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Abstract: An Online Kernel Learning based Adaptive Control (OKL-AC) framework for discrete-time 

affine nonlinear systems is presented in this paper. A sparsity strategy is proposed to control the 

complexity of OKL identification model, meanwhile to make a trade-off between the demanded tracking 

precision and the complexity of the control law. The forward increasing and backward decreasing learning 

stages are performed, both incorporating efficient recursive updating algorithms. Owing to these 

advantages, the adaptive control law based on the OKL identification model is easily obtained and can be 

efficiently updated. Numerical simulations show that the proposed simple OKL-AC strategy has 

satisfactory performance, including good tracking performance and fast learning ability, in both 

deterministic and stochastic environments.  

 

1. INTRODUCTION
 
 

Neural networks based adaptive control techniques for 

nonlinear processes have been intensively studied in the last 

decade (Chen and Kahlil, 1995; Hunt et al., 1992). However, 

there are still some drawbacks of neural networks, such as 

weak generalization ability. And there are still no guarantees 

of avoidance of local minima and the “over-fitting” 

phenomenon, meanwhile no general methods to choose the 

number of hidden units for common neural networks. 

Furthermore, a large number of samples should be required 

for training a neural network (Schölkopf and Smola, 2002). 

Recently, support vector machine (SVM), which is a new 

powerful machine learning method based on statistical 

learning theory (SLT) and kernel learning (KL) technique, is 

gaining widespread attention in the field of machine learning, 

and nonlinear process modeling (Schölkopf and Smola, 2002; 

Suykens et al., 2002; Wang et al., 2006). Some SVM model 

based nonlinear control algorithms have been proposed just 

recently (Iplikci, 2006; Xu et al., 2005). However, there are 

some technical difficulties in these new control schemes, e.g., 

most of them are computational expensive. Furthermore, 

most of the SVM model based nonlinear control algorithms 

utilize the offline identification model, and fewer studies 

have focused on online SVM or KL identification methods. 

To our knowledge, the research of online SVM or KL 

identification techniques has little overt conceptual overlap 

with adaptive control. 

A new Online Kernel Learning based Adaptive Control 

(OKL-AC) algorithm for discrete-time affine nonlinear 

systems in this paper. The structure is as follows. The basic 
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framework of OKL-AC is formulated in Section 2. And a 

sparsity approach which can adaptively control the 

complexity for both nonlinear system identification and 

control issues is given in Section 3, following a forward 

increasing for incorporating a new node and a backward 

decreasing for forgetting an old one with quickly online 

updating are detailed discussed. In Section 4, the simulations 

are illustrated to show the performance of the new control 

law. The conclusions are drawn in the final Section. 

 

2. ONLINE KERNEL LEARNING BASED ADAPTIVE 

CONTROL 

A class of single-input-single-output (SISO) nonlinear 

systems can be accurately represented by the following 

discrete model 

         
( ) ( ) ( ) ( )1y k f k g k u k+ = +      x x

        
(1) 

where k is the discrete time, and x(k)=[Y(k), U(k-1)], which 

can be considered as the regressor vector, consists of 

Y(k)=[y(k), …, y(k-ny+1)] and U(k)=[u(k-1), …, u(k-nu+1)]. 

y(k) and u(k) represent the controlled output and the 

manipulated input, respectively, and ny and nu denote the 

process orders. f(·) and g(·) are smooth (i.e., infinitely 

differentiable) nonlinear functions, and g(·) is bounded away 

from zero (Chen and Kahlil, 1995). 

Let yr(k) be the process desired output. Then the control law 

can be obtained as follows 

             
( )

( ) ( )

( )

1
r

y k f k
u k

g k

+ −   =
  

x

x            
(2) 

To implement the above control law, quantitative of f[x(k)] 

and g[x(k)] must be calculated online. It is necessary to 
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estimate them efficiently. As one of the representative 

solutions, neural networks were used to provide them to 

formulate the control law (Chen and Kahlil, 1995). 

However, neural networks are generally not parsimonious 

and hence any adaptive control schemes based on them have 

to deal with the issue of updating a large number of weights. 

On the contrary, a KL identification model can describe the 

nonlinear system well and exhibit good generalization ability, 

especially with few samples (Schölkopf and Smola, 2002).  

The basic idea of SVM and KL framework for function 

approximation is, at first, to project the input vectors into a 

high-dimensional feature space, the so called Reproducing 

Kernel Hilbert Space, by a nonlinear mapping and then to 

perform a linear regression in this feature space. The “kernel 

trick” is adopted to encounter the curse-of-dimensionality 

problem. (Schölkopf and Smola, 2002). 

Thus an OKL method is presented to identify f[x(k)] and 

g[x(k)], meanwhile the control law can be obtained. Based on 

SLT and KL theory, f[x(k)] and g[x(k)] can be formulated by 

KL identification models, respectively 

         ( ) ( ) ( ),m f ff k k kφ=      x w x           (3) 

         ( ) ( ) ( ),m g gg k k kφ=      x w x           (4) 

where the nonlinear operators φf and φf are potentially infinite 

dimensional feature maps; wf(k) and wg(k) are the 

corresponding parameter vectors at time k. Then the 

one-step-ahead prediction of y(k+1) and the control law u(k)  

can be obtained below 

( ) ( ) ( ) ( ) ( ) ( )1 , ,m f f g gy k k k k k u kφ φ+ = +      w x w x (5) 

        
( )

( ) ( ) ( )

( ) ( )

1 ,

,

r f f

g g

y k k k
u k

k k

φ

φ

+ −   
=

  

w x

w x
      (6) 

The error of plant output and the KL model output at time k is 

defined as 

             ( ) ( ) ( )m
e k y k y k= −                 (7) 

Based on the philosophy of SLT and KL methods, the 

following optimization problem, which uses Tihonov 

regularization (Schölkopf and Smola, 2002), is proposed here 

to get the solutions fm[x(k)] and gm[x(k)] in (3) and (4) 

     
( ) ( ) ( )

21

2
J k f gγ  = + Ω + Ω e             (8) 

      
( ) ( ) ( )

( ) ( ) ( ) ( )

s.t. , 1

, 1 1 , 1, ,

f f

g g

y i k i

k i u i e i i k

φ

φ

= −  

+ − − + =  

w x

w x ⋯

 (9) 

where ( ) ( ) ( )1 , ,
T

k e e k=   e ⋯ ; γ>0 is the regularization 

parameter to control the smoothness of the solution and 

( ) ( )f g Ω + Ω   is the regularization term (also referred 

as the penalty term), which is chosen to be convex, e.g., 

( ) ( )( )2 2

2f gk k+w w . Notice that only a single learning 

machine is formulated here, both fm[x(k)] and gm[x(k)] can be 

simultaneously obtained by solving (8). Thus it is more 

simple than neural networks based method, where two neural 

networks have to be designed to get the solutions of fm[x(k)] 

and gm[x(k)], respectively. 

Let us derive the dual problem for solving this optimization 

problem. The Lagrangian for the problem is 

 

( )( ) ( ) ( ) ( )( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

2 22
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 = + +
  

 −   
−  
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=

∑

w w e α e w w

w x
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⋯

(10) 

where ( )i
kα  are Lagrange multipliers. The conditions for 

optimality are given by 
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(11) 

After elimination of the variables wf(k) and wg(k) and e(k), 

one gets the following solution 

           ( ) ( ) ( )kk k kγ + =  Q I α y             (12) 

where R k k

k

×∈I  is the identity matrix, 

( ) ( ) ( )1 , ,
T

kk k kα α=   α ⋯ , ( ) ( ) ( )1 , ,
T

k y y k=   y ⋯ , and 

( ) ( ) ( ) ( ) ( ), ,
1 1

ij f ij g ij
k k k u i u j= + − −Q Κ K . The “kernel 

trick” (Schölkopf and Smola, 2002) applied here is 

 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

,

,

1 , 1

1 , 1 , , 1, ,

f ij f f

g ij g g

k i j

k i j i j k

φ φ

φ φ

= − −

= − − ∀ =

Κ x x

Κ x x ⋯

 (13) 

Then the one-step-ahead estimation of KL identification 

model can be obtained 

  ( ) ( ) ( ) ( ) ( )
1

1
1

k

m i f g

i

y k k k k u kα
γ =

 + = + ∑ k k        (14) 

where ( ) ( )( ) ( )( )1 ,f f fk i kφ φ= −k x x  and 

( ) ( )( ) ( )( )1 ,g g gk i kφ φ= −k x x , i=1, …, k. The control 

law is consequently formulated below 

       
( )

( ) ( ) ( )

( ) ( )
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1

1
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r i f
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i g
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y k k k
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k k

γ α
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=

=

+ −

=
∑

∑

k

k
         (15) 
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In summary, the OKL method based adaptive control 

framework for SISO affine nonlinear system amounts to 

solving a set of linear equations in the high dimensional 

feature space introduced by the kernel transform. However, 

there still exist some adverse factors, as remarked by Wang et 

al. (2006), which make the solving of (12) infeasible. 

1) The length of parameter vectors wf(k) and wg(k), which 

can be considered as the order of the KL identification 

model, are both equal to the number of the identification 

data used. It is similar with least squares SVM 

(LS-SVM) (Suykens et al., 2002). It means that, with 

the identification continuing online, the complexity of 

the model will be increasing steadily. Meanwhile, the 

computation scale of the control law will become larger 

gradually. That is computational impracticable. 

2) The projections of input samples at different time 

instances (e.g., when the system is in steady-state) might 

be linear dependent in the feature space and thus may 

cause the solving of α(k) numerical unstable. 

 

3. COMPLEXITY CONTROL AND RECURSIVE FORMS 

3.1  Sparsity Strategy 

To overcome the embarrassment mentioned above, the OKL 

framework above should be improved. An OKL that can 

adaptively control the complexity is formulated in this 

section for both nonlinear system identification and control 

issues. In this contribution, the samples used in the KL 

identification model are referred to as “nodes”, just as 

proposed by Wang et al. (2006). The main motivation is to 

find as few nodes as possible, which can be utilized to 

identify an exact OKL model meanwhile with good 

generalization ability. That is to obtain a sparse OKL 

identification model. 

There are two main strategies to obtain the sparsity: 

pre-sparsity and post-sparsity. The former is to control the 

complexity of the learning machine and is suitable for online 

learning; and the latter is to increase the speed/efficiency of 

later testing, which is always in batch learning (Wang et al., 

2006). An interesting pre-sparsity strategy for online KL has 

been proposed recently by Wang et al. (2006), which uses a 

so-called “space angle index” to judge whether the mapped 

features are approximately linear independent. In this 

contribution, a simpler sparsity approach is proposed. The 

criterion for adding a new pair of sample [x(k), y(k+1)] to the 

learning machine is as follows: 

        ( ) ( ) ( )1 1 1m tole k y k y k E+ = + − + >       (16) 

where Etol is a predefined small positive value. The basic idea 

of this complexity-controlled strategy for the learning 

machine (that is also the identification model) is of simplicity 

and intuition: 

1) If e(k+1) > Etol holds, which means the approximation 

error between the actual output and prediction of the 

learning machine is significant, the OKL identification 

model is not accurate enough and should be improved, 

so [x(k), y(k+1)] will be introduced as a new node; 

2) Otherwise, if ( )1 tole k E+ ≤  is true, which implies that 

the learning machine is always satisfied and there is not 

necessary to add the node in accordance with the 

well-known “parsimony principle”. 

The criterion for adding a new node proposed here does not 

adopt the colinearity concept as used in Wang et al. (2006). 

This method, however, directly utilizes the prediction error 

e(k+1) as the criterion. Consequently, another advantage of 

this criterion is that it connects itself to the control problem 

close. Generally, if the tracking performance of a control 

target is required more precision, Etol can be set smaller and 

vice versa. This is because the control task is to make the 

difference between the system output y and the reference 

trajectory yr as small as possible. A smaller Etol gets more 

nodes, and a larger one yields a more parsimonious but less 

precise learning machine. Thus, Etol can be easily selected for 

the general identification and control issues. 

This simple sparsity approach makes the complexity of the 

learning machine restrained, further, trades off the tracking 

performance of the controller and the learning machine. From 

a practical point of view, the computational scale is also very 

small. Note that this sparsity belongs to pre-sparsity approach 

(Wang et al., 2006) and is different from the basic idea of 

SVM, where the sparsity is obtained after optimization. 

3.2  Forward Incremental Learning 

Assume at time k the OKL identification model has Nk (at 

least one) nodes due to the sparsity criterion, and then gets 

the following equation 

                
k k k kN N N Nγ + = Q I α y           (17) 

Note that the above equation has related terms similarly 

defined in (12), except that the nodes are different. For 

simplicity, the quantities are defined as 
k k kN N Nγ= +H Q I  

and 
1

k kN N

−=P H , then yields the solution 

                    
k k kN N N=α P y                (18) 

When a new node is added into the OKL model, (17) 

becomes 

             
1

1 11 1

k k k k

k kk k

N N N N

T

N NN N
yv α

+

+ ++ +

     
=     

         

H V α y

V
        (19) 

where ( )
1 1 1, ,k k kN f N g N

γ
+ + +

= +V V V ,  

( ) ( )
1 1 1 1,

, , , ,
k k k k

T

f N N N N N
K K

+ + +

 =
 

V x x x x⋯  and  

( ) ( )
1 1 1 1 1 1 1,

, , , ,
k k k k k k k

T

g N N N N N N N N N
K u u K u u

+ + + + +

 =
 

V x x x x⋯   

are corresponding kernel vectors of the new node, and  

( ) ( ) ( )
1 1 1

1 , 1
k k kN N N

v K u k u k γ
+ + +

 = + +
 

x x  is a scalar. 
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Applying the Sherman-Morrison-Woodbury formual (Golub 

and Van Loan, 1996) to (19) yields the following inverse 

relation between matrices computation of the inverse 
1kN +

P  

and 
kNP  

            
1 1 1 1

0

k

k k k k

N T

N N N NT
z

+ + + +

 
= + 
  

P 0
P r r

0
         (20) 

where 
1 1 1

, 1
k k k

T
T

N N N+ + +
 = − r V P  is a column vector and 

( )
1 1 1 1 1

1
N N N N Nk k k k k

T
z v

+ + + + +

= − V P V  is a scalar. 

The recursive update algorithm of the forward incremental 

learning stage is efficient. Whenever a new node is available, 

the direct computation of the inverse of the matrix 

1kN +
H requires about ( )

1

3

k
O N

+
 operations, whereas the 

recursive update algorithms only need ( )
1

2

k
O N

+
 operations. 

The improvement on computing speed is extremely 

noticeable when the number of nodes Nk+1 becomes large. 

3.3  Backward Decremental Learning 

The aim of backward decremental learning, also referred as 

pruning, is to recursively delete the old information (Suykens 

et al., 2002; Wang et al., 2006). The issue of pruning 

methods in the batch learning of SVM has received a deal of 

attention (Suykens et al., 2002), however with little research 

for online learning. Let the symbol N as the memory length. 

Assume at time k the node growth of the OKL identification 

model is finished and Nk+1 is larger than N. The simplest 

pruning approach is to delete the first node, for it is 

considered as the oldest one and with the least information 

for the learning machine (Wang et al., 2006). However, there 

is no guarantee on the rationality of this intuitional pruning 

approach. 

From the optimality conditions in (11) one can infer that the 

nodes with small Lagrange multiplies also have the small 

error. Similar with the pruning method proposed by Suykens 

et al. (2002), the nodes with small Lagrange multiplies are 

deleted. However, Suykens et al. (2002) removed all the 

support vectors with small coefficients αi (below some 

threshold value) and retrained the learning machine. Thus it 

is not suitable for online learning due to the intensive 

computations. In our approach, only one node is pruned at a 

time, furthermore, a recursive update algorithm is adopted to 

avoid the computation of the matrix inverse
1kN +

P . The 

pruning procedure includes two steps. Once Nk+1 > N holds, 

first find out the smallest Lagrange multiple as follows 

        
1, 1arg min 1, , ,

ki N ki N Nα
+ += ⋯             (21) 

Then, when the l-th node is pruned from the OKL 

identification model, the update rule is formulated as  

    

1

, , , , , ,

1

, 1, 1 , , , , 1

, 1, , 1

, 1, ,

N i j i j l l i l l j

N i j i j l l i l l j k

P P P P P i j l

P P P P P i j l N

−

−

− − +

 ← − ∀ = −


← − ∀ = +

⋯

⋯

  (22) 

where 
,i j

P  and 
, ,N i j

P  stand for the items at the i-th row and 

j-th column of 
1kN +

P  and PN, respectively. If l equals one, 

only the second formulation of (22) is calculated. This 

updated procedure was developed for the incremental SVM 

algorithm (Cauwenberghs and Poggio, 2001). According to 

(22), PN can be efficiently updated from 
1kN +

P  without 

explicitly computing the matrix inverse. 

Consequently, the OKL identification model can be 

efficiently updated, including both forward incremental 

learning and backward pruning. And these recursive 

algorithms avoid the direct computation of the inverse of the 

matrix; owing this feature, the adaptive control law (that is 

OKL-AC) is obtained with small computation scale. 

 

4. SIMULATIONS 

To verify the validity of the proposed OKL-AC algorithm, 

consider an unknown nonlinear discrete-time system 

      
( )

( ) ( )
( ) ( )

( ) ( ) ( )

2 2

1.5 1
1

1 1

0.35sin 1 1.2

y k y k
y k

y k y k

y k y k u k

−
+ =

+ + −

+ + − +  

 (23) 

This problem has been studied with neural networks based 

adaptive control strategy and LS-SVM based adaptive control 

(Chen and Kahlil, 1995; Xu et al., 2005). However, the 

sparseness of LS-SVM is lost, which will result in a 

computational load as mentioned previously. 

The simulation environment is Matlab V7.1 with CPU main 

frequency 2.4GHz and 256M memory. The regressor vector 

is chosen as x(k)=[y(k), y(k-1)], and the Gaussian kernel is 

utilized in all simulations (Schölkopf and Smola, 2002) 

2

1 2 1 2
( , ) exp[ / ]K σ= − −x x x x         (24) 

The simulations are composed of three parts. The first is a 

set-point tracking problem and different initial conditions are 

investigated. The second focuses on a sine wave tracking task 

and different values of Etol are set to demonstrate its effect. 

The last part is to mimic an industrial environment, including 

both noise and disturbance. 

4.1  Set point Tracking 

In the first case, the set-point tracking ability of OKL-AC is 

investigated. There are only three parameters to be predefined, 

where the regularization parameter γ=0.001 and the kernel 

parameter σ2
=100 adopted here are chosen by simulation, and 

Etol=0.1 is in accord with the precision of this control task. 

Note that there is no rigorous parameter selection theory 

aiming for industrial application available. Fortunately, the 

first two parameters both work well in a wide range. 

A simple two steps instruction should be followed to choose 

them. First, a smaller γ is adopted when the system is in a 

relatively deterministic environment with less noise, and vice 

versa. Second, when the system to be identified is extremely 

nonlinear, σ2
 should be set smaller, and vice versa. Thus, the 
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parameters can be tuned easily, and the value provided here is 

just one of many parameter pairs that turn out satisfied results 

and no optimality is guaranteed. 

The initial condition of the system is [y(0), y(-1)]=[-3, -3]. As 

depicted in Fig. 1, the output of the system can track all of the 

different set points quickly, and the stable errors are zero or 

close to zero. Anyhow, the stable error is far less than Etol. 

Another advantage of the proposed OKL-AC strategy also 

shown in Fig. 1 is that only 17 nodes are selected out, about 

8.5% of the total training data. The running time of the whole 

procedure takes 0.391 s. The number of the nodes is likely to 

be increasing when the system is in the transient state or the 

set-point changes. It is important to point out that only these 

key samples are adopted in the OKL identification model, this 

is extraordinary different from the control law proposed by 

Xu et al. (2005), where all of the samples are fed into the 

learning machine, resulting a verbose identification model, a 

complex control law and an overload of computation.  
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Fig. 1. Set point tracking performance of OKL-AC 

Then we want to emphasize that the proposed control law can 

work well when initial conditions of the system are changed. 

Three different initial conditions are investigated: [y(0),  

y(-1)]=[3, 3], [-1.5, -1.5], and [-3, -3]. To show the robustness 

of OKL-AC, the parameters adopted here are the same as the 

former case. Fig. 2 shows the system outputs of the first 50 

time steps as shown in Fig. 1. Obviously, the tracking errors 

are observed to converge quickly, whenever any initial 

condition is used.  

4.2  Sine Wave Tracking 

In this case, a sine wave tracking problem is investigated 

(Chen and Kahlil, 1995; Xu et al., 2005). The initial 

condition in this case is [y(0), y(-1)]=[3, 3]. The parameters 

adopted here are γ=0.001 and σ2
=9. Two scenarios, including 

no pruning and pruning, are both considered. 

In the scenario of no pruning, different values of Etol are set to 

demonstrate the effect of Etol on the proposed control strategy. 

The integral of the absolute set-point tracking error (IAE) is 

used here to quantify the performance characteristic. Several 

performance indices, including IAE, are listed in Tab. 1. It is 

clearly showed that a smaller Etol achieves a better tracking 

performance and more nodes of the identification model, just 

as previously mentioned. Even a relatively large Etol is 

adopted (i.e. 0.5), the tracking precision is accepted to some 

extent. Only 6 nodes (The sparsity ratio is 3%.) are selected 

out, which means an extremely sparse identification model. 
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Fig. 2. Set point tracking with different initial conditions 

Table 1.  Control performance with different Etol (no pruning) 

Etol 0.5 0.2 0.1 0.05 

IAE 34.217 16.007 12.515 10.914 

Time (s) 0.313 0.360 0.422 0.485 

Nodes 6 (3%) 12 (6%) 20 (10%) 34 (17%) 

For a smaller value of Etol, e.g., 0.01, and a sine wave 

tracking task, the nodes selected out here are larger than the 

memory length N (Suppose N=50 in this case.). And in this 

scenario, the pruning stage, also referred as backward 

decremental learning, is performed. The OKL-AC parameters 

adopted here are not changed. Two kinds of pruning 

approaches are investigated, the former is to prune the node 

with the smallest Lagrange multiple, and the latter is to delete 

the first node (Xu et al., 2005). 
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Fig. 3. Sine wave tracking and comparison with different 

pruning approaches 
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Fig. 3 depicts the details of the performance comparison of 

both pruning methods. For clarity, the input signals are not 

shown here and the plotting is only from the pruning stage. 

The IAE of our proposed approach is 8.42 and this procedure 

only takes 0.829 s, but the latter is 10.31 and takes 1.078 s. 

That is because the proposed pruning method is more 

accurate, and there is no need to introduce a new node to the 

OKL identification model at all times. Thus, a conclusion can 

be drawn that the pruning approach proposed here is better, 

with smaller errors and more stable tracking performance. 

Detailed performance indices of the pruning approach are 

provided in Tab. 2. If let memory length N=200, there is 

unnecessary to prune. Compared with no-pruning scenario, 

the pruning strategy proposed here can apparently improve 

the control performance, including both the tracking 

precision and the response time. When EtolÙ0.005, a high 

tracking precision is obtained. And we can see that if Etol=0, 

in despite of N=50 or N=200 in this scenario, the control 

performance becomes a bit worse. It demonstrates that a 

suitable Etol can control the complexity of the identification 

model, and then make the control law more feasible.  

Table 2.  Control performance with Different Etol (pruning) 

Etol 0.02 0.01 0.005 0 

N 50 200 50 200 50 200 50 200 

IAE 8.89 8.98 8.42 8.57 8.33 8.43 8.55 8.69 

Time (s) 0.70 0.78 0.83 0.97 1.12 1.24 1.20 1.77 

Nodes 50 78 50 120 50 152 50 200 

4.3  Reject Noise and Disturbance 

To simulate the industrial environment, the output signal is 

corrupted by independent Gaussian noise with a variance of 

0.1, furthermore, some disturbances are added into the output 

signal when at time k=40, 80, 120, 160, the values being 0.5 

or –0.5 random. The initial condition in this case is [y(0), 

y(-1)]=[3, 3]. The parameters adopted here is γ=1, σ2
=9 and 

Etol=0.5. Compared with the former cases in the deterministic 

environment, γ is set larger here, just as previously analyzed. 

To get rid of the effect caused by noise and disturbance, Etol 

should be also set a relatively larger value. 
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Fig. 4. Noise and disturbance rejection of OKL-AC 

The result is shown in Fig. 4, in which 10 nodes are selected 

out. It clearly demonstrates a very concise identification 

model and control law, and the tracking performance is 

satisfactory under this noise and disturbance environment. 

 

5.  CONCLUSIONS 

Recently the application of SVM and KL methods for 

modelling of nonlinear systems has attracted much interest 

since it allows one to easily obtain nonlinear control 

algorithms just as the considered plant was “linear”. In this 

paper, an OKL framework that can adaptively control its 

complexity is addressed for both nonlinear system 

identification and control issues. Then the proposed OKL-AC 

strategy is applied to control a class of discrete-time affine 

nonlinear systems, with recursively incremental and 

decremental learning algorithms. The OKL identification 

model can describe the nonlinear system well and has good 

generalization ability using small sample set, therefore it is 

unsurprising that OKL based control techniques will be 

extended to general nonlinear systems. 
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