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Abstract: Shunt active power filters are power electronics devices that are connected in parallel
with nonlinear and reactive loads to compensate these characteristics in order to assure the
quality of service of the electrical distribution network. This work proposes and designs a
controller, based on combined feedforward and feedback actions, the last using repetitive control,
to obtain a good closed-loop performance (power factor close to 1 and, load current harmonics
and reactive power compensation) in spite of the possible frequency variations that may occur
in the electrical network. It is known that these variations clearly affect the performance of the
usual discrete-time implementations of the repetitive based controllers. This work analyzes the
effect of these variations and describes the architecture of the controller, its design, and the
mechanism to compensate the network frequency variations. Some experimental results that
show the good performance of the closed-loop system are also included.

Keywords: Active power filters, current harmonics compensation, reactive power
compensation, repetitive control, digital control implementation

1. INTRODUCTION

Active filters are devices which allow to coexist nonlinear
loads and good energy quality in distribution networks.
A main effort in the design and control of these devices
has been carried out in the past years. One research line
deals with topologies and architectures, see for example
(Akagi [1996], El-Habrouk et al. [2000], Salo and Tuusa
[2005]): several types of topologies have been proposed
including parallel (shunt active filters), serial and hybrid
serial-parallel connections, mixed passive-active devices
and converter based active filters with voltage or current
dc bus. Another important research line is the control of
active filters, where many approaches have been proposed
(Wu and Jou [1996], Choi [2005], Buso et al. [1998],
Mattavelli [2001], Singh et al. [1998]). Most of them are
based on two hierarchical control loops, an inner one in
charge of assuring the desired current and an outer one
in charge of determining the required shape as well as
the appropriate power balance. The current control loop
needs to be fast and precise in order to assure the desired
energy flow quality. In this sense, an approach which has
proved to be specially efficient is repetitive control. This
control technique is based on the Internal Model Principle
(Francis and Wonham [1976]) which allows the design
of a controller capable of rejecting or tracking periodic
signals in steady state (Costa-Castelló et al. [2004], Costa-
Castello et al. [2005]). However, repetitive controllers are
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designed for a predefined frequency 1 and, unfortunately,
when this frequency slightly changes the tracking/rejecting
capabilities decay dramatically.

In order to overcome this problem several approaches, that
can be grouped in two main areas, have been proposed:
to preserve the sampling time (Steinbuch [2002], Cao and
Ledwich [2002]) or to change it adaptively (Liu and Yang
[2004], Manayathara et al. [1996], Hillerström and Sternby
[1994]). For the first approach there are also two main
ideas: improving robustness by using large memory ele-
ments (Steinbuch [2002]) or introducing a fictitious sam-
pler operating at a variable sampling rate and later using a
fixed frequency internal model (Cao and Ledwich [2002]).
These two ideas improve the performance of the system for
small frequency variations but increase the computational
burden. An alternative approach is to adapt the controller
sampling rate according to the disturbance/reference pe-
riod (Hillerström and Sternby [1994], Manayathara et al.
[1996], Liu and Yang [2004]). This allows to preserve the
steady-state performance while maintaining a low compu-
tational cost but, on the other hand, it implies structural
changes in the system behavior which may destabilize the
closed-loop system.

The controller designed in this work uses the traditional
two control loops decomposition. The current controller is
composed by a feedforward action in charge of assuring
very fast transient response and a feedback control law in
charge of assuring closed-loop stability and a very good
harmonic correction performance. The feedback control

1 Once the sampling period is fixed this frequency is structurally
embedded in the control algorithm.
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law is based on the use of a repetitive odd-harmonic
controller (Griñó and Costa-Castelló [2005]). The outer
control law is based on the exact computation of the sinu-
soidal current network amplitude and, in order to improve
robustness, this computation is combined with a feedback
control law with an analytically tuned PI controller. Both
the inner and the outer loop adapt their sampling fre-
quency to the period of the signal being tracked. This
adaptive procedure combined with the introduction of
feedforward paths are the main contributions of this work
and yield very good performance both in transient and in
steady-state behavior and robustness in front of network
frequency variations.

2. PROBLEM FORMULATION

2.1 Physical model of the boost converter

Fig. 1 presents the system architecture. A load is con-
nected to the power source, in parallel an active filter
is applied in order to fulfill the desired behavior, i.e. to
guarantee unity power factor at the network side. A boost
converter with the ac neutral wire connected directly to
the midpoint of the dc bus is used as active filter. The
averaged (at the switching frequency) model of the boost
converter is given by

L
dif
dt

=−rLif − v1d − v2(d − 1) + vn (1)

C1
dv1

dt
=− v1

rC,1
+ ifd (2)

C2
dv2

dt
=− v2

rC,2
+ if (d − 1) (3)

where d is the duty ratio , if is the inductor current and
v1, v2 are the dc capacitor voltages, respectively; vn =
Vn

√
2 sin(ωnt) is the voltage source 2 ; L is the converter

inductor, rL is the inductor parasitic resistance, C1, C2

are the converter capacitors and rC,1, rC,2 are the parasitic
resistances of the capacitors. The control variable, d, takes
its value in the closed real interval [0, 1] and represents
the averaged value of the PWM (pulse-width modulation)
control signal injected to the actual system.

Due to the nature of the voltage source, the load current,
in steady-state, is usually a periodic signal with only
odd-harmonics in its Fourier series expansion, so the
current can be written as il =

∑∞
n=0 an sin(ωn (2n + 1) t)+

bn cos(ωn (2n + 1) t), where an, bn ∈ R are the real Fourier
series coefficients of the load current.

2.2 Control objectives

The active filter goal is to assure that the load is seen as a
resistive one. This goal can be stated as i∗n = I∗d sin(ωnt),
i.e. the source current must have a sinusoidal shape in
phase with the network voltage 3 . Another collateral goal,
necessary for a correct operation of the converter, is to
assure constant average value of the dc bus voltage 4 ,
i.e. < v1 + v2 >∗

0= vd, where vd must fulfill the boost

2 ωn = 2π/Tp rad/s is the network frequency.
3 x∗ represents the steady-state value of signal x(t).
4 < x >0 means the dc value, or mean value, of the signal x(t).
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Fig. 1. Single-phase shunt active filter connected to the
network-load system.

condition (vd > 2
√

2vn). It would be also desirable that
this voltage would be almost equally distributed among
both capacitors (v1 ≈ v2).

2.3 Rewriting the plant equations

It is standard for this kind of systems to linearize the
current dynamics by the partial state feedback α = v1d +
v2(d − 1). Moreover, the change of variables if = if ,
EC = 1

2

(

C1v
2
1 + C2v

2
2

)

, D = C1v1 − C2v2 makes two
more meaningful variables appear. Namely, EC , the energy
stored in the converter capacitors and D, the charge
unbalance between them. Assuming that the two dc bus
capacitors are equal (C = C1 = C2, rC = rC,1 = rC,2) the
system dynamics using the new variables is

L
dif
dt

=−rLif + vn − α (4)

dEc

dt
=− 2Ec

rCC
+ ifα (5)

dD

dt
=− 1

rCC
D + if (6)

It is important to note that (4) and (6) are linear and
decoupled with respect to state variable Ec. The partial
state feedback and the change of variables will be applied
as the lowest level control action on the closed-loop system.

3. CONTROL DESIGN

The controller is designed using a two level approach:
first, an inner current controller which forces the sine wave
shape for the network current and, second, an outer control
loop to fulfill the appropriate active power balance for the
whole system. The output of this loop is the amplitude of
the sinusoidal reference for the current control loop. The
active power balance is achieved if the energy stored in the
active filter capacitors, Ec, is equal to a reference value,
Ed

c .
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Fig. 3. Current control block diagram.

3.1 Current loop controller

Taking benefit from the fact that (4) is linear, a linear
controller is designed to force a sinusoidal shape in in.
This controller consists of two parts, see Fig. 3:

• A feedforward controller which fixes the desired
steady state:

i∗n = I∗d sin (ωnt) (7)

• A feedback controller which compensates uncertain-
ties and assures closed-loop stability.

As previously stated, the current control goal is to assure
that i∗n = I∗d sin(ωnt) = if (t) + il(t), where I∗d is constant
in steady state. From to circuit topology and (4)

din
dt

= −rLin
L

− α

L
+

vn

L
+

dil
dt

+
rLil
L

(8)

In order to force in to the desired value given in (7) it is
necessary that α takes the value

αff = vn +

(

L
d

dt
+ rL

)

il − (rL sin (ωnt) + Lωn cos (ωnt)) Id

= vn + F (il) + M(Id, t, ωn) (9)

thus defining the nominal control action that will keep
the system in the desired trajectory, so it will be used as a
feedforward action. As the system will have a digital imple-

mentation F will be approximated as F (z) = (L+TsrL)z−L
Tsz .

This action will be combined with a feedback controller to
overcome model uncertainties, disturbances and measure-
ment noise.

The dynamics of (4) once transformed to discrete time can
be written as

Gp(z) =
If (z)

α(z)
=

(

1 − e−
rLTs

L

)

1
rl

z − e−
rLTs

L

(10)

As the signal to be tracked and rejected in this system is
an odd-harmonic periodic one, it is convenient to design a
controller which allows to track and to reject this type of
signal. A technique which has been proved to be specially
suitable for this type of signals is repetitive control (Inoue
et al. [1981]) and, in particular, odd-harmonic repetitive
control (Griñó and Costa-Castelló [2005]).

Repetitive controllers are composed by an internal model
which assures steady-state performance and a stabiliz-
ing controller, Gx (z), which assures closed-loop stability.
Traditionally, repetitive controllers are implemented in a
“plug-in” fashion, i.e. the repetitive compensator is used
to augment an existing nominal controller, Gc (z) (Fig.
3). This nominal compensator is designed to stabilize the
plant, Gp (z), and provides disturbance attenuation across
a broad frequency spectrum. The internal model used in
odd-harmonic repetitive control (Griñó and Costa-Castelló

[2005]) has the form −H(z)

z
N
2 +H(z)

, where N =
Tp

Ts
and H(z)

is a low pass filter used to improve system robustness. It
is important to note that N corresponds to the discrete-
time period of the signal to be tracked/rejected and its
value is structurally introduced in the control system. In
this work the values Tp = 1

50 s and N = 400 have been
selected to obtain a good reconstruction of the continuous-
time signals.

The closed-loop system of Fig. 3 is stable if the following
conditions are fulfilled (Griñó and Costa-Castelló [2005]):

(1) The closed loop system without the repetitive con-

troller is stable, i.e. Go (z) =
Gc(z)Gp(z)

1+Gc(z)Gp(z) is stable.

It is advisable to design the controller Gc(z) with a
high enough robustness margin so, in this work, the
lag controller Gc(z) = − 0.6305z−0.629

z−0.9985 which provides
a phase margin of 140o has been used.

(2) ‖ H (z) ‖∞< 1. H(z) is designed to have gain close to
1 in the desired bandwidth and attenuate the gain out
of it. The first order linear-phase FIR filter H(z) = 1

4 ·
z + 1

2 + 1
4 · z−1 has proved to be good enough in this

application.
(3) ‖ 1 − Go (z)Gx (z) ‖∞< 1, where Gx(z) is a de-

sign filter to be chosen. A trivial structure 5 which
is often used is (Tomizuka et al. [1989]): Gx (z) =

kr (Go (z))
−1

. As argued in Hillerström and Lee
[1997], kr must be designed looking for a trade-off
between robustness and transient response. In this
application kr = 0.3 has been selected.

The repetitive controller defines the feedback law

αfb = Gc(z)

(

1 + Gx(z)

( −z−N/2H(z)

1 + z−N/2H(z)

))

(iref − in)

that will be used with the feedforward action given in (9)
thus giving α = αfb + αff . Fig. 3 shows the complete
current control loop that will be used in the system.

Under the combined action of the feedforward and the
feedback control action, the network current can be as-
sumed to be in(t) ≈ Id(t) sin (ωnt) that, from now on, will
be taken as a fact.

5 There is no problem with the improperness of Gx(z) because the
internal model provides the repetitive controller with a high positive
relative degree.
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3.2 Energy shaping (voltage loop) controller

Ts(z+1)
2(z−1)

〈Ec〉TpVn√
2
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c

PI
+

+

+
−

Iff
d

Ifb
d

Id

il
Active

component

extraction

Fig. 4. Simplified 50Hz energy (voltage) control loop.

Following the developments in Costa-Castelló et al. [2007],
the outer controller that assures a mean value 6 of the
energy stored in the capacitors, 〈Ec(t)〉Tp

close to the

desired reference value, Ed
c is made up of two parts (see

Fig. 4):

• A feedforward term which makes Iff
d = a0. This

feedforward term assures the energy balance in the
ideal case (rL = 0 and rC = 0) and takes into account

il characteristics and changes instantaneously. Iff
d

is calculated using an amplitude modulator with a
scaled signal of the source voltage as a carrier and
a mean value extraction. This last operation has

been implemented as the filter P (z) = 1
N

1−z−N

1−z−1

which corresponds to a good approximation of the
corresponding continuous-time mean value extraction
operation.

• A feedback term which is in charge of compensating
dissipative effects and the system uncertainties.

The dynamics of the plant can be modeled by the

discrete-time integrator Ts(z+1)
2(z−1) and the losses in the

inductor and capacitors parasitic resistances can be
considered as an additive disturbance. So, the PI
controller

Ifb
d = ki

Ts (z + 1)

2 (z − 1)
∆E + kp∆E, (11)

where ∆E = Ed
c − 〈Ec (t)〉Tp

, will regulate 〈Ec (t)〉Tp

to the desired value Ed
c without steady-state error.

3.3 Period (Tp) variations

Most control algorithms in the previous section contain the
value N , this parameter corresponds to the discrete-time

period N =
Tp

Ts
of the periodic signals to be tracked or

attenuated. In systems, in which the period of the signal
is kept constant, N and Ts are designed a priori according
to the desired number of samples per period and the
technological constrains over Ts. However, in this case, the
electrical distribution network frequency can suffer from
fluctuations and, then, Tp can not be assumed constant.

If the period Tp varies, the value of N or Ts should be
changed in order to preserve the relationship N = Tp/Ts.
If this is not the case the control algorithm performance
may drastically decay. As an example, Fig. 5 show the
feedback control open-loop gain designed for a nominal
frequency of 50Hz with the gain for 49Hz, 50Hz and 51Hz
(and some of their harmonics) highlighted. Note that while
for the 50Hz signal the gain is important it decays for

6 〈f(t)〉Tp
= 1

Tp

∫ t

t−Tp
f(τ)dτ .
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−1 −0.5 0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 

 

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

Nominal System (50Hz)

Frequency increase(51Hz)

Frequency decrease(49Hz)
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plot (the closed-loop system is stable in all cases).
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Fig. 7. Nyquist plot of 1−Go (z) Gx (z) for different values
of Ts.

the other frequencies. Something similar occurs with the
phase lag of the closed-loop control system. While for the
nominal frequency the phase is almost zero this is not
true for the other frequencies. It is important to emphasize
that, in the particular case of the active filter, this would
imply a reduction of the harmonic rejection capabilities
and the introduction of reactive current in the system.
Clearly, both effects would contribute to the reduction of
the system performance. To overcome this problem in this
work the sample time Ts will be adaptively varied in order
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to satisfy the abovementioned relationship and, therefore,
to maintain N constant.

However, the change of Ts implies changes in the system
dynamics and, particularly in the plant model, Gp (z).
It is important to check that these changes does not
imply a loss of closed-loop stability. This property can
be checked using conditions 1, 2 and 3 in Section 3.1.
Condition 1 is satisfied if the closed-loop system without
the repetitive controller is stable. This condition can be
checked by verifying the stability for each value of Ts.
Fig. 6 shows the Nyquist plot of the open-loop transfer
function 7 Gc (z)Gp (z) for different values of the sampling
rate. It can be seen that the closed-loop system will be
stable for all of them within the interest range. Condition
2 is always fulfilled because it does not depend on Ts. And,
finally, Condition 3 is checked by inspection of Fig. 7 which
shows that all the plots stay within the unitary circle so,
all of them will satisfy ‖1 − Go (z)Gx (z) ‖∞ < 1 which
implies closed-loop stability. As a conclusion, it can be
stated that the closed-loop system will be stable for all
the values of Ts in the interest interval. Besides this, as
the network frequency varies very slowly this type of test
is enough.

4. EXPERIMENTAL SETUP AND RESULTS

4.1 Experimental setup

The experimental setup is composed by a controlled dc-ac
converter, that acts as a variable frequency ac source 8 ,
a full-bridge diode rectifier (nonlinear load) and the pre-
viously described single-phase active filter. Between the
dc-ac converter and the rectifier there is an inductor to
simulate a real ac source with a non negligible output im-
pedance. The active filter is connected in a shunt manner
with the rectifier to compensate its distorted current.

The active filter controller has been implemented on a DSP
based hardware, so all the controller is implemented in
a digital framework, with a nominal sampling frequency
equal to the switching frequency of 20 kHz. The net-
work frequency is obtained from the network voltage zero
crossings through some additional hardware and a digital
lowpass filter that runs in the DSP as shown in Fig. 8.
With this information the sampling frequency is updated
to maintain the ratio N = 400.

Analog Low 
pass Filter

Smith Trigger 
Comparator

reset

75 MHz

32 32

Digital Low 
pass Filter

Frequency
Estimation

Network
Voltage

Zero Crossing Detector

Fig. 8. Network frequency computation.

7 Note that the controller is not affected by the sampling rate.
8 This source emulates a poor frequency controlled grid or a com-
bustion engine generator.

4.2 Experimental results

Fig. 9 shows the waveforms 9 of vn and in when the
nonlinear load is connected to the ac source (inverter
plus inductor). The rectifier current has a total harmonic
distortion 10 (THD) of 65.5% and induces a THD of 5.6%
in vn.

vn

in

Fig. 9. vn and in vs time with the nonlinear load.

As Fig. 10 shows, when the active filter is connected in
parallel with the rectifier the shape of the current at the
source port is nearly sinusoidal with a THD of 2.0% and,
then, the source voltage recovers a non distorted shape
with a THD of 0.2%. It is also worth to remark that the
power factor (PF) and cosφ at the port are unitary.

v1, v2

vn

in

Fig. 10. Nonlinear load and the active filter at a network
frequency of 50 Hz. (top) vn, in and v1, v2 vs time;
(bottom) PF, cosφ and THD for in.

In the next experiment the network frequency of the
system changes from 50 Hz to 52 Hz in a step manner. The
response of vn, in and the semibus voltages v1, v2 is plotted
in Fig. 11 (top) and shows that, after a transient, the
system reaches the steady state. Also, as the information

9 In Fig. 9, Fig. 10 (top) and Fig. 11 (top) the scales are: vn (230
V/div), in (48 A/div) and v1, v2 (74,5 V/div).
10 In this work the THD is calculated with respecto to the rms value
of the signal.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3348



in Fig. 11 (bottom) depicts, when the system is at steady
state at 52 Hz the PF and the cos φ return to unitary
values and the THD for in is 2.1%.

v1, v2

vn
in

Fig. 11. Nonlinear load and the active filter. (top) vn,
in and v1, v2 vs time when the network frequency
changes from 50 Hz to 52 Hz; (bottom) vn, in, PF,
cos φ and THD for in when the system reaches the
steady state at 52 Hz.

5. CONCLUSIONS

This work shows the architecture and some design issues
for an active filter digital controller based on repetitive
control. The controller includes a mechanism to follow
the network frequency variations without losing the ad-
vantages of the repetitive control and maintaining its low
computational cost. The experiments prove that the con-
trolled system has a good performance and that, using the
frequency adaptation mechanism, it is able to cope with
more aggressive frequency changes than the usual ones in
electrical distribution networks.
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