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Abstract: Model Predictive Control (MPC) is increasingly being proposed for application to miniaturized 
devices, fast and/or embedded systems. A major obstacle to this is its computation time requirement. 
Continuing our previous studies of implementing constrained MPC on Field Programmable Gate Arrays 
(FPGA), this paper begins to exploit the possibilities of parallel computation, with the aim of speeding up 
the MPC implementation. Simulation studies on a realistic example show that it is possible to implement 
constrained MPC on an FPGA chip with a 25MHz clock and achieve MPC implementation rates 
comparable to those achievable on a Pentium 3.0 GHz PC. 
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1. INTRODUCTION 

Model Predictive Control (MPC) has become an established 
control technology owing to its capability of solving 
problems with physical constraints. Its applications were 
originally in the petrochemical industry, but its use has now 
been proposed for a variety of industries, including high 
bandwidth applications, such as ships (Perez et al., 2000), 
aerospace (Richards et al., 2003), road vehicles (Morari et 
al., 2003) and also in micro scale devices (Bleris et al., 
2005).  

Basic MPC solves a quadratic programming (QP) or a linear 
programming (LP) problem. Its successful application 
depends on the ability to generate a feasible solution within 
one sampling period. One approach to achieving MPC for 
high speed embedded applications which are constrained by 
computational time is through hardware acceleration of the 
MPC implementation.  

Reconfigurable hardware such as Field Programmable Gate 
Array (FPGA) is a promising platform for deploying 
embedded MPC solutions to applications which require 
flexibility and short design cycle. The encapsulation of the 
constrained MPC algorithms as suitable modules for 
embedded control has been investigated in (Ling et al., 
2006), where a Handel-C implementation of an MPC 
algorithm was described and realized on a modest Xilinx 
Spartan 3L(XC3S1500L-4-fg320) FPGA. The computation 
carried out in that FPGA design was sequential without 
exploiting the parallel computing capability of an FPGA. 
This paper focuses on improving on our earlier work by 
exploiting the opportunities for parallel computation. 

The paper is organized as follows: A review of the 
constrained MPC formulation and the Interior Point 
algorithm for solving the resulting Quadratic Programming 

(QP) problem is presented in Section 2. The prototyping 
environment for this study, as well as an illustration of how 
the Handel-C language could be used to explore 
opportunities for parallel computations of the MPC 
algorithm through better use of the available FPGA 
resources, is briefly described in Section 3. The speed up 
improvement of the new implementation is verified through 
an aircraft simulation example in Section 4. 

2. REVIEW OF CONSTRAINED MPC AND THE 
INTERIOR POINT METHOD 

2.1 Review of Constrained MPC 

Constrained MPC can be formulated as a QP problem. For 
simplicity, given a single input single output discrete linear 
time-invariant plant in the state space form,  
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where ),(),( kuky and ( )x k  are the system output, input 
and internal states respectively. The constrained MPC 
problem is to minimize the cost function,  
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subject to linear inequality constraints on the system 
outputs, inputs and states. Here, ω is the set-point; PN  and 

uN  are the prediction and control horizons respectively. 

We follow the standard approach (eg Rao et al. 1998, 
Maciejowski 2002) of eliminating the equality constraints 
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of (1), replacing the predicted system output )( jky +  as 
follows: 

zkxy ux Ψ+Ψ= )(                                                         (2) 
with 

[ ]T
PNkykykyy )(...)2()1( +++= , 

[ ] ,)1(...)1()( T
uNkukukuz −+Δ+ΔΔ=  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Ψ

PN

x

CA

CA
CA

2

, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Ψ

−−− BCABCABCA

CBCAB
CB

uPPP NNNN

u

21

0
00

 

The constrained MPC problem reduces to a QP problem 
where the cost function 

zcQzz
2
1 TT + = φ

                                                          (3) 
is minimised subject to inequality constraints 

gJz ≤                                                                               (4) 

Here, Q is a symmetric Nu × Nu matrix and J is mc × Nu in 
size, where mc is the total number of inequality constraints. 
The infeasible Interior Point (IP) method (Rao et al, 1997) 
was adopted for solving the QP problem and implemented 
in a FPGA. The IP method can be derived from the well-
known Karush-Kuhn-Tucker (or KKT) conditions, which 
are necessary and sufficient conditions for characterising the 
global optimum, providing that Q ≥ 0: 

-c,JQz T =+ λ                                                               (5) 

,gtJz − = −−                                                                (6) 

.0t,0t,0 T =≥≥ λλ                                                     (7) 

Equations (5) and (6) are called feasibility conditions while 
(7) is called the complementarity condition. 

The infeasible interior point method perturbs the 
complementarity condition in (7) with the following scalar 

( ) /T
k k k ct mμ λ=                                                           (8) 

where k is the iteration counter and cm  is the number of 
inequality constraints in (4). As the iteration proceeds, the 
infeasibility and kμ  are gradually reduced to zero. 

2.2 The Interior Point Method 

According to the infeasible interior point framework 
introduced by (Wright, 1997), the QP can be solved 
iteratively as follows:  

Step 1: Choose an initial condition (z0,λ0
 ,t0

 ) with  (λ0,t0)>0. 

Step 2: At the k-th iteration, solve for the increments 

( Δzk, Δλk, Δtk) with  
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In addition, 
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Step 3: Increment the variables according to: 

1 1 1( , , ) ( , , ) ( , , )k k k k k k k k k kz t z t z tλ λ α λ+ + + = + Δ Δ Δ  (13) 

for some αk ∈ (0, 1], subject to (λk+1, tk+1) > 0.  

Step 4: Judge the convergence. If the iterations have 
converged, stop the iterations; the optimal control sequence 
is obtained as 1+kz . Otherwise, go back to Step 2 with 

( 1+kz , 1+kλ , 1+kt ) and continue iterating.           

It is clear that Step 2 of the interior point algorithm is where 
most of the computation occurs and hence optimizing the 
computational efficiency of step 2 should be the most 
fruitful. In most embedded MPC application, the number of 
constraints cm  is usually much larger than the number of 

variables uN  – note that the same constraint at different 
points in the prediction horizon appears as several 
constraints in (4). In this case, it can be computationally 
advantageous to solve (9) in two stages as follows:  
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Note that kΓ  is a diagonal matrix. 

Using (14), (10) can also be written as  

( )k k k kt t g J z zΔ = − + − + Δ                                      (15) 
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3. PROTOTYPING ENVIRONMENT FOR MPC-ON-A 
CHIP 

The rapid prototyping environment for optimization of 
the “MPC on a Chip” design is shown in Fig. 1. The plant 
simulation is implemented in MATLAB while MPC is 
implemented either in MATLAB or on a FPGA prototyping 
board. This prototype environment provides flexibility and 
allows convenience in experimentation and verification of 
the various FPGA implementations of the MPC algorithm. 

 

 
Fig. 1 Prototyping of MPC on a Chip 

 
The tools used in this study include a RC203 FPGA board, 
the DK Design Suite from Celoxica and Matlab/Simulink 
software from The Mathworks. 

The RC203 is a platform for evaluation and development of 
FPGA-based applications. The platform include a Xilinx 
Virtex-II FPGA, external memory, programmable clocks, 
Ethernet, Audio, Parallel port, RS-232 etc. The FPGA used 
in this study is XC2V3000, which has three million logic 
gates. The XC2V3000 has 96 multiplier blocks, 96 block of 
18K on-chip RAM and a maximum 720 I/O pads. 

For hardware implementation on an FPGA, the constrained 
MPC algorithm is coded in Handel-C which is a C-like 
language for digital logic design. Programming in Handel-C 
allows one to focus on algorithm design without worrying 
about how the underlying computation engine works. As an 
illustration, Fig.4(a) and Fig.4(b) show, respectively, 
fragments of the Handel-C code for the sequential and 
parallel implementation of the computation of 

dcbae ×+×= , where dcba ,,,  are scalar single 
precision floating-point variables. Implementing the 
computation sequentially, as illustrated in Fig. 4(a), the 
computation would require 9 clock cycles, since in our 
implementation, one floating-point multiplication and 
addition would require 3 clock cycles each to complete. 

The opportunity for parallelism depends very much on the 
data dependency of the computation tasks. Variables that do 
not have any data dependency could be computed 
simultaneously provided additional hardware resources are 
available.  As illustrated in Fig. 4(b), if an additional copy 
of the floating point multiplier hardware is created on a 
FPGA, then the multiplications can be performed in parallel 
and the clock cycles needed are reduced to 6. During the 
time when the multiplications are carried out, the adder 
hardware is left idle and can be deployed for other 
computational tasks (not shown here). In our current 
implementation, we achieved a degree of parallelism by ad 
hoc programming. In particular, the execution of some FOR 
loops were combined and parallelised when solving (14). 

The Handel-C implementation of the MPC algorithm was 
compiled into a bitstream file which was then downloaded 
to the RC203 board to configure the FPGA chip to perform 
the constrained MPC calculations. The data exchange 
between the PC which runs MATLAB and the FPGA board 
which carries out the MPC calculations was achieved via the 
serial link. 

 

 

4. RESULTS 

4.1 Aircraft Model and Constraints 

To verify the implementation of our FPGA implementation 
of the constrained MPC algorithm, the Cessna Citation 500 
Aircraft example (Example 2.7) from Maciejowski (2002) is 
used. It has the following continuous-time state-space model  

1.2822 0 0.98 0 0.3
0 0 1 0 0

;
5.4293 0 1.8366 0 17
128.2 128.2 0 0 0

0 1 0 0 0
0 0 0 1 ; 0

128.8 128.8 0 0 0
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The model has the elevator angle (rad) as its input, and the 
pitch angle (rad), altitude (m) and altitude rate (m/s) as 
outputs. The elevator angle is limited to ±15° (±0.262rad) 
and the elevator slew rate is limited to ±30°/s (±0.524rad/s). 
These are limits imposed by equipment design and cannot 
be exceeded. For passenger’s comfort the pitch angle limit 
is limited to ±20° (±0.349rad)   

A MPC controller was designed with a sampling interval of 
0.5s, Np = 10, and Nu = 3. The following constraints, 

10.262, 0.524, 0.349u u y≤ Δ ≤ ≤  

were also included.  

par { 
         myFloatMult1(a,b,&tmp1); 
         myFloatMult2(c,d,&tmp2); 
       } 
 
   myFloatAdd(tmp1,tmp2,&e); 

Fig 4(b) Parallel Implementation

seq { 
        myFloatMult(a,b,&tmp1); 
        myFloatMult(c,d,&tmp2); 
        myFloatAdd(tmp1,tmp2,&e); 
       } 

Fig 4(a) Sequential Implementation 
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Table 1 Comparison on Computational Time (ms) for Different Implementation Schemes 

Scenario  Quadprog IP Sequential Parallel 
m-function 3.3 3.9 N.A N.A Case2 

(32 inequality 
constraints) 

Stand alone 
executable  3.2 2.7 5.2 2.9 

m-function 4.2 17.6 N.A N.A Case3 
(52 inequality 
constraints) 

Stand alone 
executable  4 4.5 9.1 4.9 

We implemented our MPC on the Xilinx FPGA using the 
IEEE single precision arithmetic (8-bit exponent and 23-bit 
mantissa). Two FPGA implementations of the constrained 
MPC algorithms were created: one implemented the 
computations sequentially while the other exploited the 
opportunities for parallel computation. The aircraft model 
was simulated in MATLAB (Version 7.1) on a Windows XP 
PC (CPU P4 3.0GHz with 1GB RAM) and controlled by the 
FPGA implementation of MPC on the RC203 board. The 
controller and plant interacted through the serial link. 

4.2 Simulation Results 

Simulations were conducted based on two scenarios which 
corresponded to Case 2 and Case 3 of (Maciejowski, 2002). 
These two scenarios were chosen because they resulted in 
QP problems with different numbers of inequality 
constraints: 32 for Case 2 and 52 for Case 3.  

We tested several versions of the constrained MPC 
implementations using the prototype environment described 
in Section 3. In order to create a benchmark for our FPGA 
implementation of MPC, a version of the constrained MPC 
algorithm implemented in MATLAB using its standard 
quadprog function (which solves QP problems using the 
active set method) was created. Also, the interior point 
method described in Section 2 was coded as an m-function 
in MATLAB. The timing of these two implementations 
running in the interactive environment of MATLAB was 
recorded. We also used the “mcc –m” command available 
in MATLAB Compiler to obtain stand-alone executables of 
these two MATLAB implementations. We recorded their 
timings.  

Table 1 compares the results. It can be seen that the parallel 
implementation of MPC in the FPGA was approximately 
twice as fast as the sequential implementation. Although the 
computational time of the Interior Point (IP) implementation 
increases with the number of inequality constraints, the 
computational speed achieved by exploiting parallelism 
using an FPGA is comparable to that of the stand alone 
executable running on a Pentium4 3.0GHz CPU.  

Table 2 presents the resource requirements and the clock 
counts measured for the two FPGA implementations. The 
clock rate achieved was 25MHz. The clock counts needed to 
complete one iteration of the Interior Point (Step 2 only) 
was 7564 for the sequential implementation and 3088 for 
the parallel implementation; a saving of 4476 and 6920 in 
case 2 and 3 per iteration step. The reduction in the clock 

counts was achieved at the expense of a modest increase in 
the hardware resources needed for the parallel 
implementation: 2 additional Arithmetic Logic Units (ALU) 
-- which are 18x18 multipliers, 20% more Look-Up Tables 
(LUT), and 2% more Flip-Flops (FF). Nevertheless, it 
should be noted that even with these increased resource 
requirements; there are still unused resources on the FPGA 
chip that can be further exploited.  

Table 2 Timing and Resources Analysis on RC203 Board 
with a Vertex II FPGA Chip 

 Sequential Parallel 
Requested Clock Rate 

(MHz) 25 25 
Achieved Clock Rate 

(MHz) 25.07 25.03 
Case 2 7,564 3,089 Clock 

Count† Case 3 11,827 4,907 
ALUs 3 5 

LUTs 
8,773 
(30%) 

16,338 
(50%) 

FFs 
2,063 
(7%) 

2,750 
(9%) 

Memory Bits 497,776 379,120 
 

The response of the aircraft for each of the simulation 
scenarios is shown in Figure 5(a) and 6(a), respectively. For 
Case 2, the 400m step change in altitude set-point resulted 
in the pitch angle constraint being active during the 
transient, while the rate of change of altitude was 
unconstrained. For Case 3, the rate of change of altitude was 
also constrained, and the simulation result showed that the 
altitude rate constraint is active during most of the transient 
while the pitch angle constraint is only active at the 
beginning of the transient.  

Solving a constrained MPC problem is a repetitive process. 
At each MPC sampling instant, a new QP problem is created 
which requires several Interior Point iterations to obtain the 
solution. The number of IP iterations required varies and 
depends on factors such as the set of active constraints. 

Figure 5(b) shows the plot of the number of IP iterations and 
clock counts recorded at every MPC sampling instants for 

                                                 
† For step 2 in the IP algorithm, one iteration only 
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Case 2. It can be seen that when the constraints become 
active from 4s to 9s, both the number of iterations and clock 
counts increase dramatically. After the transient they fall to 
a relatively low number. The most difficult QP problem 
occurred at about t=5s. Comparing the results of sequential 
and parallel implementations, it can be seen that although 
the trends are similar, the clock counts needed in the latter 
was reduced by nearly half. The corresponding plots of the 

number of iterations and clock counts for Case 3 are given 
in Fig. 6(b). The trends of iterations and clock counts are 
similar to those in Figure 5(b). For Case 3, the most difficult 
QP problem occurs at t=9s, which takes more than 30 IP 
iterations to solve. Table 3 lists the average number of 
Interior Point iterations (at each step) for Cases 2 and 3. 
Such information may be useful in determining an 
appropriate sample rate for an embedded MPC application. 

  

 
                      Fig. 5(a) Response of aircraft in Case 2                                    Fig. 6(a) Response of aircraft in Case 3 

  

            Fig. 5(b) Iterations and clock counts in step 2 of IP                  Fig. 6(b) Iterations and clock counts in step 2 of IP

Table 3 Average numbers of IP iterations per MPC step (RC203 Board with Clock Rate@25M) 

Scenarios Schemes 

Average 
number of 

IP Iterations 
per MPC 
sample 

Average 
Clock 

Counts per 
MPC sample 

Average MPC 
Sampling 

Interval (msec) 

Average 
Clock 

Count per 
IP Iteration 

Average 
Time per IP 

iteration 
(msec) 

Sequential 12.3 130,058 5.2 10,580 0.42 Case 2 
Parallel 12.3 73,512 2.9 5,980 0.24 

Sequential 14.8 226,555 9.1 15,353 0.61 
Case 3 

Parallel 14.7 121,299 4.9 8,234 0.33 
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4.3 Scalability of the current FPGA implementation 

The scalability of the current FPGA implementation of the 
Interior Point solver is investigated by solving randomly 
generated QP problems parameterised by vn  and cm , 

where vn  is the number of variables to be optimised and 

cm is the number of inequality constraints. 

Fig. 7 Computational time as a function of cm . 

Fig. 8 Computational time as a function of vn . 

In Fig.7 the average computational time for one QP problem 
is plotted as a function of cm with vn fixed at 3. It can be 
seen that the computational speed appears to increase 
linearly with cm , and the parallel FPGA implementation 
has a slope which is in between the sequential FPGA 
implementation and that of Pentium CPU. However, as 
shown in Fig. 8, when the number of optimisation variables 
increases, the increase in the computation time varies faster 
than linear and the Pentium CPU outperformed the FPGA 
implementation. The reason could be that the current FPGA 
implementation uses a straightforward Gaussian elimination 
method to solve the resulting Ax=b problem in Step 2 and 
hence less efficient in handling larger Ax=b problems. This 
issue is a current subject of investigation. 

5. CONCLUSION 

In this paper, two FPGA implementations of constrained 
MPC were described and evaluated. The parallel 

implementation outperformed the sequential implementation 
in terms of computation speed, at the expense of a modest 
increased in the hardware resource requirement.  

This paper continues our investigation of the potential 
benefits of using FPGAs to implement MPC. There is still 
much detailed analysis to be done, which should indicate 
further possibilities for achieving faster implementations. 
More study of the hardware trade-offs is needed. It is noted 
that there are still unused hardware resource available which 
can be further exploited. A more systematic method to 
exploit these unused resources is a subject of current 
research.  This should allow MPC to be used in application 
areas where the computational load has been considered too 
great until now, such as UAVs, automobile control systems 
and gas turbine control. 
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