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Abstract: Multirate iterative learning control (ILC) systems have different sampling rates for
feedback online loop and feedforward (or ILC) offline loop. The implementation of multirate
ILC requires to downsample the signal first and, after processing, upsample the signal again.
In the process of downsampling and upsampling, aliasing and imaging may occur and need
to be handled properly. In this paper, the multirate ILC with and without anti-aliasing/anti-
imaging filters are compared with different types of low-pass filter. Furthermore, to satisfy the
steady state frequency response, the signals are extended and different extension methods are
evaluated. A series of simulation results is provided to demonstrate that anti-aliasing and anti-
imaging filters significantly improve the tracking performance. However, the extension methods
have little influence on the tracking accuracy.

1. INTRODUCTION

For systems that execute repetitively a same tracking
operation starting from a same initial condition, iterative
learning control (ILC) is a simple and efficient solution to
improve tracking accuracy. ILC reaches this goal through
adjusting command to a system to compensate its tracking
error in previous iteration. There are many forms of
learning control, such as D-type ILC based on derivative of
error signal, P-type ILC based on tracking error directly,
and linear phase lead ILC [4] [2]. Theoretically, with
carefully selected parameters, the command provided by
ILC, as iteration goes to infinity, will converge to the
command that produces the desired output [5].

However, the implementation of ILC subjects to poor
learning transient [6]. The error decays initially in a certain
number of trials and, after that, it begins to diverge and
grows to an unbearable huge value. Simulation shows that
after the error grows to a maximum level, it decreases and
ultimately reaches a numerical zero [7]. This is consistent
with the mathematical convergence proof. The reason of
bad learning transient is well explained [6] [7].

There are many works on bad learning transient [6] [7]
[8] [9]. The easiest way is to introduce a zero-phase low-
pass filer for either tracking error or the command sent
to the system [10]. However, the introduction of low-
pass filter sacrifices the tracking error and may result in
poor tracking accuracy. There is a detailed comparison of
different filtering operations on learning performance [5].
Another easy solution is to introduce a linear phase lead in
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the learning law [4]. However, even with linear phase lead,
low-pass filtering is still needed because, in most cases, it is
unlikely that linear phase lead can compensate the system
phase characteristic into [90◦,−90◦] on the entire Nyquist
frequency range.

Recently, several different forms of multirate ILC schemes
are proposed and show promising results to guarantee good
learning transient and generate high tracking accuracy
simultaneously [11] [12] [13]. Meanwhile, these schemes
also demonstrate the abilities to produce good learning
behavior with the presence of initial state error, which
heavily limits the applications of ILC. Note that the
schemes in [12], due to the lost of some high frequency
information in downsampling process, cannot reach zero
tracking error. However, the cyclic pseudo-downsample
ILC scheme [13] can achieve zero tracking error.

In these proposed multirate ILC schemes, the error signal
is downsampled to make conditions that guarantee the
monotonic decay of tracking error along iteration axis
hold. Then, the downsampled signal, whose sampling
rate is denoted as ILC rate, is upsampled to its original
sampling rate, denoted as feedback rate. The signal is
downsampled by picking one sampling point in a certain
number of sampling points given by sampling ratio. In
the upsampling, the signal at the ILC rate passes through
a zero-order-hold to interpolate sampling points between
every two points to get its counterpart at the feedback
rate. In the process of downsamping/upsampling, anti-
aliasing and anti-imaging filters need to be applied to
prevent the distortion of signal frequency spectra. The
application of anti-aliasing/anti-imaging low-pass filter
relies on the steady state frequency response concepts.
Unfortunately, ILC is a finite time problem and, in a strict
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sense, the steady state can never be reached. To mitigate
this difficulty, the signals are extended at both ends so
that the steady state is approximately reached when the
signal of interest is filtered.

The purpose of this paper, therefore, seeks to understand
and address the effects of anti-aliasing/anti-imaging filter-
ing with different kinds of filter and the effects of different
extension methods.

2. PSEUDO-DOWNSAMPLED ILC

For a linear time-invariant system,
{

xf,j(k + 1)= Afxf,j(k) + Bfuf,j(k) + wf,j(k)
yf,j(k)= Cfxf,j(k) + vf,j(k)

(1)

where the subscript f indicates the feedback rate, k ∈
[0, p−1] with p being the number of total sampling points
of a desired trajectory, x is a n dimensional state vector,
the input u and the output y are both scalars, subscript j is
the cycle index, w and v are the repeated state disturbance
and output disturbance, respectively.

An one-step-ahead learning law have the form of:
{

uf,j(k)= yd(k) + uL,f,j(k)
uL,f,j+1(k)= uL,f,j(k) + Γef,j(k + 1)

(2)

where Γ is the learning gain, ef,j(k) = yd(k)−yf,j(k) is the
error signal at the j-th cycle with yd(k) being the desired
trajectory. uL,f,j is the adjustment of command in the j-
th cycle and uf,j is the input to the closed-loop feedback
control system.

The well-known monotonic decay condition, in the fre-
quency domain, is

|1 − ΓzG(z)| < 1 (3)

where G(z) = Cf (zI − Af )−1Bf is the transfer function
of system. Since this condition is generally very difficult
to hold for all frequencies up to the Nyquist frequency, a
low-pass filter is often introduced at the price of tracking
accuracy. In this paper, instead of using a low-pass filter,
a multirate ILC scheme is proposed.

The structure of the proposed multirate ILC is illustrated
in Figure 1, in which thin line is the closed-loop feedback
control system and thick line is the proposed ILC system.

Fig. 1. The scheme of pseudo-downsampled ILC

In this figure, subscript s indicates the slow sampling
rate after the downsamling and is denoted as ILC rate.
C is feedback controller and P is plant. For multirate
ILC, error ef,j with sampling period T (feedback rate) are
downsampled to a rate with a sampling period mT (ILC
rate), where m is “sampling ratio” [14], and denoted as
es,j . Then, this signal times learning gain and is upsampled
to feedback rate again. The processed signal is shifted one-
step-ahead and added to the uL,f,j to accomplish the ILC
update law and obtain the uL,f,j+1. Clearly, the overall
system is a multirate ILC system. The monotonic decay
of tracking error is provided in the following Theorem [11].

Theorem 1. For system (1) with repeated disturbances
and learning law (6), suppose |1 − ΓCsBs| < 1 with 1 −
ΓCsBs > 0 and

|CsBs| ≥

ps−1
∑

i=1

∣

∣CsA
i
sBs

∣

∣ (4)

holds, with As = Am
f ; Bs = (Am−1

f Bf + · · ·+AfBf +Bf );
Cs = Cf ; and ps the number of sampling points of a given
trajectory with respect to the slow rate, then tracking error
decay exponentially.

When the signal extension and anti-aliasing/anti-imaging
filter are taken into account, the signal flow in the pseudo-
downsampled ILC is detailed in Figure 2. First, the track-
ing error signal ef,j are extended. Then, anti-aliasing filter
is applied to prevent the aliasing in downsampling. The
filtered signal is truncated to recover its original length.
After that, the signal is downsampled and those sam-
pling points that downsampling happens are termed as
downsampling points. The downsampled signal at ILC
rate is timed by learning gain and, then, interpolated by
passing through a zero-order-hold to hold the values at
downsampling points to recover the signal to feedback rate.
To prevent the distortion of frequency spectra, this inter-
pellated signal is extended and passes through an anti-
imaging filter. Finally, the signal is truncated to recover
its original length.

Fig. 2. The signal flow in the multirate ILC

Suppose ps is trajectory length with respect to slow rate,
which is given as

ps =

{

p/m p is multiples of m
int(p/m) + 1 otherwise

(5)

where int(·) gets the integer part of (p/m). Then, the ILC
update law is summarized as follow:



















uf,j(k)= yf,d(k) + uL,f,j(k)
uL,f,j(k)= uL,f,j−1(k) + ∆uL,f,j−1(k + 1)

∆uL,f,j−1= Fa,i (∆uL,s,j−1)
∆uL,s,j−1(is)= Γes,j−1(is)

es,j−1= Fa,a(ef,j−1)

(6)
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where Fa,a(·) and Fa,i(·) perform the operations as shown
in Figure 2, respectively. where is ∈ [0, ps − 1] is the index
of downsampled signal.

3. THE ANTI-ALIASING FILTERING AND
ANTI-IMAGING FILTERING

As shown in Figure 2, the signal needs to be extended
before anti-alias filtering and anti-imaging filtering. In
this section, some signal extension methods and filtering
methods are addressed and their comparison will shown
later in simulation.

3.1 Extension Methods

The filtering operation is influenced by the initial con-
dition. As Longman [5] pointed out, the filter response
can be considered steady state after roughly one settling
time. Therefore, signal extension is sufficient to remove the
influence of initial condition on the signal of interest.

Here, three different extension methods are considered and
compared.

Method 1: The signal is extended by reflecting through
the end-points of the signal. That is, make a mirror
reflection of a certain number of sampling points about the
end points. The signal with this extension is continuous
and has a continuous first order derivative at the end
points.

Method 2: The signal is extended by adding zeros. In
this case, the signal is no longer continuous.

Method 3: The signal is extended by repeating the end-
points of the signal. The signal is continuous but its first
order derivative at the end points is no longer continuous.

3.2 The low-pass filter

Different from low-pass filters in traditional ILC aims to
cutoff frequency components that do not monotonically
decay in learning, the anti-aliasing and anti-imaging filters
aim to prevent the frequency spectra distortion in down-
sampling and upsampling, respectively.

When downsampling is considered in the frequency do-
main, m-step downsampling of tracking error signal ef,j

will duplicate the spectra of ef,j within [0, 2π/m]. There-
fore, if the bandwidth of ef,j is above frequency 2π/m,
the overlapping will definitely occur and the spectra will
be distorted. To prevent this phenomenon, an anti-aliasing
filter Fa,a with a cutoff frequency 2π/m is required to filter
the signal before downsampling.

On the other hand, after the downsampled signal es,j at
ILC rate passes through the ILC law, an input update
signal ∆uL,s,j at the ILC rate is obtained. This ∆uL,s,j

needs to be upsampled so that it can be added to uL,f,j

to achieve the uL,f,j+1 at the next iteration. After the
upsampling process, the images of the spectra of uL,s,j

will appear and, therefore, an anti-imaging filter should
be employed to reject those images in frequencies above
π/m.

In most cases, a causal filter introduces substantial phase
lags. To avoid the additional phase logs, zero-phase low-

pass filters are widely used in ILC design. In this paper,
three different low-pass filers are selected as anti-aliasing
and anti-imaging filters to compare their influences.

Filter 1: An Infinite-duration Impulse Response (IIR)
Butterworth Filter

The zero-phase digital filtering can be easily performed
by filtering the signal in the forward direction first. After
that, the filtered signal sequence is reversed and filtered
by the same filter. This way, the resulting signal sequence
has precisely zero-phase distortion because the phase lag
of the forward direction filtering is canceled by the phase
lead of the reverse direction filtering.

Filter 2: A Finite-duration Impulse Response (FIR) Win-
dow Filter

For a filter with a given cutoff frequency, its impulse re-
sponse sequence can be easily obtained from its frequency
response. Then, a Hamming window is employed to trun-
cate the infinite impulse response. To realize zero-phase
filtering, the filtering point is placed at the middle of the
window. The window has a length of 2q + 1. Obviously,
to realize this filter, the signal needs to be extended at
end-points.

Filter 3: Cliff filter

A cliff filter tries to achieve a “perfect” cutoff [5]. To realize
such a cliff filter, the signal is first transformed into the
frequency domain through a discrete Fourier transform.
Then, those frequency components reside in frequencies
above the cutoff frequency are deleted. This signal is then
taken the inverse transform to obtain the filtered signal in
the time domain. It is a non-causal filter with zero phase
shift.

4. SIMULATION RESULTS

To compare the performance of the ILC scheme with above
mentioned extension methods and filters, a system (7) is
employed and suppose the sampling frequency (feedback
rate) is 100Hz. That is, the sampling period is 0.01 second.

Gp(s) =
948

s2 + 42s + 948
(7)

The trajectory is defined as (8), which has a length of 10
seconds and contains two high frequency components at
8Hz and 10Hz, respectively.

yd(t) =45(1 − cos(0.2πt))+
0.15(1 − cos(16πt)) + 0.05(1 − cos(20πt))

(8)

4.1 Parameter selection

Learning gain Γ A high learning gain, although can gen-
erate a fast convergence speed, may degrade the tracking
performance in steady state response in the sense that ran-
dom noise going through the learning law will be amplified
[15]. Hence, a low value learning gain is suggested.

The learning gain has a range of 0 < Γ < 1/CsBs. For
(7), when sampling period changes from 0.01 second to 0.1
second (the sampling ratio changes from 1 to 10), all the
values of 1/CsBs for these different sampling ratios are
larger than 1. Therefore, the learning gain Γ is selected
conservatively as 0.5.
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Sampling ratio m We discretize the system model (7)
using the sampling period T = 0.01 second. Then, the
sign of 1 − ΓCfBf is checked. If condition (4) holds, the
sampling rate does not need to be reduced. On the other
hand, if the required condition is violated, the sampling
period is increased to 2T , 3T , and so on. This process is
repeated until the required condition holds for a sampling
period mT .

The trajectory (8) has 200 sampling points. With T = 0.01
second, |1 − ΓCfBf | = 0.9795 < 1 and 1 − ΓCfBf =
0.9795 > 0. The left hand side of (4) is 0.0411, while the
right hand side of (4) is 1.0717. Clearly, (4) is not satisfied.
Increase the sampling period and when it becomes 0.05
second, |1 − ΓCsBs| = 0.7226 < 1 and 1 − ΓCsBs =
0.7226 > 0. The first Markov parameter is 0.5548, while
the sum of all the remaining Markov parameters’ absolute
value is 0.5523. Condition (4) is satisfied. Note that when
sampling period becomes 0.05 second, the number of
sampling points ps is 200. Finally, m is selected as 5.

Cutoff frequency fc The sampling theorem states that
any signal can be reconstructed from sampling values as
long as it is sampled at a rate at least twice the highest
frequency present in the signal. Failure to do so results
in aliasing meaning that high frequency components will
appear in lower frequencies. To avoid the aliasing problem,
a low pass filter is applied to remove the frequency com-
ponents above half the sampling frequency. Suppose the
signal is downsampled by a ratio m, the bandwidth should
be band limited by π/m. Suppose the Nyquist frequency
is Fny, then, the cutoff frequency of anti-aliasing and
anti-imaging filter should be set as Fny/m. With Nyquist
frequency 50Hz and m=5, the cutoff frequency fc is given
as 10Hz.

4.2 Simulation results

In the following simulations, the Butterworth filter is 5th
order, the window of the window filter has a length of 101
points and 100 sampling points are added at both ends of
the signal.

A conventional ILC is used to compare with multirate ILC.
The conventional ILC has a learning law given in (2) with
a zero-phase low-pass filter is used to cut off frequencies
beyond the learnable bandwidth.

Figure 3 shows the tracking performance, given by root
mean square (RMS) error, of conventional ILC with three
different low-pass filters. Note that, the low pass filter here
is to cut off high frequencies that cannot make condition
(3) hold. The cutoff frequency is 3.5Hz, which is obtained
by discretizing the system (7) and then evaluating condi-
tion (3). The extension method 3 is used, that is, repeating
the end-points of the signal. It can be seen that, although
the difference is not obvious, the window filter shows the
best tracking performance while the cliff filter shows the
worst.

Figure 4 shows the tracking accuracies of conventional ILC
with a cutoff frequency of 3.5Hz, multirate ILC without
anti-aliasing and anti-imaging filters, and multirate ILC
with them. It is clear that multirate ILC has better per-
formance than conventional ILC, while the introduction of
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Fig. 3. Conventional ILC

anti-aliasing and anti-imaging filters further improves the
tracking accuracy. When filters are used, extension method
3 is used.
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Fig. 4. Comparison among multirate ILC with/without
anti-aliasing and anti-imaging filter and conventional
ILC

To highlight the advantages of the anti-aliasing and anti-
imaging filter, the tracking error signals from these three
different learning methods are shown in Figure 5 and
the power spectra of these error signals are compared in
Figure 6. Note that in Figure 5, the scales of the three
subfigures are the same and the improvement of tracking
error is remarkable. The tracking error of conventional
ILC, downsampled ILC and downsampled ILC with anti-
aliasing/anti-imaging filters are 0.25◦, 0.15◦, and 0.02◦,
respectively. The power spectra comparison in Figure 6
show that most error components below 10Hz has been
removed by the multirate ILC with anti-aliasing and
anti-imaging filters. While the other two schemes cannot
suppress some error components in these frequencies,
which results in large tracking error. The input signals
are shown in Figure 7.

Figure 8 shows the multirate ILC with different anti-
aliasing and anti-imaging filters. The extension method
3 is used again. The results show that window filter
and Butterworth filter have the similar tracking accuracy,
which are better than that of cliff filter.

Next, let’s investigate the influence of different extension
methods. The results are shown in Figures 9, 10, and
11 with Butterworth filter, window filter, and cliff filter,
respectively. First of all, these figures show that different
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extension methods only cause very slight difference in
tracking accuracy. Second, to get the best tracking accu-
racy, different filters requires different extension methods.
In practice, since the difference on tracking accuracy of
these extension methods are so small and neglectable,
extension method can be randomly selected.

Note that in traditional multirate signal processing, when
a slow rate signal is upsampled, zeros are added between
two sampling points rather than using a zero-order-hold.
This adding zeros interpolation method is evaluated under
different filters and compared with conventional ILC as
shown in Figure 12. It is clear from this figure that the
tracking accuracy of this interpolation method is much
poorer than conventional ILC.

From the results from Figure 3 to 12, some conclusions
can be drawn: 1. Multirate ILC has better tracking per-
formance than conventional ILC. 2. Anti-aliasing and anti-
imaging filters in multirate ILC further improve the track-
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imaging filters
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Fig. 9. DownsampledlILCwithButterworthFilter

ing performance. 3. Window filter and Butterworth filter,
in most cases, have better tracking than cliff filter. 4.
Interpolation through passing a zero-order-holder is neces-
sary. 5. Extension methods have little influence on tracking
performance.

5. CONCLUSION AND FUTURE WORKS

In this paper, the implementation of a multirate iterative
learning control, pseudo-downsampled ILC, is examined.
The influence of anti-aliasing and anti-imaging filters on
the tracking performance is investigated under three differ-
ent kinds of low-pass filters, Butterworth filter, window fil-
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ter and cliff filter. To realize zero-phase filtering and satisfy
the steady state frequency response of filtering, the signals
are extended with different methods. The influences of
these extension methods on the tracking performance are
discussed. Simulation results are presented to evaluate
the different combination of different filters and different
extension methods and some useful conclusions are drawn.

This paper considers several widely used filters and signal
extension methods. In the future, the effects of other fil-
ters, including using different windows and window lengths
in a window filter will be investigated. Moreover, some
experiment verifications will be carried out. To eliminate
the phase lag caused by some filters, it is also worth to
investigate other zero-phase filters for anti-aliasing and
anti-imaging. Finally, some efforts are necessary to analyze

the stability and errors associated with the process of
resampling and filtering.
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