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Abstract: Early fault detection and diagnosis in chemical process monitoring represents a challenge to be 

overcome. Another one concerns the spatial overlapping problem among distinct fault classes, once some 

events may only be distinguished from the others by taking into account its order of occurrence. The 

hidden Markov model (HMM) technique is capable of providing information about the tendency of the 

process and of modelling ordered data. Hence, the goal is to investigate the contribution of this technique 

to both aspects related to process monitoring activities. The case study is based on the DAMADICS 

benchmark actuator system. Both abrupt and incipient faulty events were investigated. To the former, 

detection and diagnosis tasks were immediately satisfied; and to the latter, they were carried out in a 

progressive and correct course. 

 

1. INTRODUCTION 

Process monitoring tasks in chemical industries are more and 

more usual in order to guarantee economic, safety and/or 

environmental goals. Undesirable situations may result in 

lower production, higher level of emissions, and equipment 

and personnel damages. A process monitoring activity has 

three major tasks: detection, diagnosis, and process recovery 

to a normal or at least a safety condition. Once it is unfeasible 

by visual inspection to identify such occurrences in its initial 

stage, computer-based systems play an important role with 

regard to early detection, fact that contributes to at least 

mitigate the potential risk of losses (Chiang, 2001). Due to 

complex plants, integrated operations, multivariable scenarios, 

and non-linear relationships, data-based methods are a matter 

of common sense concerning chemical process monitoring 

activities. A review about the fault detection and diagnosis 

subject is described in Venkatasubramanian et al. (2003a, b, 

c). The applications are usually based on residue metrics, and 

another way to approach the fault detection and diagnosis 

matter is making use of signal processing tools (Patton et al., 

2006). 

Besides early detection, another challenge in process 

monitoring is the spatial overlapping problem among distinct 

fault classes. Therefore, once some events may only be 

distinguished from each other by taking into account its order 

of occurrence, it is worthy to consider a times series 

modelling. In this context, the so-called hidden Markov model 

(HMM) method appears as a promising decision-making tool 

for helping control room operators to accomplish chemical 

process monitoring tasks. This data-driven technique belongs 

to the signal processing field and constitutes an alternative 

approach for the development of Fault Detection and 

Diagnosis (FDD) systems. Thus, this work investigates the 

performance of the hidden Markov model approach on 

accomplishing chemical process monitoring tasks. The case 

study is based on the DAMADICS actuator system, a control 

engineering benchmark (Syfert et al., 2003; Bartys and de las 

Heras, 2003). Studies concerning applications of HMMs on 

chemical process monitoring are those by Almeida and Park 

(2005), Tokatli and Cinar (2004), Yangsheng and Ming 

(2004), Sun et al., (2003), Chen and Chang (2000), Wong et 

al., (2001, 1998), Bakhtazad et al. (2000). 

The text is organized as follows. Next section presents the 

concept of hidden Markov models and section 3 describes the 

case study. Section 4 presents the methodology and section 5 

discusses the results. Final considerations are summarized in 

section 6. 

2. HIDDEN MARKOV MODELS 

Every chemical process is under random influences due to an 

inherent variability present in, e.g. raw material lots, external 

temperature, feed stream compositions, and air humidity. 

Therefore, measurements of process variables may be 

considered realizations of an underlying stochastic process. 

This way, processes under normal operations are described by 

characteristic probability distributions, and changes in its 

conditions are responsible for modifying such underlying 

distributions. In case of using parametric ones, such as 

Gaussians, it means a deviation in at least one of its 

parameters, i.e. its mean and/or standard deviation 

(Venkatasubramanian et al., 2003c). This is the motivation of 

putting together a signal processing tool and the chemical 

process monitoring activity once the hidden Markov model 

(HMM) method is capable of identifying changes of statistical 

nature in signals (composed by measurements of process 

variables). The most successful applications of HMMs are in 

the speech processing field, including both speech recognition 
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and speaker verification, since the seventies. Other areas of 

applications are handwriting recognition, image and video 

processing, financial market, telecommunications, and, 

recently, computational biology. 

2.1  Mathematical Formulation 

Hidden Markov models (HMMs) are a particular kind of 

Bayesian networks. Equation (1) is the factorization of its 

joint probability distribution for 1
st
 order HMMs, where 

q1..T = {q1,q2,…,qT} is a sequence of states, o1..T = {o1,o2,…,oT} 

is a sequence of observations (outputs), and t is an integer-

valued index. 

( ) ( ) ( ) ( ) ( )∏
=

=

T

2t

tt1-tt1111..T1..T q|oPq|qPq|oPqPo,qP  (1) 

It can be noticed that HMMs are a doubly stochastic process, 

in which the former is responsible for the state-transitions 

(P(qt|qt-1)), whereas the latter is related to the observation-

emissions (P(ot|qt)). The HMM concept is an extension of 

Markov chains once the state-transitions rule follows the 

Markov property, i.e. qt depends only on qt-1. The difference 

between both classes of models concerns the second process, 

which does not exist in Markov models, for which the 

relationship between states and observations is deterministic. 

The hidden term in HMMs is exactly due to its introduction 

since the underlying sequence of states, i.e. the Markov chain, 

is not directly observable. Fig. 1 depicts the Bayesian network 

representation according to the factorization of the joint 

probability distribution in (1) (Ghahramani, 2001). 
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Fig. 1. Bayesian network representation for 1
st
 order HMMs. 

Table 1 shows the three parameters to specify discrete HMMs, 

where MD is the number of distinct observation symbols in the 

emission probability distributions (each state has a particular 

distribution), and N is the size of the discrete state space. A 

compact notation for the parameters is given by λ, i.e. 

λ = (π,A,B). 

Table 1. Elements of discrete HMMs. 

Parameters Description 

}{aA ij=  
State-transition probability distribution. 

i)q|jP(qa t1tij === + , Nji,1 ≤≤ . 

(k)}{bB j=  
Emission (symbol) probability distribution. 

j)q|P(o)k(b tk1j === ν , DMk1 ≤≤ ,  Nj1 ≤≤ . 

}{ iππ =  
Initial state distribution. 

)iq(P 1i ==π , Nj1 ≤≤ . 

For the continuous case, the B matrix is replaced by 

probability density functions. The usual representation for 

them is a finite mixture of Gaussian distributions, as in (2), 

where ot is the observation vector at time t, MC is the number 

of mixture components per state, cjk is the mixture component, 

µjk is the mean vector, and Σjk is the covariance matrix, for the 

kth mixture component in the state j. Equation (3) is the 

stochastic constraints for cjk. The parameters π and A are the 

same as in the discrete case. 

∑
=

=
CM

1k

jkjktjktj ),,o(c)o(b ΣµΝ , Nj1 ≤≤  (2) 

∑
=

=
CM

1k

jk 1c , Nj1 ≤≤  (3a) 

0c jk ≥ , Nj1 ≤≤ , CMk1 ≤≤  (3b) 

2.2  Fault Detection and Diagnosis with HMMs 

An event (λ) classification is more reliable when also 

considering observed data (O), i.e. its conditional probability 

(P(λ|O)) rather than only its a priori probability (P(λ)). The 

former can be given by the Bayes rule, as in (4), where P(O|λ) 

is the likelihood of λ with respect to O. The probability 

distribution of the data (P(O)) is independent of λ; 

consequently (4) can be rewritten as in (5). Since in a fault 

detection task there is a single model, that characteristic of 

normal operation, P(λ) = 1, and hence the decision-making is 

based on the observed data, i.e. the likelihood function 

(P(O|λ)), which is exactly the output of HMMs. 

( ) ( ) ( ) P(O)λPO|λPλ|OP =  (4) 

( ) ( ) ( )λλλ P|OPO|P ∝  (5) 

In regard to a diagnosis task the winner HMM (λ*) is the one 

that maximizes the product between the likelihood function 

(P(O|λ)) and the a priori probability distribution for the 

models (λ). As it is in general assumed to be uniform, 

subjected to (7), once its determination is arduous, the 

decision-making process is also based on the likelihood 

function. 

( ) ( )]λPO|λ[Pmaxλ*
λ

=  (6) 

1)(P

j

j =∑ λ  (7) 

Thus, the goal of HMMs is to model sequential data. Fig. 2 

shows the input-output relation for them, in which the input is 

a temporal sequence of T vectors (O = {o1,o2,…,oT}), and the 

output is a likelihood value (-log[P(O|λ)]), which measures 

the capacity of the model (λ) in generating the observed data 

(O). Hence, it can be defined as a sequential pattern 

recognition tool. The sequence (or pattern) can be a set of 

symbols (discrete case) or real vectors of same size 

(continuous case). These elements are called frames and each 
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one carries a piece of information about the system at a given 

time t. The logarithmic form is preferable in order to avoid 

underflow computational problems (Rabiner, 1989). 

HMM (λ) -log[P(O|λ)]O={o
1
,o

2
,...,o

t
,...,o

T
}

 

Fig. 2. Input-output relation for HMMs: the observation 

sequence (O), and the likelihood function (-log[P(O|λ)]), 

respectively. 

3. CASE STUDY 

The case study is the DAMADICS benchmark (acronym for 

Development and Applications of Methods for Actuator 

Diagnosis in Industrial Control Systems) (Syfert et al., 2003; 

Bartys and de las Heras, 2003). Its purpose is the development 

of fault detection and isolation methods for final control 

elements in the industry environment. It is possible to 

simulate nineteen abnormal events from three actuators, and a 

fault scenario is characterized by the fault type in conjunction 

with the failure mode, which can be abrupt (A) or incipient (I). 

The focus of this study is the actuator responsible for 

controlling the thin juice flow rate into the first stage of the 

sugar evaporation station, as in Fig. 3. The goal of this unit is 

to concentrate the syrup from 14 % to 70 %. An alarm system 

warns if the level of syrup in the evaporator goes beyond 

safety operating limits. In case it is too low, an overheating of 

the evaporator chamber may occur, which represents a risk of 

explosion; on the other hand, a carry-over may contaminate 

subsequent processing units in the mill. 

 

Fig. 3. Actuator responsible for controlling the thin juice flow 

rate into the 1
st
 stage of the sugar evaporation station. 

Fig. 3 shows the actuator model block. The input variables are 

the controller output signal for the valve stem position (CV), 

the upstream and downstream pressures (P1 and P2, 

respectively), the fluid temperature (T1), and the vector of 

faults (f), and the outputs are the juice flow through the valve 

(F), and the position of the rod displacement (X). A detailed 

description about the DAMADICS benchmark is in Bartys et 

al. (2006). The output variables of the actuator model (F and 

X) are employed to construct the observation sequences 

(O = {o1,o2,…,ot,…,oT}, where o1 = [Ft=1 Xt=1]′ and so on). 

Actuator

Block

CV
 P1
 P2
 T1
 f
 

F
 X
 

 

Fig. 3. General scheme for the actuator model. 

Table 2 presents the three faults under analysis, which belongs 

to the class of external faults, and the four fault scenarios 

derived from it. Since it is unfeasible for mills’ operators to 

directly monitor root causes of faulty events (the hidden 

process), the idea is to infer about the state of the evaporation 

station by monitoring key process variables (the observable 

process). A single fault is considered to occur at a time. 

Table 2. Fault scenarios. 

Fault Fault description 
Failure 

mode
†
 

f16 Positioner supply pressure drop A 

f17 
Unexpected pressure change across the 

valve 
A / I 

f18 Fully opened by-pass valve A 
†A: Abrupt, I: Incipient. 

4. METHODOLOGY 

4.1  Data Generation Step 

A simulator of the actuator model (available for MatLab-

Simulink) is employed to generate both normal and faulty 

data. Three sets are obtained (training, validation and test), 

each one containing observation sequences (O) for each 

operating condition, whose number depends on the failure 

mode. To consider process disturbance and measurement 

noise artificial noise are added to all signals. Due to the choice 

of using discrete HMMs a vector quantization procedure on 

the original signals is needful. The k-Means algorithm is used 

in this task and the number of distinct output symbols is a 

parameter to be determined. 

4.2  Model Identification Step 

The aim of this step is to obtain a HMM for each operating 

condition: the normal and the three abrupt faults. The data set 

concerning the incipient fault is only used in the test step. 

Initially, a plenty of models are generated by varying the 

number of distinct symbols (MD), from 2 up to 64 in step of 2, 

and the number of states of the Markov chain (N), from 2 up 

to 12. The topology of the models is a fixed parameter being 

used the left-to-right one. In this particular case, aij = 0 for 

j < i, i.e. it is not possible to jump to a state with a lower 

index. Furthermore, for the initial state probabilities; πi = 0 if 

i ≠ 1 and πi = 1 if i = 1, once the state sequence begins in 

state 1 and ends in state N. This topology is useful whenever 

the statistical properties of the signals changes in a periodic 

way as is the current case. This procedure generates 1408 

models (i.e. number of distinct symbols � number of hidden 

Markov models � number of states = 32 � 4 � 11 = 1408). The 

model selection is based on the likelihood function (-

log[P(O|λ)]) calculated onto the validation set. The final 

result is a single model for each operating condition: the 

normal (N) and the abrupt faulty events (f16A, f17A and f18A). 

In order to refine the models parameters a reestimation 

procedure using both sets (training and validation) is 

accomplished. 

1st stage 

juice flow 

actuator 
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4.3  Test Step 

A data set representing an operating condition in particular is 

fed simultaneously to all previous identified HMMs. This 

action is repeated for each fault scenario (cf. Table 2). The 

first eight observation sequences (O1,O2,…,O8) are related to 

the normal operation, and the fault start up is at O9. A 

continuous feed of sequences allows the investigation of both 

the performance of the HMM representing the normal 

operation (N-HMM), issue regarding the detection task, and 

the behaviour of the faulty models (f16A-, f17A- and f18A-

HMM), issue concerning the diagnosis task. The Hidden 

Markov Model Toolbox for MatLab (Murphy, 1998) was 

employed in both the model identification and the test steps. 

5. RESULTS AND DISCUSSION 

5.1  HMMs Identification 

Fig. 4(a) shows the temporal patterns related to the normal 

operation and the abrupt fault events to the juice flow rate 

signal (F). It can be observed the changes in the signals 

trajectories after the faults start up, i.e. from O8 to O9. The 

data are scaled to the range [0, 1]. Fig. 4(b) shows the spatial 

overlapping among these distinct conditions mainly between 

the normal operation and the abrupt fault f16 (f16A). 

Therefore, it can be verified the value of considering a 

sequential data modelling, such as HMM, since the temporal 

order of the events (given by the observations, ot) is relevant 

information regarding the discrimination of operating 

conditions. Table 3 summarizes the results for the model 

identification step. The final number of distinct symbols (MD) 

was 46, that is, each state of the Markov chain is capable of 

emitting 46 distinct observations. It can be noted that there is 

a single codebook and what distinguishes one operating 

condition from the others is the temporal order of the events. 

Finally, the discrepancy among the mean likelihood values 

suggests that these models may be employed to perform a 

fault isolation task (a subject beyond the scope of this paper), 

an action that limits the search space of possible causes for 

abnormal events, which contributes to mitigate potential 

losses. 

Table 3. Final result for the model identification step 

(corresponding to the codebook of size 46). 

HMM 
Operating 

condition 
Code 

Number of 

states (of the 

Markov chain) 

-log[P(O|λ)] 
(mean value) 

1 

2 

3 

4 

Normal 

Abrupt fault 

Abrupt fault 

Abrupt fault 

N 

f16A 

f17A 

f18A 

9 

2 

7 

10 

112.2 

138.3 

133.4 

104.2 

5.2  Detection and Diagnosis Tasks 

A set of observation sequences (O) belonging to a particular 

fault scenario are simultaneously fed to all four models. The 

results for both monitoring tasks, detection and diagnosis, are 

shown at the same plot. Its presentation was split according to 

the failure mode (abrupt and incipient). 
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Fig. 4. (a) Temporal patterns for both the abrupt fault events 

(f16A, f17A and f18A) and the normal operating condition to 

the juice flow rate signal, and (b) the spatial overlapping 

problem among them. 

Abrupt faults. Fig. 5 shows the behaviour of all HMMs when 

subjected to the abrupt faults, f16, f17, and f18, respectively. 

Each point represents a likelihood value for an observation 

sequence (O) in particular. The following comments refer to 

f16. (A similar analysis is valid for f17 and f18.) At first, as it 

was expected, the highest output values were generated by the 

model characteristic of normal operations (N-HMM), once the 

first eight sequences (O1,O2,…,O8) are composed by 

measurements collected with the actuator operating in normal 

conditions. After the fault occurrence, the model identified for 

the abrupt fault f16 (f16A-HMM) becomes the winner, 

whereas the values generated by the other faulty models are 

kept low. In other words, the probability of N-HMM in 

generating the observation sequences after the fault 

occurrence diminishes, on the other hand f16A-HMM 

becomes the most probable generator of such sequences, 

which is indicative of the occurrence of this fault, related to 

the positioner supply pressure drop (cf. Table 2) in the 

actuator responsible for controlling the thin juice flow rate 

into the 1
st
 stage of the evaporation station. Therefore, both 

monitoring tasks (detection and diagnosis) were immediately 

satisfied after faults occurrence, in response to abrupt changes 

in at least one of the monitored variables (F and X) that 

compose the observations (ot) in the sequences (O). 
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(c) 

Fig. 5. Fault detection (given by the model characteristic of 

normal operations: N-HMM) and diagnosis (given by the 

faulty models: f16-, f17-, and f18-HMM) when the process is 

subjected to the abrupt faults: (a) f16, (b) f17, and (c) f18. 

Incipient fault. The model identified for the abrupt fault f17 

was employed to detect the incipient fault f17. The first eight 

observation sequences also refer to the normal condition. 

Fig. 6 shows the results when all models are subjected to this 

event. After fault start up, the probability of f17A-HMM in 

generating the sequences becomes higher in comparison to N-

HMM. This fact can be explained by the analysis of the 

monitored signals, once they go towards the pattern for the 

abrupt fault f17. Lower likelihood values from the model 

characteristic of normal operations are indicative of possible 

upsets. Such tendencies are valuable information for mills’ 

operators so that to take decisions in advance in order to 

recover the process. About the detection task, there is a delay 

of one observation sequence, since the first lower output value 

from N-HMM corresponds to the 10
th

 sequence (O10). The 

fault strength (f) at this time is small, equal to 5.6%. f17A-

HMM becomes the winner-model after the 18
th

 observation 

sequence (O18) when f is equal to 27.8%. The output of this 

model becomes flat after more six sequences, i.e. at O24, 

where f equals 44.5%. Such stability for the likelihood 

function confirms that there is an unexpected pressure change 

across the valve (cf. Table 2). This incipient event is only 

completely developed (i.e. f = 100.0%) at O44. This example 

illustrates the possibility of reaching early fault detection and 

diagnosis, with a monitoring system based on the hidden 

Markov model method, once it provides information about the 

tendency of the process. 
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Fig. 6. Fault detection (given by the model characteristic of 

normal operations: N-HMM) and diagnosis (given by the 

faulty models: f16-, f17-, and f18-HMM) when the process is 

subjected to the incipient fault f17. 

6. FINAL CONSIDERATIONS 

A fault detection and diagnosis system based on hidden 

Markov models was developed. Using the DAMADICS 

benchmark actuator system it was possible to verify its 

capacity in accomplishing process monitoring tasks. The 

model characteristic of normal operations was able to detect 

abrupt events immediately after its occurrence in response to 

abrupt changes in at least one of the monitored variables (i.e. 

F and/or X). In the same way, faulty models correctly 

diagnosed the corresponding undesirable events. (This study 

can be expanded to all possible abnormal events in the 

benchmark.) This sequential pattern recognition tool plays an 

important role when the identification of different operating 

conditions requires a temporal evolution analysis, once some 

patterns may only be distinguished from each other by 

considering the sequence of events. In addition, by using a 

temporal sequence of observations as model input, a 

reinforcement of the discrepancy between normal and 

abnormal conditions may occur, which suggests early fault 

detection in comparison to methods where the decision-

making is based on residues. Another positive aspect is the 
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resulting trend plot, given by the likelihood values, which 

may provide information about the current/future state of the 

process condition. In brief, the results are very encouraging 

concerning the application of hidden Markov models in 

chemical process monitoring activities. 
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