial length 500 s
Learning rate α 0.38
Discount rate γ 0.99
Initial exploration probability ε 0.8
Exploration probability annealing εd (per trial) 0.89
Initial exploration temperature τ 11.8
Temperature annealing τd (per time step) 0.998
Eligibility trace annealing λ 0.68

exponentially at the end of every trial using the annealing
factor εd = 0.89:

ε← εd · ε (17)

The exploration temperature in (7) was set to an initial
value τ = 11.8 and was annealed at each sample time with
a factor τd = 0.998, using a formula similar to (17). All
the parameters of the Q-learning algorithm are listed in
Table 3, together with their values.

Each Q-learning experiment consists of 50 trials during
which a control policy is learned. The trial waiting time
of the passengers is recorded. A number of 50 such ex-
periments are performed and the results are averaged, to
account for the stochastic passenger arrivals. The results
are plotted in Fig. 2. The evolution of the trial waiting time
is recorded against the number of trials. The learning curve
eventually converges to approximately 6 s, from the initial

0 10 20 30 40 50
5

10

15

20

25

30

35

40

T
ri
a

l 
w

a
it
in

g
 t

im
e

 [
s
]

Trial number

Fig. 2. Evolution of the trial waiting time with Q-learning
control. The curve represents the average of 50 inde-
pendent experiments.

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

Time [s]

A
v
e

ra
g

e
 w

a
it
in

g
 t

im
e

 [
s
]

 

 

Value iteration

Q−learning

Fig. 3. Average waiting time comparison between the Q-
value iteration policy and the Q-learning policy, for a
typical single trial.

value of 40 s. The curve does not monotonously decrease
because of exploration during the learning process.

It can be seen from these experiments that both Q-value
iteration and Q-learning give much better performances
than the baseline policy. After 50 trials, Q-learning gives a
good performance with a trial waiting time of 6.32 seconds,
larger than the optimal performance obtained with Q-
value iteration but still close. The reason for the difference
is that infinite exploration, one of the fundamental require-
ments for Q-learning convergence, cannot be satisfied in a
finite learning process. Figure 3 also shows the evolution
of the average waiting time over a typical single trial,
comparing the policy computed with Q-value iteration
with a policy computed with Q-learning.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2216



5. CONCLUSION

In this paper, we have applied two RL algorithms, Q-
value iteration and Q-learning, to a simulated elevator
system. The mathematical model of the elevator system
was described in detail. In the experiment, the elevator
system proved to be a suitable RL benchmark. The el-
evator system provided a discrete state space with 1200
states, which could be handled both by Q-value iteration
and Q-learning. Both algorithms produced good solutions
that ensured low waiting times for the passengers, with
the Q-learning solution slightly worse than the (optimal)
Q-value iteration solution.

A useful direction for future work is the investigation of
more realistic elevator system models. For instance, more
than one elevator can be included in the system, and
more realistic passenger arrival patterns can be considered.
Simulating multiple elevators can be useful in studying
multi-agent reinforcement learning algorithms.

REFERENCES

D.P. Bertsekas. Dynamic Programming and Optimal
Control, volume 2. Athena Scientific, 3nd edition, 2007.

R. Crites. Large-scale dynamic optimization using teams
of reinforcement learning agents. PhD thesis, University
of Massachusetts Amherst, 1996.

R.H. Crites and A.G. Barto. Elevator group control
using multiple reinforcement learning agents. Machine
Learning, 33(2–3):235–262, 1998.

T. Jaakkola, M.I. Jordan, and S.P. Singh. On the con-
vergence of stochastic iterative dynamic programming
algorithms. Neural Computation, 6(6):1185–1201, 1994.

L.P. Kaelbling, M.L. Littman, and A.W. Moore. Re-
inforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237–285, 1996.

D. Makaitis. Evolving fuzzy controllers through evolution-
ary programming. In Proceedings 22nd International
Conference of the North American Fuzzy Information
Processing Society (NAFIPS-03), pages 50–54, Chicago,
US, 24–26 July 2003.

J. Peng and R.J. Williams. Incremental multi-step Q-
learning. Machine Learning, 22:283–290, 1996.

D.L. Pepyne, D.P. Looze, C.G. Cassandras, and T.E.
Djaferis. Application of Q-learning to elevator dispatch-
ing. In Proceedings 13th IFAC World Congress, pages
317–322, San Francisco, US, 1996.

M.L. Siikonen. Elevator traffic simulation. Simulation, 61:
257–267, 1993.

G.R Strakosch. Vertical Transportation: Elevators and
Escalators. Wiley and Sons, 1983.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

T. Walczak and P. Cichosz. A distributed learning control
system for elevator groups. In J.G. Carbonell and
J. Siekmann, editors, Artificial Intelligence and Soft
Computing (ICAISC-06), volume 4029 of Lecture Notes
in Computer Science, pages 1223–1232. Springer, 2006.

C.J.C.H. Watkins and P. Dayan. Q-learning. Machine
Learning, 8:279–292, 1992.

J. Zhou, T. Eguchi, K. Hirasawa, J. Hu, and S. Markon.
Elevator group supervisory control system using genetic
network programming with reinforcement learning. In

Proceedings 2005 IEEE Congress on Evolutionary Com-
putation, pages 336–342, Edinburgh, UK, 2–5 Septem-
ber 2005.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2217


