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Abstract: This paper presents a new observer that estimates the exact state of a linear
continuous-time system in predetermined finite time. The finite convergence time of the proposed
observer is achieved by updating the observer state based on the difference between the measured
output and the estimated output at discrete time instants. Simulation results are presented to
illustrate the convergence behavior and the applicability of the proposed observer.

1. INTRODUCTION

In the last decades different approaches, see e.g. [Medvedev
and Toivonen (1994); Han et al. (2001); Engel and Kreis-
selmeier (2002); Byrski (2003); Raff and Allgöwer (2007)],
have been proposed to design observers that estimate the
state of a linear continuous-time system in predetermined
finite time. Note that the convergence time of these ob-
servers, distinct from the observer [Haskara et al. (1996)],
is independent of the magnitude of the initial estimation
error. Unfortunately, these observers are expensive from
a computational point of view because they require a
large (infinite) amount of memory due to the storage
of trajectory pieces [Han et al. (2001); Byrski (2003);
Medvedev and Toivonen (1994); Engel and Kreisselmeier
(2002)], and/or the instantaneous solution of convolution
integrals over a finite time horizon [Han et al. (2001);
Byrski (2003); Medvedev and Toivonen (1994)], and/or
an increased order of the observer dynamics [Engel and
Kreisselmeier (2002); Raff and Allgöwer (2007)].
This paper presents a new observer with predetermined
finite convergence time for linear continuous-time systems
which avoids (reduces) the above mentioned implementa-
tion problems. The finite convergence time of the proposed
observer is simply achieved by updating the observer state
based on the difference between the measured output and
the estimated output at discrete time instants. These up-
dates of the observer state, which can be easily realized
if the observer is implemented e.g. on a microcontroller,
cause impulsive behavior of the observer dynamics. Com-
pared to the observer [Raff and Allgöwer (2007)], which
also exhibits impulsive dynamical behavior due to the
update of the observer state (observer order 2n) at one
particular time instant, the proposed observer achieves the
finite convergence time with a sequence of updates of the
observer state (observer order n). Finally, the convergence
behavior of the observer is illustrated via an example, the
mass spring system [Geromel and de Oliveira (2001)].
The remainder of the paper is organized as follows: In
Section 2 the proposed observer, that converges in prede-
termined finite time, is presented. Simulation results are
shown in Section 3 and Section 4 concludes the paper with
a summary and an outlook.

2. MAIN RESULT

Consider the linear continuous-time system

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0 (1a)

y(t) = Cx(t), (1b)

where x ∈ R
n is the system state, x0 ∈ R

n the initial
condition, u ∈ R

p the input, y ∈ R
q the output, and

A ∈ R
n×n, B ∈ R

n×p, C ∈ R
q×n are constant matrices.

It is assumed that system (1) is observable. The proposed
observer for system (1) is

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t) − Cx̂(t)), t 6= tk, (2a)

x̂(t+k ) = x̂(tk) + Kk(y(tk) − Cx̂(tk)) t = tk, (2b)

x̂(t+0 ) = x̂0, k = 1, 2, .. (2c)

where x̂ ∈ R
n is the observer state, x̂0 ∈ R

n the observer
initial condition, L ∈ R

n×q,Kk ∈ R
n×q are observer

matrices, and tk is a time sequence satisfying 0 ≤ t0 < t1 <
. . . < tk < tk+1 < . . ., limk→∞ tk = ∞, δ = tk − tk−1 =
constant, and δ > 0. Moreover, x̂(t+k ) = limh→0 x̂(tk + h)
and, without loss of generality [Yang (2001)], it is assumed
that x̂(tk) = x̂(t−k ) = limh→0 x̂(tk − h) and y(tk) =

y(t−k ) = limh→0 y(tk − h) (h > 0). Observer (2) differs
from a classical Luenberger observer [Luenberger (1966)]
by the additional equation (2b). Due to the updates of the
observer state via equation (2b), the dynamics of observer
(2) exhibits impulsive dynamical behavior. These updates
of the observer state can be easily realized if observer (2) is
(approximately) implemented e.g. on a digital computer or
on a microchip since in that case the observer state can be
set to any value at any time instant tk. The next theorem
states how the observer parameters in (2), that are L,Kk,
and δ, have to be chosen such that observer (2) converges
in finite time.

Theorem 1. Let the matrices L, P ∈ R
n×q and the

constant δ, that fixes the convergence time, be chosen such
that the matrix Q = A − LC is Hurwitz and that the
matrix R = exp(Qδ) − PC exp(Qδ) has all its eigenvalues
at zero. Then observer (2) with observer matrices L and

Kk = P, 1 ≤ k ≤ n, Kk = 0, k > n, (3)

estimates the state of system (1) in predetermined finite
time τ = tn − t0 = nδ, i.e. x̂(t) = x(t) ∀t > tn.
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Proof. Consider the dynamics

ė(t) = (A − LC)e(t) t 6= tk,

e(t+k ) = (I − KkC)e(tk) t = tk,

e(t+0 ) = e0, k = 1, 2, . . .

(4)

of the estimation error e = x − x̂ in order to study the
convergence behavior of observer (2). From (4) it follows
that the estimation error can be expressed as

e(t) = exp(Q(t − tk))e(t+k ) (5)

for t ∈ (tk, tk+1] and, for t = tk as

e(t+k ) = (I − KkC) exp(Qδ)e(t+k−1
). (6)

Therefore, it follows from (5) and (6) that the solution of
(4) with initial condition e0 is

e(t) = exp(Q(t − tk))

×

k
∏

i=1

(I − KiC) exp(Qδ)e0

(7)

for t ∈ (tk, tk+1]. Hence, for t = tn the estimation error is

e(t+n ) = ((I − PC) exp(Qδ))
n

e0 = Rne0 = 0 (8)

because Kk = P for 1 ≤ k ≤ n and λi(R) = 0, i = 1, . . . , n,
i.e R is a nilpotent matrix with the property Rn = 0 [Chen
(1999)]. Finally, one can conclude from (8) that e(t) = 0
for t > tn. This proves that observer (2) estimates the
exact system state in finite time τ = tn − t0 = nδ. �

In the following some system theoretical properties and
possible extensions of observer (2) are discussed before its
convergence behavior is illustrated via an example.

Remark 1. Observer (2) converges in finite time τ if matrix
R has all its eigenvalues at zero. The eigenvalues of R
can be placed at the origin if the discrete-time system
η(k + 1) = exp(Qδ)η(k), yη(k) = C exp(Qδ)η(k), where
η ∈ R

n is the state and yη ∈ R
q the output, is observable.

The observability condition for this system is

rank









C exp(Qδ)
C exp(Qδ)2

...
C exp(Qδ)n









= n. (9)

Note that condition (9), that can be also written as
rank(S exp(Qδ)) = n with S = [CT (C exp(Qδ))T . . .
(C exp(Qδ)n−1)T ]T , is satisfied if matrix S has full rank
due to rank(exp(Qδ)) = n for any matrix Qδ, i.e.
rank(S exp(Qδ)) = rank(S). Furthermore, S is the observ-
ability matrix for the discrete-time system

θ(k + 1) = exp(Qδ)θ(k), yθ(k) = Cθ(k), (10)

where θ ∈ R
n is the state and yθ ∈ R

q is the out-
put, is obtained from the continuous-time system ξ̇(t) =
Qξ(t), yξ(t) = Cξ(t) by sampling with sampling period δ.
System (10) is observable if and only if the pair (A,C) is
observable [Chen (1999)], which is the case by assumption.
Given observability of (A,C), a sufficient condition for
observability of (10) is

(λk − λl)δ 6= r2πj, r = ±1,±2, . . . (11)

for each pair (λk, λl) of eigenvalues of Q [Kalman et al.
(1963)]. If the observer matrix L is chosen such that all
eigenvalues of Q are real, (11) is satisfied for any value of
δ and thus the convergence time τ = nδ of observer (2)
can be chosen arbitrarily.

Remark 2. Based on Ackermann’s Formula [Dorf and
Bishop (2007)], the observer matrix P can be computed
for systems (1) with a single output, i.e. q = 1, via

PT = [0 0 . . . 1]







(exp(Qδ))T CT

...
((exp(Qδ))T )nCT







−1

(

(exp(Qδ))T
)n

.

Remark 3. It is also possible to design an observer with
finite convergence time for system (1) which uses only
equation (2b) with a constant matrix Kk, i.e. Kk =
P ∀ k ≥ 1 and L = 0 in (2). Hence, observer (2) becomes

˙̂x(t) = Ax̂(t) + Bu(t), t 6= tk, (12a)

x̂(t+k ) = x̂(tk) + P (y(tk) − Cx̂(tk)) t = tk, (12b)

x̂(t+0 ) = x̂0, k = 1, 2, . . . (12c)

which is in this form closely related to the dead-beat ob-
server for discrete-time systems. An advantage of observer
(12) over observer (2) is a decreased bandwidth usage
due to the reduced amount of measured information (only
samples at time instants tk) transmitted from the system
to the observer.

Remark 4. Note that the proposed observer design can be
extended to nonlinear systems of the form

ẋ(t) = Ax(t) + ρ(u(t), y(t)), x(t0) = x0 (13a)

y(t) = Cx(t), (13b)

where ρ : R
p × R

q → R
n is a locally Lipschitz function

which depends on known arguments.

Remark 5. From a computational point of view the pro-
posed observer (2) is more attractive than the finite time
convergent observers [Medvedev and Toivonen (1994);
Han et al. (2001); Byrski (2003); Engel and Kreisselmeier
(2002); Raff and Allgöwer (2007)] since the memory re-
quirements and the on-line computations are reduced. The
reason for this is that these observers use information of
the past, which have to be stored, and/or an increased
order of the observer dynamics, and/or the on-line com-
putation of convolution integrals in order to achieve finite
convergence time whereas the finite convergence time of
observer (2) is only achieved via n observer state updates.

3. EXAMPLE

In the following observer (2) is applied to estimate the
state of a spring mass system [Geromel and de Oliveira
(2001)] with system matrices

A =







0 0 1 0
0 0 0 1
−2 1 −1 0
2 −2 0 −2






, B =







0
0
1
0






, CT =







1
0
0
0






. (14)

The convergence time is chosen as τ = 1. Hence, one
has to design the matrices L,P such that the conditions
of Theorem 1 are satisfied with δ = τ/4 = 0.25. For
example, one can derive the following observer matrices
from these conditions: LT = [14.0 94.0 56.0 −90.0], KT

k =
[1.0 111.3 17.3 150.3] for 1 ≤ k ≤ 4, and Kk = 0 for k > 4.
The simulation results with u(t) = sin(t), that are plotted
in Figure 1, show that the state of the mass spring system
is estimated in finite time τ = 1 via observer (2).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2694



0 0.5 1 1.5 2
−1

0

1

2

3

4

5

Time

e 1

0 0.5 1 1.5 2
−40

−20

0

20

40

60

80

Time

e
2

0 0.5 1 1.5 2
−15

−10

−5

0

5

10

15

Time

e 3

0 0.5 1 1.5 2
−60

−40

−20

0

20

40

60

80

100

120

140

Time

e 4

Fig. 1. Trajectories of the estimation errors e1(t), e2(t), e3(t), e4(t) resulting from the mass spring system with initial
condition x0 = [5 −2 3 4]T and proposed observer (2) with initial condition x̂0 = [0 0 0 0]T . The proposed observer
reconstructs the exact state of the mass spring system in finite time τ = 1.

4. SUMMARY AND OUTLOOK

In this paper a new observer with finite convergence time
and impulsive dynamical behavior, that stems from the
updates of the observer state at discrete time instants, has
been developed for linear continuous-time systems. Condi-
tions have been given which ensure the finite convergence
time of the proposed observer and some system theoretical
properties, e.g. the low computational complexity, as well
as an extension to nonlinear systems have been discussed.
Finally, the applicability of the proposed observer has been
demonstrated via an example. Similar to [Menold (2004)],
future work intends to use the proposed observer structure
to design observers with finite convergence time for linear
time-varying systems or nonlinear systems. Furthermore,
future work should also study the performance of the
proposed observer in presence of measurement noise or
model uncertainty.
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