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Abstract: This paper presents a novel and feasible prediction procedure for ship motion
in the presence of uncertain tendency of ship motion dynamic variations and stochastic sea
state disturbances. An appropriate model aiming to feature the characteristics of the dynamic
relationship between an observer and a ship deck is constructed, from which an initial algorithm
is implemented. The optimal system order based on Bayes Information Criterion (BIC) is
derived, resulting in the development of an accurate adaptive multi-step predictor for estimation
of ship motion dynamics. Simulation results demonstrate that the proposed prediction approach
substantially reduces the model complexity and exhibits excellent prediction performance,
making it suitable for integration into ship-helicopter approaches and landing guidance systems.
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1. INTRODUCTION

The effective prediction of ship motion dynamics is cru-
cial to a wide range of maritime operations which can
take place in a variety of situations (Zhao et al. 2004).
One potential utilization is to provide necessary decision-
making information for a helicopter pilot to plan an op-
timal descent trajectory and subsequently employ a cor-
responding control strategy for safe landing operations.
However, the uncertainty and randomness of environmen-
tal disturbances in high sea states greatly complicate at-
tempts to obtain satisfactory prediction results. One of
the main challenges is to propose a precise and elaborate
estimation model in the presence of uncertain stochastic
processes (e.g. wind, sea wave), unknown ship motion be-
haviour characteristics, and random unmodeled dynamic
disturbances. The accumulation of landing position pre-
diction error due to variations of relative motion between
a helicopter and a ship deck exacerbates the difficulty of
designing an accurate predictor. Furthermore, in situations
where an automated landing must be made urgently and
without warning (e.g. unexpected weather, mechanical
failure), a safe landing necessitates the incorporation of
an efficient and rapidly converging estimation algorithm
into the Flight Control System.

The main challenge for ship motion estimation is to de-
velop an appropriate prediction model, resulting from
complicated wave-excitation dynamics caused by the local
stochastic sea states such as barometric pressure, wind
speed and wave heights (Benstead et al. 2005). It is re-
ported that ship motion dynamics are not too remarkably
influenced by the local sea state as a result of the nar-
rowband feature of its power spectrum around the central

frequency (Ra et al. 2006), and it is common to represent
sea wave dynamics as a superposition of sinusoidal forms
covering a wide range of wave frequencies by abnegating
high-frequency components (Chung et al. 1990; Ra et al.
2006). However, in many cases, such sinusoidal superposi-
tions are obtained from experimental results under partic-
ular conditions. Therefore, these conclusions are subject
to question as to whether they can be valid for the other
cases. Clearly, the prediction results can be significantly
improved when the real system parameters are accurately
approached.

Recently, Ma et al. (2006) suggested an Auto-Regressive
fitting model. This method lacks long-term prediction
capability. Ship motion prediction using state-space ap-
proach has been subject to extensive investigation in a
considerable number of papers, and significant efforts,
including theoretical analysis and experimental research,
have been made to deal with different practical problems
in ship motion prediction. Lainiotis et al. (1992) focused
on deriving a state-space model based on a sufficient
knowledge of ship motion dynamics, which suffers from
the dependency on available information. Ra et al. (2006)
regarded the ship motion as a particular sinusoidal form,
and obtained a recursive robust least squares frequency
estimator by assuming that the ship motion frequency
changed slowly. An initial prediction algorithm using Mi-
nor Component Analysis developed by Zhao et al. (2004)
requires substantial computation effort for updating iden-
tifying coefficients, which compromises its practicality in
real time prediction.

This paper focuses on improving prediction performance
of ship motion dynamics in the maritime environment
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disturbed by a series of uncertain stochastic processes.
Assuming white noise distribution of sea excitations, we
concentrate in detail on the derivation of a proper model
revealing intrinsic dynamic features of ship motion and
a corresponding prediction algorithm. Firstly, the current
state observation is treated as a linear function of its
previous states and system input up to the time of interest
without knowing their respective orders. Then a novel
identification information criterion is proposed to obtain
optimal output and input orders using the Bayes Infor-
mation Criterion. Our order selection principle consid-
ers error accumulation, fitting complexity and prediction
capability, attempting to increase prediction horizon by
achieving a tradeoff among the three main factors. The
suggested criterion avoids excessive dependency on a prior
knowledge of the initial system order information. Next,
an approximate prediction model is presented in which
system order is specified using the new criterion. Finally,
the model coefficients identified from the Recursive Least-
Square (RLS) method are employed to predict the ship
motion dynamics. Simulation results demonstrate that the
suggested algorithm can efficiently predict the ship motion
dynamics with acceptable accuracy.

2. DETERMINATION OF OPTIMAL SYSTEM
ORDER AND COEFFICIENTS

The proposed methodology is inspired by phase-lead net-
works after the investigation of the dynamic relationship
between the true data and the predicted data in Fig.
1. Here, the true and the predicted data are considered
as input u(t) and output y(t), respectively. A phase-lead
network constructed properly, with a large phase lead,
means a reasonable prediction (solid) can be obtained as
early as possible. The expectant predictor with phase lead
feature has the transfer function in the form of

Y (z)

U(z)
=

b(n,0) + b(n,1)z
−1 + · · · + b(n,n−1)z

−(n−1)

1 + ā(m,1)z
−1 + · · · + ā(m,m)z

−m
. (1)

According to (1), we describe the relationship between
the current and previous ship dynamics by the following
model:

y(t) = A(q−1)y(t) + B(q−1)u(t) + e(t). (2)

A(q−1)
△
=

m∑

i=1

a(m,i)q
−i,m ∈ N. (3)

B(q−1)
△
=

n−1∑

j=0

b(n,j)q
−j , n ∈ N,n < m. (4)

Here a(m,i) = −ā(m,i),i=1,. . . ,m, and b(n,j),j=0,. . . , n − 1
denote system coefficients, m and n are the output order
and input order of our model, respectively. For ship motion
dynamics, the main stochastic disturbance comes from sea
wave excitation. The wave spectra are usually obtained
from empirical observations at a particular maritime envi-
ronment. This provides a clue for analysis of wave features.
Numerous wave spectra analysis methods (e.g., D. G.
Lainiotis et al. (1992) and I. M. Weiss et al. (1977)) suggest
that the sea wave excitation can be treated as white
noise. Hence, we consider the ship motion dynamics as a
stochastic process with a statistical distribution N(0, σ2

e).
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Fig. 1. Relationship between true and predicted data

Without loss of generality, it is assumed that ordered pairs
(m,n) lie within the following bounds:

m ∈ V1 = {m|1 ≤ m ≤ mmax,m ∈ N}, (5)

n ∈ V2 = {n|1 ≤ n ≤ nmax, n ∈ N}, (6)

where mmax and nmax are upper bounds on the out-
put order and input order, respectively. For the purpose
of determining an optimal output order m∗ and an in-
put order n∗, reasonable bounds on the system order
(mmax, nmax) should be assigned in advance. Smaller
upper bounds on the system order will lead to a simplistic
model unable to represent ship motion dynamics accu-
rately. Hence, upper bounds on the system order should
be large enough to guarantee an acceptable accuracy of
the model. Meanwhile, the selection of upper bounds
(mmax, nmax) has a significant influence on the complexity
of the system model, i.e., excessively large upper bounds
would increase the complexity of the model and aggravate
computational burden. Therefore, an appropriate model
without loss of prediction accuracy is preferable. Based on
empirical results, a feasible selection scheme is to select
(mmax, nmax) such that:

mmax = O(
√

T ), (7)

nmax = O(

√
T

2
), (8)

here, T denotes the number of the measured data. (7) and
(8) constrain the searching scope for the optimal system
order selection by avoiding either a too simplistic model
or excessive computational burden .

By introducing of the stochastic regressive vector

ϕT (t) = [y(t − 1), . . . , y(t − m), u(t), . . . , u(t − n + 1)] (9)

and the following notation

θT (m,n, t) =

[am,1(t), . . . , am,m(t), bn,0(t), . . . , bn,n−1(t)] (10)

we can write from (2)

y(t) = θT (m,n, t)ϕ(t) + e(t). (11)

θT (m,n, t) can be effectively estimated via the RLS al-
gorithm provided {y(t)} is available. Using the quadratic
criteria function (Ljung et al. 1987).
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J(θ) =

t∑

j=1

[y(j) − θT (m,n, j)ϕ(j)]2. (12)

leads to the following estimates for the coefficients:

θ̂(m,n, t) = [

t∑

j=1

ϕ(m,n, j)ϕT (m,n, j)]−1

·[
t∑

j=1

ϕ(m,n, j)y(j)]. (13)

The latter can be computed recursively by

θ̂(m,n, t + 1) = θ̂(m,n, t) + M(m,n, t + 1)

·[y(t + 1) − ϕT (t + 1)θ̂(m,n, t)], (14)

M(m,n, t + 1) = P (m,n, t)ϕ(t + 1)

·[1 + ϕT (t + 1)P (m,n, t)ϕ(t + 1)]−1, (15)

P (m,n, t + 1) = P (m,n, t)

−M(m,n, t + 1)ϕT (t + 1)P (m,n, t), (16)

θ̂(m,n, 0) = 0, P (m,n, 0) = αI, α = 10000. (17)

Define the prediction error as

ξ(m,n, t + 1) = y(t + 1) − ϕT (m,n, t + 1)θ̂(m,n, t) (18)

and compute the maximum likelihood estimate of the error
covariance until time T

σ̂2(m,n, T ) =
1

T − m − n

T∑

m+n+1

ξ2(m,n, t). (19)

σ̂2(m,n, T ) will be used subsequently for optimal order
determination.

Some available methods to specify system order are the
AIC (Akaike, 1974), the BIC (Schwarz, 1978) the Predic-
tive Least Squares Principle (PLS) (Hemerly et al. 1989),
and the Feedback Control System Information Criterion
(CIC) (Chen et al. 1990):

AIC(m,n, T ) = log σ̂2(m,n, T ) +
2(m + n)

T
, (20)

BIC(m,n, T ) = log σ̂2(m,n, T ) +
(m + n) log T

T
, (21)

PLS(m,n, T ) = σ̂2(m,n, T ), (22)

CIC(m,n, T ) =
T∑

m+n+1

ξ2(m,n, t) + (m + n)(log T )2. (23)

For our model, the AIC is not recommended since the
consistency feature of the AIC cannot be guaranteed
(Kashyap et al. 1980). For the CIC, if the magnitude of
the error accumulated is much smaller compared with the
second term, the variation tendency of the CIC would be
obliterated as the second term plays a decisive role, which
leads to failure to determine optimal system order. Such
phenomena arise when model coefficients are determined
very accurately by the RLS at the initial computation
stage, thus preventing finding optimal system order. Mean-
while, the CIC also suffers from sufficient information on

initial system order, which is almost inaccessible in ship
motion prediciton.

It follows from the strong consistency of the BIC that
the unique system order can be obtained when the BIC
value reaches minimum. Our model requires the joint
determination of m and n. For every given input order
n ≤ nmax, the BIC value changes convexly. Thus, the
minimum BIC value corresponds to optimal output order
for a given input order, which results in the difficulty of
selecting the desired system order in the global sense. In
our case, selection of the optimal pairs (m∗, n∗) should
include a tradeoff among prediction ability, accumulated
prediction error, and model complexity.

In ship motion estimation problem, our main concern is the
prediction capability. Meanwhile, the accumulated predic-
tion error and identification model complexity should be
considered.

The following three important aspects should be analysed:

1) How can ordered pairs (m,n),m ∈ V1, n ∈ V2 be
determined to maximize the prediction horizon?

2) How to reduce the model complexity to reduce the
computational burden?

3) How can the prediction error accumulated be contained
within the acceptable range?

Regarding the first question, a tradeoff should be achieved
between the seemingly incompatible aspects. When recur-
sive prediction models are considered, prediction capabil-
ity should come first. Our main purpose is to increase
prediction horizon, as large as possble, with acceptable
prediction error. The proposed selection principle begins
with computing the candidate output order series

m∗
i = arg{min(BIC(j, i, T ))}, j = 1, . . . ,mmax for every

i = 1, . . . , nmax, (24)

then it selects the largest output order m∗ in the candidate
output order series

m∗ = max{m∗

i }. (25)

For the m∗, there usually exist several input order
n1, n2, . . . , nr, nr ≤ nmax. One possible method is to select
optimal input order n∗ such that

n∗ = arg{min(
m∗ + nk

m∗
)}, k = 1, 2, . . . , r. (26)

Equation (26) seeks to reduce the model complexity in
consideration of long-term prediction requirement, i.e.,
the model with the smallest system order while achieving
satisfactory prediction ability is obtained.

After optimal system order is determined, we would like
to check the accumulated prediction error. The simulation
results in Section 4 and 5 demonstrate that the accumu-
lated prediction error calculated from our algorithm is
acceptable and indicates that the proposed procedure is
suitable for ship motion estimation.

3. SHIP MOTION PREDICTION ALGORITHM

After the optimal output order m∗, input order n∗ and
corresponding coefficients of the model are calculated from
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the RLS, the efforts will be focused on the prediction of
ship motion dynamics.

Suppose the prediction step is L . Rewrite our model as
follows

[1 − A(q−1)]y(t) = B(q−1)u(t) + e(t), (27)

and notice the following identity (Wittenmark 1974) still
holds in our case

F (q−1)[1 − A(q−1)] + q−LG(q−1) = 1. (28)

Here

F (q−1) =

L−1∑

i=0

fiq
−i, fi =

i−1∑

j=0

fja(m∗,i−j),

f0 = 1, i = 1, . . . , L − 1, (29)

G(q−1) =
m∗

−1∑

i=0

giq
−i, gi =

L−1∑

j=0

fja(m∗,i+L−j),

i = 0, . . . ,m∗ − 1. (30)

It follows from (27)-(30) that (Wittenmark 1974)

y(t+L) = F (q−1)e(t+L)+G(q−1)ξ(t)+G(q−1)ŷ(t|t−L)

+B(q−1)F (q−1)u(t + L), (31)

here ŷ(t|t − L) is the estimated value of y(t) based on the
measured data up to time t − L.

Since

y(t + L) = ξ(t + L) + [1 − A(q−1)]F (q−1)ŷ(t + L|t),
+q−LG(q−1)ŷ(t + L|t). (32)

Combing (31) and (32), we obtain

ξ(t + L) = G(q−1)ξ(t) − [1 − A(q−1)]F (q−1)ŷ(t + L|t)
+B(q−1)F (q−1)u(t + L) + F (q−1)e(t + L). (33)

The prediction error covariance

V = E{ξ(m,n, t)2} (34)

is minimized if the predictor is chosen as

ŷ(t + L|t) = A(q−1)ŷ(t + L|t) +
G(q−1)ξ(t)

F (q−1)

+B(q−1)u(t + L). (35)

In our case, the inputs are assumed to be the measured
data, then (35) can be modified to

ŷ(t + L|t) = A(q−1)ŷ(t + L|t) +
G(q−1)ξ(t)

F (q−1)

+B(q−1)y(t) (36)

If we wish to predict further, (36) can be transformed into
the following formula

ŷ(t + L|t) = A(q−1)ŷ(t + L|t) + B(q−1)y(t) (37)

4. SIMULATION RESULTS

The performance of the proposed predictor is demon-
strated in this section. The ship motion data were gen-
erated from the FREYDYN 8.0 software package for an
8,500-ton LPA class amphibious platform. For maritime
flight operations, aircrafts are prone to jounce on the ship
deck over high sea states when the deck pitches substan-
tially, which necessitates an accurate predictor to assist
in a safe landing trajectory design in case of emergency.
Hence, we focused on the prediction of pitch motion here.
The pitch motion data were sampled at every 0.25s at sea
state 3 which had a typical wave height of 1m.

The data were divided into two segments: the first group
of NT points were used for training and another of NP

points as a test. We chose NT and NP large enough
in the sense that NT points could capture pitch motion
feature and NP could be utilized for testing. We chose
NT = 500, 1000, 1500, 2000 for training, and every time
NP = NT − L points with combination of white noise to
check the prediction results. Numerous simulations were
carried out, and the process of determining system order
is shown in Fig. 2 for NT =1000. The predicted and the true
pitch motion data versus time with NP =980 are plotted
in Fig. 3 (20-step-ahead), and with NP =970 in Fig. 4 (30-
step-ahead). The solid lines correspond to the true motion
data, and the dashed lines are the predicted.

It is seen that the prediction results produced by the
proposed algorithm matches pretty well with the true pitch
motion data, and the lead phase margin is 107.85 degree
in Fig. 3, and 81.34 degree in Fig. 4. With the increase in
prediction points, the prediction error for posterior points
is not necessarily worse than previous ones.

5. COMPARATIVE STUDIES

To test the validity of our method, we compared the
our algorithm with other conventional predictors. A brief
description of those predictors is listed below.

5.1 Order-predefined predictor

This comparison aimed to check the performance of the
proposed order determination method. From the classical
control viewpoint, it is usually preferred to choose a phase-
lead network with small system orders, and here a second-
order predictor was adopted (Matt Garratt et al. 2007)

Y (z)

U(z)
=

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
. (38)

5.2 AutoRegressive model predictor (AR)

Based on the previous measured data, the forecasts of an
AR process with system order p can be obtained (Hamilton
1994) by iterating on

ŷ(t + j|t) = a1ŷ(t + j − 1|t) + · · · + apŷ(t + j − p|t) (39)

for j = 1, . . . , L. The key to prediction is to define the
system order p . To avoid the inconsistency of the AIC,
the BIC is used. Several predictors are required with the
first one producing a one-step-ahead prediction, the second
one producing a two-step-ahead, so on and so forth.
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Fig. 2. Order selection for NT=1000

5.3 Performance comparison among three predictors

In this investigation, we used NT points to obtain system
order, and another group of NP points to check prediction
results. Besides, a zero-mean Gaussian random noise was
added to pitch data in order to represent the sea wave
dynamics. The peak amplitude percentage rate of the
white noise to the measured data is 10%. The mean
squared prediction error Φ was employed to measure the
overall performance:

Φ =
1

NP

T+NP∑

i=T+1

[y(i) − ŷ(i)]2. (40)

The maximum prediction error for NP points was evalu-
ated by

Ψ = max|y(i) − ŷ(i)|, (41)

where y(i) and ŷ(i) were the true and the predicted data.

To check the variations of Φ, we employed the index

20 log10

√
Φ

|ymax|
. As is shown is Fig. 5, the index remains

less than -20dB until 25 steps, i.e., the prediction error
within 10% of the true data can be obtained up to 25 steps
ahead. This is assumed to be acceptable in the considered
application.

Table 1 summarizes the experimental results on the Φ
and Ψ of three predictors, each taking four groups of NP

points and predicting 20 and 40 steps ahead, respectively.
For 20-step-ahead prediction, the proposed algorithm gives
consistently acceptable performance even when NP is
much larger, whereas the order-predefined predictor and
AR predictors produce greater Φ. The order-predefined
predictor and AR predictors suffer from much inaccuracy
when we predict 40 steps. For 40-step-prediction, our
algorithm predicts with acceptable Φ while producing
larger Ψ, which indicates the new method sacrifices Ψ to
compensate for overall performance. Fortunately, there is
a limited number of such points, and general trends of
motion can be captured. Since our algorithm focuses on
prediction capability, it cannot always achieve the smallest
accumulated prediction error. However, the Φ is within a
relatively acceptable range.
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Fig. 3. Pitch motion prediction (20-step-ahead)
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Fig. 4. Pitch motion prediction (30-step-ahead)
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Fig. 5. Accumulated prediction error for different predic-
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6. CONCLUSION

In this paper we concentrate on building an estimation
model for ship motion dynamics. A feasible principle is
addressed to solve the problem of system order selection.
Based on determination of optimal system order and as-
sociated coefficients, a multi-step self-tuning predictor is
employed for prediction. Simulation results demonstrate
that the proposed prediction approach exhibits satisfac-
tory performance. Furthermore, the proposed procedure
facilitates the accurate prediction of ship motion dynamics
for use in ship-helicopter flight operations. Future work
will be aimed at increasing prediction precision when more
prediction steps are expected in high sea states.
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0.1365 

Order-

predefined 

predictor 

2000 (2,3) 0.00214 0.08329 0.0023 0.1460 

500 5 

5.4278 

*E-4 

0.0714 0.0012 0.1432 

1000 7 

1.7516 

*E-4 

0.0645 0.0154 0.1298 

1500 8 

8.3272 

*E-4 

0.0698 

3.0945 

*E-4 

0.1315 

AR

predictor 

2000 6 0.0026 0.0722 0.0021 01456 
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