

Embedded Model Predictive Control (MPC) using a FPGA1

K.V. Ling*, B.F. Wu* and J.M. Maciejowski**

*School of Electrical and Electronic Engineering,
Nanyang Technological University,

 Singapore 639798 (e-mail:ekvling@ntu.edu.sg)
**Cambridge University Engineering Department,

United Kingdom (e-mail: jmm@eng.cam.ac.uk)

Abstract: Model Predictive Control (MPC) is increasingly being proposed for application to miniaturized
devices, fast and/or embedded systems. A major obstacle to this is its computation time requirement.
Continuing our previous studies of implementing constrained MPC on Field Programmable Gate Arrays
(FPGA), this paper begins to exploit the possibilities of parallel computation, with the aim of speeding up
the MPC implementation. Simulation studies on a realistic example show that it is possible to implement
constrained MPC on an FPGA chip with a 25MHz clock and achieve MPC implementation rates
comparable to those achievable on a Pentium 3.0 GHz PC.

1 This work was supported in part by the A*STAR grant reference: 052-118-0059.

1. INTRODUCTION

Model Predictive Control (MPC) has become an established
control technology owing to its capability of solving
problems with physical constraints. Its applications were
originally in the petrochemical industry, but its use has now
been proposed for a variety of industries, including high
bandwidth applications, such as ships (Perez et al., 2000),
aerospace (Richards et al., 2003), road vehicles (Morari et
al., 2003) and also in micro scale devices (Bleris et al.,
2005).

Basic MPC solves a quadratic programming (QP) or a linear
programming (LP) problem. Its successful application
depends on the ability to generate a feasible solution within
one sampling period. One approach to achieving MPC for
high speed embedded applications which are constrained by
computational time is through hardware acceleration of the
MPC implementation.

Reconfigurable hardware such as Field Programmable Gate
Array (FPGA) is a promising platform for deploying
embedded MPC solutions to applications which require
flexibility and short design cycle. The encapsulation of the
constrained MPC algorithms as suitable modules for
embedded control has been investigated in (Ling et al.,
2006), where a Handel-C implementation of an MPC
algorithm was described and realized on a modest Xilinx
Spartan 3L(XC3S1500L-4-fg320) FPGA. The computation
carried out in that FPGA design was sequential without
exploiting the parallel computing capability of an FPGA.
This paper focuses on improving on our earlier work by
exploiting the opportunities for parallel computation.

The paper is organized as follows: A review of the
constrained MPC formulation and the Interior Point
algorithm for solving the resulting Quadratic Programming

(QP) problem is presented in Section 2. The prototyping
environment for this study, as well as an illustration of how
the Handel-C language could be used to explore
opportunities for parallel computations of the MPC
algorithm through better use of the available FPGA
resources, is briefly described in Section 3. The speed up
improvement of the new implementation is verified through
an aircraft simulation example in Section 4.

2. REVIEW OF CONSTRAINED MPC AND THE
INTERIOR POINT METHOD

2.1 Review of Constrained MPC

Constrained MPC can be formulated as a QP problem. For
simplicity, given a single input single output discrete linear
time-invariant plant in the state space form,

⎩
⎨
⎧

=
Δ+=+

∑
)()(

)()()1(
:

kCxky
kuBkAxkx

 (1)

where),(),(kuky and ()x k are the system output, input
and internal states respectively. The constrained MPC
problem is to minimize the cost function,

21

1

2

1
)()()()(∑∑

−

==

+Δ++−+=Δ
uP N

j

N

j
jkujkjkyuf ω

subject to linear inequality constraints on the system
outputs, inputs and states. Here, ω is the set-point; PN and

uN are the prediction and control horizons respectively.

We follow the standard approach (eg Rao et al. 1998,
Maciejowski 2002) of eliminating the equality constraints

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15250 10.3182/20080706-5-KR-1001.2303

of (1), replacing the predicted system output)(jky + as
follows:

zkxy ux Ψ+Ψ=)((2)
with

[]T
PNkykykyy)(...)2()1(+++= ,

[] ,)1(...)1()(T
uNkukukuz −+Δ+ΔΔ=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Ψ

PN

x

CA

CA
CA

2

,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Ψ

−−− BCABCABCA

CBCAB
CB

uPPP NNNN

u

21

0
00

The constrained MPC problem reduces to a QP problem
where the cost function

zcQzz
2
1 TT + = φ

 (3)
is minimised subject to inequality constraints

gJz ≤ (4)

Here, Q is a symmetric Nu × Nu matrix and J is mc × Nu in
size, where mc is the total number of inequality constraints.
The infeasible Interior Point (IP) method (Rao et al, 1997)
was adopted for solving the QP problem and implemented
in a FPGA. The IP method can be derived from the well-
known Karush-Kuhn-Tucker (or KKT) conditions, which
are necessary and sufficient conditions for characterising the
global optimum, providing that Q ≥ 0:

-c,JQz T =+ λ (5)

,gtJz − = −− (6)

.0t,0t,0 T =≥≥ λλ (7)

Equations (5) and (6) are called feasibility conditions while
(7) is called the complementarity condition.

The infeasible interior point method perturbs the
complementarity condition in (7) with the following scalar

() /T
k k k ct mμ λ= (8)

where k is the iteration counter and cm is the number of
inequality constraints in (4). As the iteration proceeds, the
infeasibility and kμ are gradually reduced to zero.

2.2 The Interior Point Method

According to the infeasible interior point framework
introduced by (Wright, 1997), the QP can be solved
iteratively as follows:

Step 1: Choose an initial condition (z0,λ0
 ,t0

) with (λ0,t0)>0.

Step 2: At the k-th iteration, solve for the increments

(Δzk, Δλk, Δtk) with

,
T

k k

k kk

z rQ J
sJ λ

Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ΔΓ ⎣ ⎦ ⎣ ⎦⎣ ⎦ (9)

and
1() ().k k k k k kt t e Tσμ λ−Δ = − + Λ − Δ (10)

Here
1

()
kk k T

−

Γ = − Λ ,

(1) (1) 1
, ,

() () 1

k k

k k

k c k c

t
T e

m t m

λ

λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Λ = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (11)
In addition,

1

,

()

T
k k k

k k k k

r Qz J e c

s Jz g eσμ −

= − − Λ −

= − + − Λ
 (12)

Step 3: Increment the variables according to:

1 1 1(, ,) (, ,) (, ,)k k k k k k k k k kz t z t z tλ λ α λ+ + + = + Δ Δ Δ (13)

for some αk ∈ (0, 1], subject to (λk+1, tk+1) > 0.

Step 4: Judge the convergence. If the iterations have
converged, stop the iterations; the optimal control sequence
is obtained as 1+kz . Otherwise, go back to Step 2 with

(1+kz , 1+kλ , 1+kt) and continue iterating.

It is clear that Step 2 of the interior point algorithm is where
most of the computation occurs and hence optimizing the
computational efficiency of step 2 should be the most
fruitful. In most embedded MPC application, the number of
constraints cm is usually much larger than the number of

variables uN – note that the same constraint at different
points in the prediction horizon appears as several
constraints in (4). In this case, it can be computationally
advantageous to solve (9) in two stages as follows:

1 1() ()T T

k k k k k

k k k k

Q J J z r J s
s J zλ

− −⎧ − Γ Δ = − Γ
⎨

Γ Δ = − Δ⎩
 (14)

Note that kΓ is a diagonal matrix.

Using (14), (10) can also be written as

()k k k kt t g J z zΔ = − + − + Δ (15)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15251

3. PROTOTYPING ENVIRONMENT FOR MPC-ON-A
CHIP

The rapid prototyping environment for optimization of
the “MPC on a Chip” design is shown in Fig. 1. The plant
simulation is implemented in MATLAB while MPC is
implemented either in MATLAB or on a FPGA prototyping
board. This prototype environment provides flexibility and
allows convenience in experimentation and verification of
the various FPGA implementations of the MPC algorithm.

Fig. 1 Prototyping of MPC on a Chip

The tools used in this study include a RC203 FPGA board,
the DK Design Suite from Celoxica and Matlab/Simulink
software from The Mathworks.

The RC203 is a platform for evaluation and development of
FPGA-based applications. The platform include a Xilinx
Virtex-II FPGA, external memory, programmable clocks,
Ethernet, Audio, Parallel port, RS-232 etc. The FPGA used
in this study is XC2V3000, which has three million logic
gates. The XC2V3000 has 96 multiplier blocks, 96 block of
18K on-chip RAM and a maximum 720 I/O pads.

For hardware implementation on an FPGA, the constrained
MPC algorithm is coded in Handel-C which is a C-like
language for digital logic design. Programming in Handel-C
allows one to focus on algorithm design without worrying
about how the underlying computation engine works. As an
illustration, Fig.4(a) and Fig.4(b) show, respectively,
fragments of the Handel-C code for the sequential and
parallel implementation of the computation of

dcbae ×+×= , where dcba ,,, are scalar single
precision floating-point variables. Implementing the
computation sequentially, as illustrated in Fig. 4(a), the
computation would require 9 clock cycles, since in our
implementation, one floating-point multiplication and
addition would require 3 clock cycles each to complete.

The opportunity for parallelism depends very much on the
data dependency of the computation tasks. Variables that do
not have any data dependency could be computed
simultaneously provided additional hardware resources are
available. As illustrated in Fig. 4(b), if an additional copy
of the floating point multiplier hardware is created on a
FPGA, then the multiplications can be performed in parallel
and the clock cycles needed are reduced to 6. During the
time when the multiplications are carried out, the adder
hardware is left idle and can be deployed for other
computational tasks (not shown here). In our current
implementation, we achieved a degree of parallelism by ad
hoc programming. In particular, the execution of some FOR
loops were combined and parallelised when solving (14).

The Handel-C implementation of the MPC algorithm was
compiled into a bitstream file which was then downloaded
to the RC203 board to configure the FPGA chip to perform
the constrained MPC calculations. The data exchange
between the PC which runs MATLAB and the FPGA board
which carries out the MPC calculations was achieved via the
serial link.

4. RESULTS

4.1 Aircraft Model and Constraints

To verify the implementation of our FPGA implementation
of the constrained MPC algorithm, the Cessna Citation 500
Aircraft example (Example 2.7) from Maciejowski (2002) is
used. It has the following continuous-time state-space model

1.2822 0 0.98 0 0.3
0 0 1 0 0

;
5.4293 0 1.8366 0 17
128.2 128.2 0 0 0

0 1 0 0 0
0 0 0 1 ; 0

128.8 128.8 0 0 0

A B

C D

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

The model has the elevator angle (rad) as its input, and the
pitch angle (rad), altitude (m) and altitude rate (m/s) as
outputs. The elevator angle is limited to ±15° (±0.262rad)
and the elevator slew rate is limited to ±30°/s (±0.524rad/s).
These are limits imposed by equipment design and cannot
be exceeded. For passenger’s comfort the pitch angle limit
is limited to ±20° (±0.349rad)

A MPC controller was designed with a sampling interval of
0.5s, Np = 10, and Nu = 3. The following constraints,

10.262, 0.524, 0.349u u y≤ Δ ≤ ≤

were also included.

par {
 myFloatMult1(a,b,&tmp1);
 myFloatMult2(c,d,&tmp2);
 }

 myFloatAdd(tmp1,tmp2,&e);

Fig 4(b) Parallel Implementation

seq {
 myFloatMult(a,b,&tmp1);
 myFloatMult(c,d,&tmp2);
 myFloatAdd(tmp1,tmp2,&e);
 }

Fig 4(a) Sequential Implementation

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15252

Table 1 Comparison on Computational Time (ms) for Different Implementation Schemes

Scenario Quadprog IP Sequential Parallel
m-function 3.3 3.9 N.A N.A Case2

(32 inequality
constraints)

Stand alone
executable 3.2 2.7 5.2 2.9

m-function 4.2 17.6 N.A N.A Case3
(52 inequality
constraints)

Stand alone
executable 4 4.5 9.1 4.9

We implemented our MPC on the Xilinx FPGA using the
IEEE single precision arithmetic (8-bit exponent and 23-bit
mantissa). Two FPGA implementations of the constrained
MPC algorithms were created: one implemented the
computations sequentially while the other exploited the
opportunities for parallel computation. The aircraft model
was simulated in MATLAB (Version 7.1) on a Windows XP
PC (CPU P4 3.0GHz with 1GB RAM) and controlled by the
FPGA implementation of MPC on the RC203 board. The
controller and plant interacted through the serial link.

4.2 Simulation Results

Simulations were conducted based on two scenarios which
corresponded to Case 2 and Case 3 of (Maciejowski, 2002).
These two scenarios were chosen because they resulted in
QP problems with different numbers of inequality
constraints: 32 for Case 2 and 52 for Case 3.

We tested several versions of the constrained MPC
implementations using the prototype environment described
in Section 3. In order to create a benchmark for our FPGA
implementation of MPC, a version of the constrained MPC
algorithm implemented in MATLAB using its standard
quadprog function (which solves QP problems using the
active set method) was created. Also, the interior point
method described in Section 2 was coded as an m-function
in MATLAB. The timing of these two implementations
running in the interactive environment of MATLAB was
recorded. We also used the “mcc –m” command available
in MATLAB Compiler to obtain stand-alone executables of
these two MATLAB implementations. We recorded their
timings.

Table 1 compares the results. It can be seen that the parallel
implementation of MPC in the FPGA was approximately
twice as fast as the sequential implementation. Although the
computational time of the Interior Point (IP) implementation
increases with the number of inequality constraints, the
computational speed achieved by exploiting parallelism
using an FPGA is comparable to that of the stand alone
executable running on a Pentium4 3.0GHz CPU.

Table 2 presents the resource requirements and the clock
counts measured for the two FPGA implementations. The
clock rate achieved was 25MHz. The clock counts needed to
complete one iteration of the Interior Point (Step 2 only)
was 7564 for the sequential implementation and 3088 for
the parallel implementation; a saving of 4476 and 6920 in
case 2 and 3 per iteration step. The reduction in the clock

counts was achieved at the expense of a modest increase in
the hardware resources needed for the parallel
implementation: 2 additional Arithmetic Logic Units (ALU)
-- which are 18x18 multipliers, 20% more Look-Up Tables
(LUT), and 2% more Flip-Flops (FF). Nevertheless, it
should be noted that even with these increased resource
requirements; there are still unused resources on the FPGA
chip that can be further exploited.

Table 2 Timing and Resources Analysis on RC203 Board
with a Vertex II FPGA Chip

 Sequential Parallel
Requested Clock Rate

(MHz) 25 25
Achieved Clock Rate

(MHz) 25.07 25.03
Case 2 7,564 3,089 Clock

Count† Case 3 11,827 4,907
ALUs 3 5

LUTs
8,773
(30%)

16,338
(50%)

FFs
2,063
(7%)

2,750
(9%)

Memory Bits 497,776 379,120

The response of the aircraft for each of the simulation
scenarios is shown in Figure 5(a) and 6(a), respectively. For
Case 2, the 400m step change in altitude set-point resulted
in the pitch angle constraint being active during the
transient, while the rate of change of altitude was
unconstrained. For Case 3, the rate of change of altitude was
also constrained, and the simulation result showed that the
altitude rate constraint is active during most of the transient
while the pitch angle constraint is only active at the
beginning of the transient.

Solving a constrained MPC problem is a repetitive process.
At each MPC sampling instant, a new QP problem is created
which requires several Interior Point iterations to obtain the
solution. The number of IP iterations required varies and
depends on factors such as the set of active constraints.

Figure 5(b) shows the plot of the number of IP iterations and
clock counts recorded at every MPC sampling instants for

† For step 2 in the IP algorithm, one iteration only

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15253

Case 2. It can be seen that when the constraints become
active from 4s to 9s, both the number of iterations and clock
counts increase dramatically. After the transient they fall to
a relatively low number. The most difficult QP problem
occurred at about t=5s. Comparing the results of sequential
and parallel implementations, it can be seen that although
the trends are similar, the clock counts needed in the latter
was reduced by nearly half. The corresponding plots of the

number of iterations and clock counts for Case 3 are given
in Fig. 6(b). The trends of iterations and clock counts are
similar to those in Figure 5(b). For Case 3, the most difficult
QP problem occurs at t=9s, which takes more than 30 IP
iterations to solve. Table 3 lists the average number of
Interior Point iterations (at each step) for Cases 2 and 3.
Such information may be useful in determining an
appropriate sample rate for an embedded MPC application.

 Fig. 5(a) Response of aircraft in Case 2 Fig. 6(a) Response of aircraft in Case 3

 Fig. 5(b) Iterations and clock counts in step 2 of IP Fig. 6(b) Iterations and clock counts in step 2 of IP

Table 3 Average numbers of IP iterations per MPC step (RC203 Board with Clock Rate@25M)

Scenarios Schemes

Average
number of

IP Iterations
per MPC
sample

Average
Clock

Counts per
MPC sample

Average MPC
Sampling

Interval (msec)

Average
Clock

Count per
IP Iteration

Average
Time per IP

iteration
(msec)

Sequential 12.3 130,058 5.2 10,580 0.42 Case 2
Parallel 12.3 73,512 2.9 5,980 0.24

Sequential 14.8 226,555 9.1 15,353 0.61
Case 3

Parallel 14.7 121,299 4.9 8,234 0.33

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15254

4.3 Scalability of the current FPGA implementation

The scalability of the current FPGA implementation of the
Interior Point solver is investigated by solving randomly
generated QP problems parameterised by vn and cm ,

where vn is the number of variables to be optimised and

cm is the number of inequality constraints.

Fig. 7 Computational time as a function of cm .

Fig. 8 Computational time as a function of vn .

In Fig.7 the average computational time for one QP problem
is plotted as a function of cm with vn fixed at 3. It can be
seen that the computational speed appears to increase
linearly with cm , and the parallel FPGA implementation
has a slope which is in between the sequential FPGA
implementation and that of Pentium CPU. However, as
shown in Fig. 8, when the number of optimisation variables
increases, the increase in the computation time varies faster
than linear and the Pentium CPU outperformed the FPGA
implementation. The reason could be that the current FPGA
implementation uses a straightforward Gaussian elimination
method to solve the resulting Ax=b problem in Step 2 and
hence less efficient in handling larger Ax=b problems. This
issue is a current subject of investigation.

5. CONCLUSION

In this paper, two FPGA implementations of constrained
MPC were described and evaluated. The parallel

implementation outperformed the sequential implementation
in terms of computation speed, at the expense of a modest
increased in the hardware resource requirement.

This paper continues our investigation of the potential
benefits of using FPGAs to implement MPC. There is still
much detailed analysis to be done, which should indicate
further possibilities for achieving faster implementations.
More study of the hardware trade-offs is needed. It is noted
that there are still unused hardware resource available which
can be further exploited. A more systematic method to
exploit these unused resources is a subject of current
research. This should allow MPC to be used in application
areas where the computational load has been considered too
great until now, such as UAVs, automobile control systems
and gas turbine control.

REFERENCES

Bleris, L., Garcia, J. and, Kothare, M. (2005). Model
predictive hydrodynamic regulation of microflows.
American Control Conference, Portland, OR, June,
1752-1757

Ling, K.V., Yue, S.P. and Maciejowski, J.M. (2006). A
FPGA implementation of model predictive control.
American Control Conference, Minneapolis,
Minnesota, USA, June 14-16, 1930-1935

Maciejowski, J.M. (2002). Predictive Control with
Constraints, Prentice Hall.

Morari, M., Baotić, M. and Borrelli, F. (2003). Hybrid
systems modelling and control. European Journal of
Control, 9, 177-189

Perez, T., Goodwin, G.C and Tzeng, C.W. (2000). Model
predictive rudder rolls stabilization control for ships, In:
Proc. 5th IFAC Conf. on Manoeuvring and Control of
Marine Craft, Aalborg, Denmark,

Rao, C.V., Wright, S.J. and Rawlings, J.B. (1998).
Application of interior point methods to model
predictive control. Journal of Optimization Theory and
Applications. 99, 723-757

Richards, A. and How, J.P. (2003). Model predictive control
of vehicle manoeuvres with guaranteed completion time
and robust feasibility, In: Proc. American Control
Conference, Denver.

Wright, S..J (1997). Applying new optimization algorithms
to model predictive control, Chemical Process Control-
V, CACHE, AIChE Symposium, 316(93), 147-155.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15255

