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Abstract: Due to rising customer demands for driving comfort, the integration of controlled
active and semi-active elements in modern vehicle suspension systems has increased considerably.
A significant number of upper class vehicle suspensions is either equipped with continuously
variable dampers or low bandwidth actuators. However, the combination of these suspension
elements is not applied so far. In this paper active quarter car models are used to design time-
invariant LQR controllers for specific road conditions. By optimizing the controller weights and
damping ratio based on a new iterative optimization procedure, the potential of road adaptive
low bandwidth systems with continuously variable dampers is clearly highlighted. It is shown
that ride comfort can be significantly increased while satisfying given constraints for ride safety
(maximum tire deflections) and suspension travel. The achievable performance is compared to
passive and high bandwidth active suspension systems using carpet plots.

Keywords: Active and semi-active vehicle suspensions; Vehicle dynamics; Vehicles control;
Multi-objective optimization; Active vibration control.

1. INTRODUCTION

The requirements regarding suspension systems of modern
automobiles are constantly increasing. On the one hand,
the vehicle should provide an optimum of drive comfort, on
the other hand, the vehicle should be safely driveable all
the time. This safety aspect requires a stiff, well damped
coupling between the vehicle and the road, especially for
non-stationary driving maneuvers, e.g. driving a rough
road or cornering. A simple measure for ride comfort is the
normalized 1 root mean square (rms) chassis acceleration
and the normalized rms tire deflection is a measure for
ride safety. In every driving state, both values should be as
low as possible for optimal performance of the suspension.
However, Figure 1 shows the conflict of objectives occur-
ring for a typical passive suspension (parameters according
to Table 1), Mitschke and Wallentowitz (2004). In this case
the optimal body damping ratio ζb regarding handling is
approximately 0.40. Optimal comfort in contrast can be
achieved with a body damping ratio of about 0.16.

Application of active suspension systems can ease this
conflict between comfort and safety by the integration of
actuators. But the application of high bandwidth actua-
tors in production vehicles still fails due to high energy
demands and costs. Still, in modern upperclass vehicles
active hardware is already included: On the one hand there
are semiactive elements like dampers with continuously
variable damping characteristic (e.g. magnetorheological
dampers) which offer the advantage of low energy de-
mands, Canale et al. (2006). On the other hand active

1 The normalization to the disturbance noise intensity is presented
in detail in Section 4.1.
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Fig. 1. Conflicting objectives for a passive suspension

systems like low bandwidth hydraulic systems actively
damp vertical chassis vibrations up to approx. 5 Hz, Pyper
et al. (2003). However so far, the systems are not combined
in production.

The focus of this paper is the performance analysis of
differently damped, time-invariant, low bandwidth active
suspension (LBAS) systems. Therefore, a new iterative
optimization procedure based on the insights of Sharp and
Hassan (1987) and Hrovat (1997) is utilized. In Section 2
linear high and low bandwidth active suspension models
are presented as well as a stochastic disturbance model for
the road induced vibrations. The LQR controller design is
presented in Section 3. In Section 4 follows the analysis of
the influence of actuator bandwidth and damping for the
LQR-controlled LBAS. The insights gained are used in
Section 5 to analyze potential performance benefits of an
adaptive controller for an LBAS with continuously variable
damper.
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2. ACTIVE SUSPENSION MODELS

If only the vehicle’s vertical dynamic primary degree
of freedom, i.e. the vertical translatory movement, is
considered, the vehicle suspension can be modelled by
the well-known quarter-car model, as described by Wong
(2001), Mitschke and Wallentowitz (2004).
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Fig. 2. a) LBAS model b) HBAS model

2.1 Low bandwidth active suspension

The quarter car model of the LBAS is shown in Figure
2a). The displacement generating actuator acting in series
with the main suspension spring is considered to be ideal,
i.e. the actuator instantly produces the displacements
requested by the signal u. All bandwidth limitations of
the actuator are represented by a second order low pass
filter filtering the desired control input u∗. The low pass
filter’s cut-off frequency ωc and the damping ratio of the
body ζb = db/(2

√
kbmb) are fixed for any particular set

of performance calculations but these are carried out for
a wide range of values for ωc and ζb. The definitions and
values of the parameters used are given in Table 1. With
the ideal actuator assumption u = xb − xs the equations
of motion can be written as

mbẍb =−kb(xb − xw) + kbu − db(ẋb − ẋw), (1)

mwẍw = kb(xb − xw) − kbu + db(ẋb − ẋw) − kt(xw − xg).

Introducing the state vector x and output vector y

x =
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x2

x3

x4




=
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ẋb

ẋw
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]

(2)

the state space representation becomes

ẋ=Ax + bu + gẋg ,
y=Cx + du ,

(3)

where
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These state space equations describe the system dynamics
without the bandwidth limitation. The inputs of the
system are the actual displacement of the actuator u and

Table 1. Notation and parameter values

Model parameter Symbol Value Unit

Quarter car body mass mb 320 [kg]
Wheel assembly mass mw 32 [kg]
Mass ratio ρ = mw

mb
0.10 [−]

Suspension spring stiffness kb 13000 [N/m]
Tire stiffness kt 127000 [N/m]

Body damping ratio ζb =
db

2
√

kbmb

varying [−]

Low pass filter damping
ratio ζf

1
√

2
≈ 0.707 [−]

Undamped uncoupled nat-
ural frequency of the body ωb =

√
kb

mb
6.37 [rad/s]

Uncoupled natural
frequency of the tire ωt =

√
kt

mw
63.0 [rad/s]

Low pass filter cut-off
frequency ωc varying [rad/s]

the state disturbance ẋg, which is the vertical ground
velocity. The outputs of the system are the vertical body
acceleration y1, the suspension deflection y2, and the tire
deflection y3. The low pass filter is described by

ü + 2ζfωcu̇ + ω2
cu = ω2

cu∗, (4)

where the cut-off frequency ωc incorporates the bandwidth
of the actuator. By augmenting (3) with the additional
states u and u̇ from (4) a sixth order state space repre-
sentation can be derived, that describes the whole system
shown in Figure 2a), including the filter. The new control
input to the system becomes the desired actuator deflec-
tion u∗.

2.2 High bandwidth active suspension

Figure 2b) shows a high bandwidth active suspension
(HBAS) with a force generating actuator mounted in
parallel to the spring and the damper. In the following
description no bandlimit is considered for the HBAS such
that it can be treated as a performance benchmark for the
LBAS in the analysis in Sections 4 and 5.

With uhb being the actuator force, the equations of motion
can be derived as
mbẍb =−kb(xb − xw) − db(ẋb − ẋw) − uhb , (5)

mwẍw = kb(xb − xw) + db(ẋb − ẋw) − kt(xw − xg) + uhb .

By introducing the same states as in (2) one can transfer
(5) into a state space representation, where the matrix A
and the vector g are identical to those of (3). Between the
vector bhb of the HBAS model and the vector b of the
LBAS model exists the relationship

b =
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b
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b

ρ








=











0
0
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−
kb

mb

mw

mb











= −kb










0
0

− 1

mb
1

mw










= −kbbhb . (6)

Thus, if all model parameters are chosen identically the
HBAS and the LBAS without the low pass filter behave
equivalently if

−kbu = uhb, ∀t ≥ t0 (7)

holds. That means that despite of the different mechanical
structure, both systems offer the same performance and
taking the bandlimit into account the performance of the
LBAS tends towards the performance of the HBAS, when
the filter cut-off frequency is increasing.
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2.3 Disturbance model

The suspension system is disturbed by random road in-
duced vibrations. The state disturbance is therefore mod-
eled appropriately by a stationary random process. As
Hrovat (1997) states, a frequently used approximation of
a road displacement power spectral density is given by

Sxg
(ω) =

1

v
A

(ω

v

)n

, (8)

where A is a constant roughness factor in [m], ω is the
angular frequency in [rad/s] and v is the constant vehicle
velocity in [m/s]. For the parameter n we assume a value of
−2. This implies the commonly used assumption of white
noise for the vertical ground velocity and hence a constant
power spectrum Sẋg

= ω2 · Sxg
= Av depending on road

conditions and driving speed.

3. SUSPENSION CONTROLLER DESIGN

Since the focus of the paper is the determination of the
potential of LBASs with variable damping rather than
sophisticated controller design, a linear control structure is
used that provides good insight in the closed loop system
behavior. The white noise assumption for the disturbance
signal ẋg meets the requirements for the application of
linear stochastic control theory as it is presented for
instance in Kwakernaak and Sivan (1972).

The controller is designed for the fourth order system (3)
using linear quadratic regulator (LQR) design techniques.
Thus, it is assumed that all states can be measured. This
can be complicated in reality, especially for tire deflection.

The quadratic performance index is

J = lim
t→∞

E[r1y
2
1 + r2y

2
2 + r3y

2
3 ], (9)

where E denotes the expectation value. It contains the
three important performance criteria: Body acceleration
y1, suspension deflection y2, and tire deflection y3. While
the weight for the body acceleration is fixed at r1 = 1,
the weights r2 and r3 are varied to influence the optimal
tradeoff between ride comfort, suspension travel, and ride
safety. The resulting control law is state feedback of the
form

u∗ = −kT x. (10)
It is important to notice that in (10) the computed
feedback is applied to the augmented LBAS model in-
cluding the filter. The reason for not directly designing
the controller for the augmented sixth order system is
the structure of the performance index for LQR control,
which requires an explicit weight of the control input to
be positive definite. The fourth order system fulfills this
requirement, since there exists a direct feedthrough from
u to y1. The augmented sixth order system in contrast does
not contain such a term. Hence, an explicit weighting of u∗

would be necessary to obtain a valid performance index J .
However, explicit weighting of the control input would be
ineffective because no frequency dependent weight can be
introduced in the LQR-controller design framework. But
penalizing u∗ over the whole frequency range would lead
either to inactive controllers for high weights or the effect
of the low pass filter would get lost for low weights.

For the determination of the feedback gain kT we first
rewrite the performance index (9) as

J = lim
t→∞

E
[

yT diag(1, r2, r3)
︸ ︷︷ ︸

R̃

y
]

= lim
t→∞

E
[

xT CT R̃C
︸ ︷︷ ︸

R1

x + udT R̃d
︸ ︷︷ ︸

R2

u + xT CT R̃d
︸ ︷︷ ︸

R3

u

+ udT R̃C
︸ ︷︷ ︸

RT
3

x
]

. (11)

With (11) the controller gain vector is derived as

kT = R−1
2

(
bT P + RT

3

)
(12)

with P being the symmetric, positive definite solution of
the extended algebraic Riccati equation

0 = AT P+PA−(Pb + R3) R−1
2 (Pb + R3)

T
+R1 . (13)

4. SYSTEM ANALYSIS

The influences of bandwidth and damping on the per-
formance of an LBAS are analyzed in a similar way as
presented in Sharp and Hassan (1987). The results are then
used in Section 5 to evaluate the potential of LBASs with
variable damper using an iterative optimization procedure.

4.1 Normalization

In order to ensure comparability of the systems perfor-
mance independent of the road excitation, normalized rms
values σ̃ of the outputs y are used. Therefore the rms
values σ are divided by the square root of the white noise
intensity Vẋg

= 2πAv. For instance the normalized rms
value of the body acceleration is

σ̃y1
=

σy1√
2πAv

. (14)

4.2 Benchmark systems

Three suspension systems are performance benchmarks
for the LBAS with variable damping: The two HBAS
designs H and H1, and a typical passive suspension
system P . System H was designed to be optimal in terms
of ride comfort, while not exceeding the working space
requirements or the tire deflection of P . Design H1 was
synthesized as a minimal body acceleration suspension
system adapted to operating conditions characterized by
A = 4.9 · 10−6 m and v = 25m/s. Table 2 summarizes the
properties of all benchmark systems.

Table 2. Benchmark systems

Design ζb σ̃y1
σ̃y2

σ̃y3
r1 r2

H 0.30 26.50 s−3/2 0.36 s1/2 0.13 s1/2 1162 53509

H1 0.30 11.70 s−3/2 0.59 s1/2 0.28 s1/2 96 1531

P 0.30 31.56 s−3/2 0.38 s1/2 0.13 s1/2 – –
Parameters of all designs according to Table 1

4.3 Influence of bandwidth

To study the influence of bandwidth the controller weights
of design H are applied to the LBAS. Thus, the perfor-
mance of both systems can be compared. The actuator
bandwidth fc = ωc/2π is varied from 0.1 Hz − 40 Hz and
five different values of body damping ratio ζb are assumed.
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For the disturbance (8), Figure 3 shows the normalized rms
values of all outputs. The graphs start at the values of the
associated passive systems and asymptotically reach the
performance of the HBAS system H.

Figure 3a) shows remarkably low normalized rms body
accelerations obtained with fc ≈ 3Hz for lightly damped
systems. In terms of suspension deflection (Figure 3b))
this bandwidth shows very good performance especially for
systems with low and medium damping. The ride safety
performance is shown in Figure 3c). With fc ≥ 15 Hz,
normalized rms tire deflections can be obtained that nearly
achieve the same performance as the HBAS benchmark
system H except for very strongly damped suspensions. A
cut-off frequency of fc ≈ 25 Hz is roughly the limit, where
an LBAS almost matches the performance of the HBAS,
particularly if the damping is adjustable.
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Fig. 3. LBAS performance depending on fc a) Body accel-
eration b) Suspension deflection c) Tire deflection

4.4 Influence of damping

The graphs of Figure 3 clearly show, that damping has
a wide influence on the performance, especially for low
filter cut-off frequencies. Therefore, the right choice of the
damping ratio is essential for the design of an LBAS. In
many cases adapting the damping ratio has more effect on
the outputs than changing the weights of the LQR-control.

This is illustrated in Figure 4 for an LBAS with a filter
cut-off frequency of 3 Hz. The two graphs belong to two
different sets of weights r2 and r3 applied to the bandlim-
ited system. These weights were originally computed for
designs H and H1.

Though the weights differ heavily, the influence on the
normalized rms values is only marginal, for a wide range
of damping ratios. Only for very low damping ratios, the

influence of the controller weights becomes more signifi-
cant.
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Fig. 4. LBAS performance depending on ζb a) Body accel-
eration b) Suspension deflection c) Tire deflection

5. EVALUATION OF ACHIEVABLE PERFORMANCE

The results of Section 4 are now combined in an iterative
optimization of controller weights and damping for specific
road conditions in order to point out the potential of
LBASs with continuously variable dampers. The adapta-
tion of the damper assists to increase suspension and tire
deflection within tolerable bounds for the benefit of lower
body acceleration.

5.1 Carpet plots

To find the optimal configuration for each operating condi-
tion, carpet plots, originally introduced by Hrovat (1987–
1988), together with damping plots like those of Figure
4 are used in an iterative optimization procedure. Carpet
plots show the normalized rms body acceleration versus
the normalized rms suspension deflection and the tire
deflection, respectively. In order to analyze the influence
of the weights systematically, one of the two weights, r2 or
r3, is fixed at a constant value and the other one is varied
over a wide range. The resulting weighting net assigns a
point in the carpet plot representing a specific suspension
performance to a certain pair of weights. Figure 5 shows
the carpet plots in their original form, as they are obtained
for the HBAS model shown in Figure 2b). The boundary
of the weighting nets formed by the curves for r2 = 10−3

and r3 = 10−2 encloses the area of potential suspension
performance achievable by varying the controller weights.

Because of the equivalence of LBASs without the low pass
filter and HBASs derived in Section 2.2 very similar carpet
plots are obtained for LBASs with very high filter cut-
off frequencies. For decreasing actuator bandwidths the
lower parts of the weighting nets in Figure 5 begin to ”fold
upwards” and parts of the weighting nets tend to infinity.

These instabilities occur because the control law is applied
to the LBAS model including the low pass filter while it
was designed for the model without the filter. Figure 6
shows the carpet plots for an LBAS with a filter cut-off
frequency of 3 Hz and a body damping ratio of ζb = 0.30.
As a result of the ”folding” the boundary of the area
representing the potential suspension performances is now
formed by multiple curves, not necessarily being those
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Fig. 5. Carpet Plots for an HBAS.

mapped in the plot. Nevertheless, the maximum area en-
closed by all mapped curves remains a good approximation
for the achievable performance.

One can use the carpet plots to specify a target perfor-
mance within the achievable area with respect to one of
the constraints, maximum acceptable normalized rms tire
deflection or suspension deflection. Then an optimization
process can be started, varying r2 and r3 until the specified
performance is achieved within a predefined tolerance.
Since it is only possible to specify a target performance
in one of the plots it is subsequently necessary to verify
that the other constraint is not violated.

5.2 Operating condition dependent constraints

The maximum tolerable values y2,max and y3,max are often
transformed into rms constraints by the 3σ-rule

σy,max =
ymax

3
. (15)

Assuming that y is a normally distributed random variable
this assures that y remains within ±ymax for 99.7% of
the time, if the rms value σy,max is not exceeded (see e.g.
Wirsching et al. (1995)). In order to obtain the normalized
rms constraints, see Section 4.1.

5.3 Optimization of controller weights and damping

The challenge is to find a setting for damping ratio and
controller weights that minimizes the normalized rms body
acceleration σ̃y1

without violating σ̃y2,max and σ̃y3,max.
This optimization usually is an iterative procedure, be-
cause changing the damping ratio results in modified car-
pet plots and changing the controller weights results in
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Fig. 6. Carpet Plots for an LBAS (fc = 3Hz, ζb = 0.30)

new damping plots. Thus, the damping and the controller
weights are alternately optimized until no further enhance-
ment can be obtained. This approach ensures performance
improvement in each iteration step and is illustrated by an
example.

A vehicle with parameters as in Table 1 is equipped with
an LBAS (fc = 3 Hz) and a variable damper. The vehicle
speed is v = 25m/s and the road roughness coefficient
equals A = 4.9 ·10−6 m. The maximum acceptable suspen-
sion travel is y2,max = ±0.08 m and the tire deflection is
limited to y3,max = ±0.023 m to ensure safety. Using the
3σ-rule (15) and (14), these constraints are normalized to
σ̃y2,max = 0.961 s1/2 and σ̃y3,max = 0.276 s1/2.

The iterative optimization of controller weights and damp-
ing ratio for this driving condition is shown in Table 3. As
an initial setting, denoted by I, the controller weights of
benchmark system H and a damping ratio of ζb = 0.30
are chosen. This design represents an ”allround” setting,
typical for an LBAS with fixed damping, since it offers
lower body acceleration than the passive system P at
comparable levels of suspension and tire deflection. With
variable damping better adaptation to the driving con-
ditions mentioned is possible. Thus, in the first iteration
step the damping ratio can be lowered to the acceleration
minimum (ζb = 0.085) according to Figure 4. Without
violating the constraints this results in design L1,a.

The carpet plots for this setup (see Figure 7) clearly
show that it is possible to further improve ride comfort
by adapting the controller weights. Since all acceleration
optimal controller weights result in the same tire deflection
(see Figure 7a)), the target performance for iteration

Table 3. Optimization example

I
DA1
−→ L1,a

CA1
−→ L1,b

DA2
−→ L1

LQR-weights r2 1162 1162 0.0016 0.0016
r3 53509 53509 241 241

Damping ratio ζb 0.15 0.085 0.085 0.048

Performance
objectives

σ̃y1
29.62 23.29 19.09 18.04

[
s−3/2

]

σ̃y2
0.31 0.37 0.44 0.48

[
s1/2

]

σ̃y3
0.13 0.22 0.19 0.25

[
s1/2

]

Comfort gain
vs. initial (I) 0% 21.37% 35.55% 39.10%

Comfort gain
vs. passive (P ) 6.15% 26.21% 39.51% 42.85%
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step CA1 is specified in Figure 7b) to assure that the
constraint for the suspension deflection is not violated.
The target performance is set to σ̃∗

y1
= 19.09 s−3/2 and

σ̃∗

y2
= 0.444 s1/2. To reach this performance within a

tolerance radius of ǫ = 2 · 10−4 in the logarithmical plot
the weights are calculated as shown in Table 3. The new
intermediate design is denoted by L1,b. In order to further
improve performance by adapting the damping in the
next iteration step (DA2) the damping plots in Figure 8
are used. The acceleration optimal damping ratio, being
ζb = 0.048, can be chosen and the new design denoted by
L1 results. As the new modified carpet plots in Figure 9
show, no further improvement is possible and hence L1

is the final design. This iterative adaptation leads to a
reduction of normalized rms body acceleration of more
than 39% compared to the ”allround” LBAS I and more
than 42% with respect to the passive suspension P .
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Fig. 7. Carpet Plots for an LBAS (fc = 3 Hz, ζb = 0.085)
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Fig. 9. Carpet Plots for an LBAS (fc = 3 Hz, ζb = 0.048)

For comparison the performance of all benchmark systems
is also marked in the carpet plots. One can see that the
HBAS H1 can fully exploit one of the normalized rms
constraints for the benefit of lower body accelerations. In
contrast, a limit exists for the LBAS where increasing
the suspension or tire deflection does no longer imply
lower body accelerations (see Figure 9). To achieve similar
performance as H1 with an LBAS including a continuously
variable damper a bandwidth of at least 25 Hz is required.
Considering the lower hardware complexity, costs and
energy demands of an LBAS with a variable damper, the
achievable performance in ride comfort is significant.

6. CONCLUSION

It has been shown that the performance of low band-
width active suspension systems with variable damper can
be optimized by adapting the controller tuning and the
damping ratio to the current road excitation. Thereby,
safety emphasizing settings improving the performance
of passive systems as well as comfort oriented settings,
located in performance regions otherwise only accessible
to high bandwidth active suspensions, can be offered.
First, the influence of actuator bandwidth and damping
ratio on the conflicting objectives ride comfort, safety,
and suspension travel was analyzed utilizing an LQR-
controller for the actuator. Using this results, an iterative
optimization procedure for controller weights and damping
coefficient has been performed to minimize the normalized
rms-value of vertical chassis acceleration while satisfying
given constraints on suspension travel and tire deflections.

In an example, a comfort gain of approx. 42% compared to
the passive suspension is reached. The availability of the
hardware already provides feasibility of the concept. The
synthesis of an adaptive suspension controller is current
work of the authors. Further performance improvements
will be achieved by considering the bandwidth limitations
of the LBAS and the frequency dependent human sensitiv-
ity to vibrations in the controller design. The simulations
will be verified using a quarter-vehicle test rig.
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