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Abstract: This paper is concerned with stabilizing feedback control for a class of nonholonomic
driftless systems, whose controllability Lie algebra rank condition is satisfied by up to first-
order Lie brackets. We propose a switched feedback law which drives all the initial states to the
origin with bounded control inputs (as opposed unbounded, division-by-zero-type discontinuous
control). The discontinuity of the feedback law takes place on a subspace defined by the
’parallelism’ condition for the base and the fiber vectors in R

3 (or simply q × φ = 0 ). We
also show that the complement of this discontinuity region is homotopic to SO(3) which is also
isomorphic to S

2 × S. The proposed control law is examined by numerical simulations.

1. INTRODUCTION

In the last two decades, control of nonholonomic driftless
systems has been an attractive issue of nonlinear control
theory. This is partially because a lot of important me-
chanical systems with nonintegrable kinematic constraints,
such as non-slip rolling constraints or conservation of angu-
lar momentum, are modeled as driftless systems. Another
reason is that driftless systems cannot be asymptotically
stabilized by any continuous state feedback according to
Brockett’s necessary condition (Brockett [1983]), that mo-
tivates us to pursuit non-standard control tools such as
discontinuous or time-varying (periodic) feedback control.

Among the subclasses of driftless systems, intensive works
have been contributed for chained form systems (Murray
et al. [1994]) and their feedback equivalents (Pomet [1992],
M.Sampei et al. [1995]). By virtue of the fact that their
controllability Lie algebra have particularly simple struc-
ture (constructed by iteration of Lie brackets with a special
vector-field, called generator), there are wide variety of
controllers proposed for this class; in essence, the clue to
stabilization problem has been already established.

On the other hand, this paper focuses on a class of driftless
systems with 3 inputs and 6 states, whose controllability
Lie algebra rank condition is satisfied by up to first-order
Lie brackets. We call them first-order systems according
to (Murray et al. [1994]), though they are also called
differently (Khaneja and Brockett [1999]). Attitude control
of 3-D spacecraft using shape changes (Sreenath [1992])
is known as a typical example of first-order systems.
The author also proposed a new actual example of this
class, called trident snake robot (Ishikawa [2004]), which
is a wheeled planar mobile robot with three snake-like
branches.

First-order systems are never feedback equivalent to con-
ventional chained systems since there is a structural dif-
ference between them. Although the number of studies
is relatively small, there have been several challenges

to feedback control for non-chained structure systems,
such as time-varying feedback control(Khaneja and Brock-
ett [1999]), step-by-step feedback algorithm(Bloch et al.
[2000], Iwatani et al. [2002]);

In this paper, we suggest a simple discontinuous feedback
control law for this class of systems which brings all the
initial states to the origin. We emphasize that this is a
complete static state feedback law, in the sense that (i)
there is no exception of the control law in which the control
input is not assigned; (ii) neither ’step counter’ or ’time
variable’ is used in the control law on the contrary to the
existing method. Moreover, the discontinuity of the control
law is of sliding-mode type switching, so it is bounded and
safer than division-by-zero-type discontinuity (as shown
by Tsuchiya et al. [2002]).

This paper is organized as follows. In section 2, we prepare
basic notations and the system model. The proposed
control law is given in section 3.1 followed by the proofs
to show that all the initial states in the state space are
brought to the origin in finite time. In section 4, we also
discuss geometric interpretation of the control law and its
possible variations. The proposed control law is examined
by numerical simulations in section 5.

2. PRELIMINARIES

For a pair of arbitrary spatial vectors a, b ∈ R
3, × denotes

their cross product defined by

a × b =

[

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

]

(1)

In the rest of paper, we frequently make use of the formula
of scalar triple product:

aT (b × c) = bT (c × a) = cT (a × b) (2)

For a pair of subsets X and Y , X \ Y := {x|x ∈
X, x /∈ Y } denotes the set subtraction. X ∼= Y denotes
homeomorphism.
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For a natural number k, SO(k) denotes the k-dimensional
special orthogonal group and S

k denotes k-dimensional
unit sphere. ‖ · ‖ indicates Euclidean norm.

2.1 First-order systems with 3 inputs

Consider the following driftless nonholonomic system

Σ6
3 :

q̇ =u

φ̇=q × u
(3)

where q ∈ R
3 is called base vector and φ ∈ R

3 is called
fiber vector. The whole state vector is z = (qT , φT )T ∈ R

6.
u ∈ R

3 denotes the control input. Its basic behavior can be
interpreted as follows; the base vector q is directly driven
by the control input u, while φ̇ is given by cross product
of the base vector q and its velocity q̇, i.e., φ̇ is always
perpendicular to the plane including q and q̇. Our purpose
is to find the control input u which brings the state z from
given initial state z(0) to the origin.

If we rewrite the state equation (3) as a vector-field
form ż = g1(z)u1 + g2(z)u2 + g3(z)u3, its controllability
distribution is given by

Ḡ = C∞ span{ g1, g2, g3, [g1, g2], [g1, g3], [g2, g3] } (4)

which has full rank at each point z ∈ R
6. This ensures its

local accessibility according to Chow’s theorem (see e.g.,
Nijmeijer and van der Schaft [1990]). Moreover, Ḡ is said
to be nilpotent of order 2 because all the higher order
Lie brackets (such as [g1, [g1, g2]]) are zero. As mentioned
above, the 3-D spacecraft with shape controls and the
trident snake robot can be modeled as Σ6

3 under nilpotent
approximation(see Hermes [1991], Bellaiche et al. [1992],
Struemper [1998]).

3. SWITCHED FEEDBACK CONTROL LAW

3.1 Construction of Controlled Invariant Manifolds

In this section, we propose a switched feedback law for the
system Σ6

3. Let us begin with defining an important vector

n := φ × q (5)

which vanishes when q and φ are parallel. Next, suppose
a vector p defined by

p := q × n, (6)

which is perpendicular to both n and q, and belongs to
the plane spanned by q and φ (see Fig. 1).

As long as n 6= 0, we observe that (q, p, n) forms an
orthogonal coordinate frame of R

3. For any vector x ∈ R
3,

let x0 denote its normalized vector

x0 :=
x

‖x‖
, if x 6= 0

where ‖ · ‖ indicates Euclidean norm. Note that x0 is
not defined if x = 0, while it is bounded and continuous
otherwise. Let us define q0, φ0, n0 and p0 in this manner.

Now, suppose the following subsets of the state space:

D := {(q, φ) ∈ R
6 |φ × q = 0, φ 6= 0} (7)

φ

q

θ

n
p

Fig. 1. The base, fiber vectors with their normals in R
3

S0 := {0 ∈ R
6} (8)

S1 := {(q, φ) ∈ R
6 |φ = 0} (9)

S2 := {(q, φ) ∈ R
6 | qT φ = 0} ∩ S3 (10)

S3 := R
6 \ D (11)

= {(q, φ) ∈ R
6 | q × φ 6= 0 or φ = 0}

Note that S0 ⊂ S1 ⊂ S2 ⊂ S3. S2 is the subset on which q
and φ are orthogonal to each other, while D is the subset
on which q and φ are parallel. Basic idea of our method is
to make all Si’s invariant under the proposed control law,
and let the trajectory z go through the subsets

D → S3 → S2 → S1 → S0

in sequence.

3.2 Feedback Control Law

We suggest the following feedback control law

u = αq(z) q0 + αp(z)p0 + αn(z)n0 (12)

where αq, αp and αn are bounded scalar-valued functions
chosen as follows:

Case 0: If z ∈ S0:

αq(z) = αp(z) = αn(z) = 0. (13)

Case 1: If z ∈ S1:

αq(z) =−kq (14)

αp(z) = 0 (15)

αn(z) = 0 (16)

Case 2: If z ∈ S2:

αq(z) = kq sgn(max{‖φ‖, ǫ} − ‖q‖) (17)

αp(z) = 0 (18)

αn(z) =−kn (19)

Case 3: If z ∈ S3:

αq(z) = 0 (20)

αp(z) =−kp sgn

(

φT q

φT p0

)

(21)

αn(z) = 0 (22)

Case 4: If z ∈ D:
u = c0 (23)

where c0 ∈ R
3 is any vector satisfying φ×c0 6= 0, ‖c0‖ =

1.

kq, kn, kp and ǫ are positive constant design parameters.
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3.3 Finite-time Reaching to the Origin

Now we are ready to show that the proposed control law
achieves finite-time reaching to the origin for every initial
state.

Lemma 1. S1, S2 and S3 are all invariant under the pro-
posed control law. Moreover, if z(0) belongs to Si+1 \ Si

for some i ∈ {0, 1, 2}, then z(t) will reach Si in finite time.
•

Proof:
Since qT p0 = 0 and qT n0 = 0, we have

d

dt
‖q‖ =

qT q̇

‖q‖

= αq(z)
qT q0

‖q‖

= αq(z) (24)

Similarly, since nT q0 = 0 and nT p0 = 0, we have

d

dt
‖φ‖ =

φT φ̇

‖φ‖

=
φT (q × u)

‖φ‖

=
uT (φ × q)

‖φ‖

= αn(z)
nT

0 n

‖φ‖

= αn(z)‖q‖ sin |θ| (25)

where |θ| > 0 is the angle between q and φ (we do not
care its sign).

d

dt
(φT q) = qT φ̇ + φT q̇

= qT (q × u) + φT u

= φT (αq(z) q0 + αp(z)p0)

= αq(z) (φT q0) + αp(z) (φT p0) (26)

Here we used qT (q × u) = uT (q × q) = 0.

Case 0: It is obvious that S0 is invariant under u = 0
(i.e., the origin is an equilibrium of the closed-loop
system).

Case 1: From (16) and (25),
d

dt
‖φ‖ = 0 is satisfied on S1

since αn(z) = 0. This implies S1 is invariant.
Moreover, since

d

dt
‖q‖ = −kq,

‖q(t)‖ vanishes at t = ‖q(0)‖/kq. Thus z(t) reaches S0

in finite time.
Case 2:

(Proof of invariance) From the definition (10), qT φ =
0 is satisfied on S2. Moreover, the points {q = 0, φ 6= 0}
are excluded from S2 because they belongs to D; i.e.,
either q 6= 0 or φ = 0 is satisfied. This leads us to notice
that

φT q0 =
φT q

‖q‖
= 0

is satisfied on S2. Substituting (17)–(19) into (26), we
have

d

dt
(φT q) = −αq(z) (φT q0) = 0

which concludes S2 is invariant.
(Proof of finite-time reaching) Next, suppose z(0) ∈

S2 \ S1, i.e,

‖q(0)‖ 6= 0, ‖φ(0)‖ 6= 0, φ(0)T q(0) = 0

Let us show that ‖q‖ reaches max{‖φ‖, ǫ} in finite time.
If ‖q(0)‖ < max{‖φ‖, ǫ},

d

dt
‖q‖ = kq

until ‖φ‖ − ‖q‖ = 0. Thus ‖q‖ is increasing, and

‖q(t)‖ = ‖q(0)‖ + kqt.

On the other hand, substituting (19) into (25) and
considering sin |θ| = 1, we have

d

dt
‖φ‖=−kn‖q‖

=−kn(‖q(0)‖ + kqt)

‖φ(t)‖ = ‖φ(0)‖ − kn‖q(0)‖t −
1

2
knkqt

2

So ‖φ(t)‖ − ‖q(t)‖ = 0 is a quadratic equation with
respect to t. It is easy to see that there exists a positive
root, say r1. Therefore ‖q‖ = max{‖φ‖, ǫ} is satisfied
at the time

t = t1, t1 := max

{

r1,
ǫ − ‖q(0)‖

kq

}

It is also true in the case of ‖φ(0)‖ < ‖q(0)‖ by
repeating similar argument.

Once ‖q(t1)‖ = max{‖φ(t1)‖, ǫ} is satisfied, ‖q(t)‖ ≥
ǫ will hold afterward. Thus we obtain

d

dt
‖φ‖ ≤−knǫ

‖φ(t)‖ ≤ ‖φ(t1)‖ − knǫ(t − t1),

so it is clear that ‖φ(t)‖ reaches 0 no later than

t = t2, t2 := t1 +
‖φ(t1)‖

knǫ
,

i.e., z(t) reaches S1 in finite time.
Case 3: In order to prove S3 = R

6 \ D is invariant, it is
sufficient to show that any trajectory starting from S3

will not get close to D. Substituting (20)–(22) into (26),
we have

d

dt
‖q‖= 0,

d

dt
‖φ‖= 0,

d

dt
(φT q) = −kp sgn

(

φT q

φT p0

)

(φT p0)

= −kp |φ
T p0| sgn(φT q)

Therefore both ‖q‖ and ‖φ‖ are kept constant, while

|φT q| is strictly decreasing. This implies | cos θ| is de-
creasing, thus z will not approach D.

Note that z(0) ∈ S3 \ S2 implies ‖q(0)‖ 6= 0 and
‖φ(0)‖ 6= 0. Since

d

dt
(qT φ) = kpq

T
0 φ = −‖φ‖ sgn(qT φ)
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we can see that qT φ vanishes in finite time, i.e., z(t)
reaches S2 in finite time.

2

Lemma 2. No trajectory stays on D. •

Proof:
Since Case 4 of the control law is chosen when z ∈ D,

let us compute the derivative of n under (23).

d

dt
n = q̇ × φ + q × φ̇

=−φ × c0 + q × (q × c0)

=−φ × c0 + κ2φ × (φ × c0)

where we introduced κ ∈ R such that q = κφ because q is
parallel to φ. Considering φ× c0 6= 0 and (φ× c0) ⊥ (φ×

(φ × c0)), we can conclude that
d

dt
n 6= 0 on D. This

implies ż does not belong to the tangent space of D. Every
trajectory starting from D will leave D (thus enter S3), in
infinitesimally short time. 2

The observations above are summarized into the following
theorem.

Theorem 3. Under the proposed control law (12), any
trajectory z(t) starting from R

6 reach the origin in finite
time. •

The proof is omitted because it is direct combination of
Lemma 1 and Lemma 2. Let us close this section with
summarizing the effect of each terms in the control law
(12):

• The term αq(z)q0 contributes to control of ‖q‖.
• The term αn(z)n0 contributes to control of ‖φ‖;

basically this effect corresponds to the principle of
holonomy.

• The term αp(z)p0 is used to change the angle between
φ and q.

4. DISCUSSION

4.1 Underlying topology of the control law

The proposed method can be regarded as a natural exten-
sion of the sliding-mode controller proposed by Bloch and
Drakunov [1996], for Brockett integrator

Σ3
2 :

q̇ =u

φ̇= q2u1 − q1u2

(27)

where q ∈ R
2, φ ∈ R and z := (qT , φ)T ∈ R

3. They
suggested a control law

u = −αq(z) q − αn(z)

[

−q2

q1

]

(28)

which has exception at D := {q = 0, φ 6= 0}; i.e., all
the trajectory starting from R

3 \ D moves towards the
origin {0}. A topological interpretation of the effect of
introducing this D is as follows. If there had been a
continuous state feedback, it would have had non-zero
value on R

3 \ {0}. Now, from the viewpoint of homotopy
equivalence, R

3 \ {0} is homotopic to S
2. Namely, the

support (complement of the kernel) of the control law
would have been homotopic to S

2. On the other hand,

once the set of exception D is introduced, we consider
that the whole state space is restricted to R

3 \ D. Then
the support of the control law becomes (R3 \ D) \ {0},
which is homotopic to SO(2) ∼= S

1. Roughly speaking,
the introduction of D is a topological operation which
remodels S

2 into S
1 (indeed, this is the way to get rid

of Brockett’s necessary condition; see Coron [1990] for
topological generalization of Brockett’s condition).

Let us turn to apply this interpretation to Σ6
3. R

6 \ D is
equal to S3 as we defined in (11), so (R6 \D)\{0} is equal
to S3 \ {0}.

Theorem 4. S3 \ {0} is homotopic to SO(3).

Proof:
To each point z ∈ S3 \{0}, assign the 3×3-matrix defined
by

G(z) := [q,φ,φ × q ] . (29)

Since all the column vectors of G(z) is linearly independent
on S3 \ {0}, we see that det G is sign definite, namely,
G provides one-to-one correspondence between S3 \ {0}
and GL+(3) (the set of 3× 3-matrix whose determinant is
positive, which is clearly homotopic to SO(3)). From this
correspondence, we can conclude that S3\{0} is homotopic
to SO(3). 2

Note that SO(3) is homeomorphic to S
2 ×S

1. If there had
been a continuous state feedback, it would have had non-
zero value on R

6\{0}, which is homotopic to S
5. Therefore,

we can say that the topological effect of introducing D is
to remodel S

5 into SO(3) ≃ S
2×S

1. A rough visualization
of this observation is depicted in Fig. 2. In the case of Σ3

2,
the support of the control law is homotopic to S

1, which
is just a ’circle’. While in the case of Σ6

3, it is S
2 × S

1 – a
circle is assigned to every point of a sphere.

φ

q

Bloch and Drakumov’s method

for      
Proposed method

for      
Σ

3

2 Σ
6

3

q
S

1

S
1

S
2

Fig. 2. Topological image of the proposed control law

4.2 Partial continuation of the control law

The feedback control law proposed in Section 3.1 is dis-
continuous (as a function of state vector z) at each point
of D, as well as on S1, S2 and S3. However, the meaning
of discontinuity is different.

Discontinuity of the control law at the points of D is caused
by the nature of n0 = n/‖n‖. Suppose a point z∗ ∈ D.
Then n0 is not defined at z∗ because n vanishes there,
while

lim
z→z

∗

n0

converges to a constant vector, depending on the direction
in which z approaches to z∗. Thus this discontinuity is of
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signum-type referring to x/|x| = sgnx in scalar case. Let
us say it essential discontinuity.

On the other hand, the discontinuity of αp(z), which is
found in (21) defined on S3, is not essential; it is practically
avoidable, e.g., by simply replacing the signum function by
standard sigmoid function (see Fig.3).

σ(x) =
1 − exp(−kσx)

1 + exp(−kσx)
, kσ > 0 (30)

xx

sgn(x) σ(x)

Fig. 3. Signum and Sigmoid functions

Considering the discontinuity of αq(z) and αn(z) on S1, S2

recalls exactly the same argument discussed by Bloch and
Drakunov [1996], since the behavior of the system Σ6

3

restricted to S2 is essentially the same as that of system
Σ3

2. For example, other choices for αq(z) are possible in
(17), such as

αq(z) = kq sgn(‖φ‖ − ‖q‖), (31)

or αq(z) = kq sgn(ǫ − ‖q‖), (32)

each of which will yield different convergence results (see
the aforementioned literature for detail). In any case,
we should remember that there is a trade-off between
the speed of convergence/reaching and smoothness of the
control input.

5. SIMULATION

Let us examine the proposed method by numerical simu-
lations. Figures (4)–(8) show the simulation results for

z(0) = (q(0), φ(0)) = (−0.05, 0.1,−0.1, 5,−1, 1)T

as initial condition. Note that z(0) belongs to D in this
case because q(0) and φ(0) are parallel. For smoothness
of the numerical computation, the signum functions are
blurred by substituting sigmoid function with kσ = 1.0 ×
103. Other design parameters are chosen as kq = kp =
kn = 1, ǫ = 0.5.

Fig. 4 and 5 show the time history of the state vectors q
and φ, while Fig. 6 shows the corresponding control input
u. At the beginning of the simulation, z instantaneously
exits from D driven by Case 4 of the control law, and
enters S3. Then Case 3 of the control law is chosen, so
that φ and q become orthogonal to each other in finite
time. Both ‖q‖ and ‖φ‖ are kept constant (see Fig.7) while

φT q decreases and ‖n‖ increases (see Fig.8). Right after
z(t) reaches S2 at around t = 0.25, Case 2 of the control
law is chosen in turn. Since the radius ‖q‖ is smaller than
the required level ‖φ‖ at this moment, it increases until
‖q‖ becomes equal to max{‖φ‖, ǫ}; it turns to decrease
after that. Meanwhile, ‖φ‖ decreases monotonically to 0

by virtue of the holonomy term −knn0. z(t) reaches S1 at
around t = 2.8[sec]. Finally, q goes directory to 0 driven
by Case 1 of the control law.

In addition, Fig. 9 shows the corresponding trajectory of
q and φ plotted in R

3, to help the readers’ geometrical
comprehension. We can see that φ goes almost straightly
to the origin, while q leaves a circle-like trajectory (which
is mainly the trace of Case 2).

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.5  1  1.5  2  2.5  3  3.5

t[s]case3 case2 case1

q1
q2
q3

Fig. 4. Time history of q

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

t[s]

φ1
φ2
φ3

Fig. 5. Time history of φ

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

t[s]

u1
u2
u3

Fig. 6. The control input u

6. CONCLUSION

In this paper, we suggested a switched feedback control
law for first-order driftless nonholonomic systems with 3-
inputs. The proposed method guarantees the boundedness
of the control inputs and finite-time reaching to the origin
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Fig. 7. Time history of ‖q‖, ‖φ‖
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Fig. 8. Time history of ‖n‖, φT q
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 1
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0

q1, φ1

q2, φ2

q3, φ3

Fig. 9. Spatial trajectory of q, φ on R
3

for all initial states without exception. Its extension to
non-nilpotent systems without approximation, such as
trident snake robot, will be considered in future works.
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