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Abstract: The objective of this paper is describe a new paradigm for the trading of
equities. In our formulation, the control corresponds to a feedback law which modulates the
amount invested I(t) in stock over time. The controller also includes a saturation limit Imax

corresponding to a limit on the value at risk. The admissible stock price evolution p(t) over
time is modelled as a family P of uncertain inputs against which we seek robust returns.
Motivated by the fact that back-testing of candidate trading strategies involves significant
cost and effort associated with computational simulation over sufficiently diverse markets, our
paradigm involves the notion of synthetic prices and some idealizations involving the volatility
of prices and trading liquidity. Our point of view is that a robust performance certification in
this somewhat idealized market setting serves as a filter to determine if a trading strategy is
worthy of the considerable time and expense associated with full-scale back-testing. The paper
also includes a description of a so-called saturation reset controller. This controller is used to
illustrate how the model works in practice and the attainment of robustness objectives over
various sub-classes of P.
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1. INTRODUCTION

This paper relates to a body of literature commonly known
as technical analysis; e.g., see Archelis (2000) for an intro-
duction. In this setting, the so-called market technician
typically begins with past prices and trading volume in
order to generate predictions about future prices. Having
a degree of confidence in such a prediction suggests making
an investment with the goal of producing “excess returns.”
That is, based on prediction of future prices, a trading
rule, which times one’s degree of investment in the market,
is aimed at generating stock returns which exceed some
standard benchmark such as buy-and-hold.

The notion of trading rules based on technical analysis
appears to originate in the late eighteen hundreds in the
reporting of Wall Street Journal editor Charles Dow. In
more recent times, early studies such as those of Alexan-
der (1961) and Fama and Blume (1966) concentrate on
simple “filter rules” which generate buy signals when
the equity or index under consideration moves a certain
amount up from a recent low. Taking transaction costs
into account, which were much more significant then versus
now, these authors argue such rules are not capable of gen-
erating excess returns; see also Dooley and Shafer (1983)
and Sweeney (1986) where similar findings were obtained
in a foreign exchange rate context.

Consistent with this early work on technical analysis was
the widely held point of view in the academic community
that the attainment of excess returns, except in some rare
exceptional cases, is an impossibility. This view was based

largely on the notion of efficient capital markets; e.g., see
Fama (1970). That is, if one accepts the argument that
current prices incorporate all relevant information about
the future, there is nothing to be gained via technical
analysis; e.g., see Malkiel (1981). On the flip side, technical
analysts argue that the notion of efficient capital markets
is an abstraction which is not applicable in most real-world
trading situations.

Following the trading rule literature into the eighties and
nineties, we see many papers arguing that technical anal-
ysis can indeed be efficacious. That is, we see a swinging
of the pendulum away from the efficient market point of
view. In this regard, Brown and Jennings (1989) provide
motivation by describing a scenario under which techni-
cal analysis can be powerful. Subsequently, Frankel and
Froot (1990) provide evidence for the usefulness of charts
(for example, stock price and volume versus time) and we
see papers by Sweeney (1988) and Neftci (1991) studying
the attainability of excess returns using trading rules based
on moving averages. In this vain, the paper by Brock,
Lakonishok and LeBaron (1992) is heavily cited. By back-
testing two of the simplest and most popular trading rules
involving moving averages and trading range breaks, they
provide strong statistical evidence that technical analysis
might lead to excess returns; see also Blume, Easley and
O’Hara (1994) and Lee and Swaminathan (2000) where
the role of volume information is studied.

Finally, to complete this abbreviated review, we note
that the literature of the nineties also includes a num-
ber of papers raising the possibility that technical anal-
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ysis may be more powerful in foreign exchange markets
than equity markets; e.g., see Levich and Thomas (1993),
Neely (1997) and Gencay (1998), LeBaron (1999) and
Neely and Weller (2001). In addition, the literature also
includes a number of well known results further bolstering
the arguments for technical analysis in an equity context.
This is illustrated by the paper by Lo, Mamaysky and
Wang (2000) which analyzes the effectiveness of the fa-
mous “head and shoulders” chart pattern and the paper
by Kavajecz and Odders-White (2004) where support and
resistance levels are studied.

1.1 Motivation for This Paper

Looking at the technical analysis literature described
above, we see that various trading strategies are proposed
and the “proof” of their efficacy involves making a case
that “excess returns” are obtained in comparison to some
standard method which does not involve the use of market
timing. For example, authors often make the case that
their technical trading rule out-performs the classical buy-
and-hold strategy. In this regard, it is widely recognized
that the pitfalls of “data snooping” are to be avoided.
Roughly speaking, this means the following: If back-testing
of a trading rule is not carried out on a diverse and rich
enough set of market scenarios, there is a tendency for
researchers to obtain results which are consistent with
their natural predilections; e.g., see Sweeney (1988).

Motivation for this paper is provided by the fact that
“proper” back-testing of candidate trading strategies in-
volves significant cost associated with computational sim-
ulation over sufficiently diverse markets. To this end, our
new paradigm involves the notion of synthetic prices and
some idealizations involving the volatility of prices, trading
liquidity and transaction costs. In addition, we specify a
class of admissible price variations P and then establish
robustness results with respect to various subclasses; see
Section 4. In this way, before testing a trading algorithm on
real data as in Section 5, it is first certified in a theoretical
context. We view this as a first step in the process of
identifying potentially efficacious trading strategies. Our
point of view is that a robust performance certification in
our idealized synthetic market setting serves as a filter to
determine if a trading strategy is worthy of the consid-
erable time and expense associated with full-scale back-
testing.

1.2 Control Theory Point of View

Taking the point of view of robust control, our approach
does not involve any type of stochastic modelling or the use
of volatility measures; e.g., see Black and Scholes (1973).
Instead, consistent with the tenets of robust control,
we seek “certification” of the performance of a trading
strategy with respect to a class P of admissible stock price
variations. As a simple illustration, if a stock begins at
price p0 at time t = 0 and does a round-trip leading to
price, p(T ) = p0 at some future time T , will the trading
strategy perform better than buy and hold? In this first
paper introducing our new paradigm, we analyze a trading
rule in the context of three classes of price variations which
we define: bullish price variations, bearish price variations
and round-trip price variations: The expansion of this

paradigm to other robustness scenarios is relegated to
future research.

Motivated by our earlier discussion about the costli-
ness and labor intensive aspects of back-testing, our new
paradigm involves the notion of synthetic price variations.
Using this theoretical construct before bringing real mar-
ket data into the picture, we are able to separate the
“wheat from the chaff” in the following sense: We can
rapidly determine which trading strategies are worthy
of more serious consideration. In this idealized setting,
we limit volatility by including a smoothness assumption
about price variations, a liquidity assumption about the
rate at which trades can be executed and an assumption
that brokerage costs are negligible. Our point of view is
summarized as follows: Before one invests inordinate time
and effort back-testing a candidate strategy, a necessary
condition is that its efficacy should be established under
these idealized market conditions.

2. THE IDEALIZED SYNTHETIC PRICE MODEL

We assume continuously differentiable price variations p(t)
on the time interval [0, T ]. Notice that this assumption
rules out price gaps which may occur following various
events such as earnings announcements or major news. In
addition, it is assumed that the trader can react imme-
diately to observed price variations with zero transaction
cost. That is, the stock position can be updated almost
instantaneously as price changes occur. Note that such an
assumption idealizes the situation faced by the day trader
and is more analogous to programmed trading. It is a
type of perfect liquidity assumption with no gap between
the bid and ask prices. Our most general formulation also
assumes a margin account which and a money market rate
which is available for uninvested funds.

2.1 Classes of Price Variations

Henceforth, we use P to denote the class of admissible
price variations described above. For the purposes of
robustness analysis, we also define various sub-classes of P
as follows: Indeed, the class of bullish price variations is
defined by

P+
.
= {p ∈ P : p(T ) > p0},

the the class of bearish price variations is defined by

P−

.
= {p ∈ P : p(T ) < p0},

and the the class of round-trip price variations by

P0
.
= {p ∈ P : p(T ) = p0}.

We also parameterize each of these classes in terms of the
maximal price

pmax
.
= max

t∈[0,T ]
p(t).
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That is, for γ ≥ 1, we define

P+(γ)
.
= {p ∈ P+ :

pmax

p0
= γ},

P−(γ)
.
= {p ∈ P− :

pmax

p0
= γ},

and

P0(γ)
.
= {p ∈ P0 :

pmax

p0
= γ}.

2.2 Investment, Value, Trading Gains and Feedback

Henceforth, at time t ∈ [0, T ], we let V (t) denote the value
of the trader’s account. We further decompose V (t) into
two components. The first component, denoted I(t), and
denotes the amount invested. For simplicity of exposition,
we assume I(t) ≥ 0 while noting that this assumption
is being made solely for simplicity of exposition; i.e.,
the paradigm to follow is readily modified to accommo-
date I(t) < 0 with the appropriate interpretation that
stock is being shorted. At any time, the idle cash in the
account, V (t) − I(t), is assumed to increase at a specified
money market rate m. For the case, when V (t)− I(t) < 0,
this cash deficit will accrue interest at the broker’s margin
rate. Finally, we assume initial conditions V (0) = V0

and I(0) = I0 and keep track of gains or losses as the
trade evolves. That is, the gain or loss, g(t), with its initial
condition g(0) = 0 is given by g(t) = V (t) − V (0).

Our paradigm allows I to be a feedback control which
processes the available states such as stock price, account
value or trading gains and losses. By continuously modu-
lating the amount invested, our objective is to maximally
increase the account value V (t) while satisfying various
conditions along the way. Finally, to limit the value at
risk, a consideration which is critical to most traders, our
model also includes a saturation limit I(t) ≤ Imax on the
amount which can be invested or shorted at any time. A
classical feedback setup illustrating one possibility for the
scenario above is given in Figure 1.

Gain/Loss

Dynamics

Trading 

Feedback 

Strategy

stock gain g(t)

investment I(t)

stock price p(t)

CONTROLLED INPUT

UNCONTROLLED INPUT

PERFORMANCE OUTPUT

Figure 1: Control System Point of View

2.3 The Saturation Reset Controller

At the most general level, the amount invested I(t) is a
feedback which can be rather arbitrary. In this paper, to
demonstrate the type of robustness results which are possi-
ble, we consider a simple modification of the classical linear
time-invariant state feedback controller. Roughly speak-
ing, subject to the saturation limit Imax, this controller
exploits a pure gain K to add to the amount invested
when the stock is faring well and reduces one’s position as
the setting becomes bearish. More precisely, when dg < 0,

the amount invested is decreased according to the require-
ment dI = Kdg. On the other hand, if dg > 0, there are
two possibilities: When operating outside the saturation
regime, an infinitesimal trading gain dg dictates again
dictates an incremental change in investment dI = Kdg.
This time, however, this change corresponds to increasing
the amount invested. When operating inside the saturation
regime with dg > 0, then the invested amount is reduced
to maintain the saturation limit I(t) = Imax. In other
words, this gain dg is banked at the money market rate.
To summarize these ideas in terms of time evolution, prior
to saturation we have

dI

dt
= K

dg

dt
,

with its solution I(t) = I0 + Kg and during saturation,
the we require I(t) = Imax; i.e., the invested funds are
held fixed.

Finally, associated with this controller, we define the initial
trading allocation constant

∆
.
=

Imax

I0
.

Note that this constant can be viewed as a measure of
conservatism of the controller. The most aggressive trader
might select ∆ = 1; i.e., invest all available funds at t = 0.
On the opposite extreme, a very conservative investor
might begin with most funds in the fixed income money
market and select a small percentage of V0 to be subjected
to risk; i.e., use a large ∆.

3. CLOSED LOOP TRADING DYNAMICS

We consider an infinitesimal time increment dt over which
we update both the trading gain g and the account
value V . We first consider the case when I ≤ V and
with m being the money-market rate and dp being the
corresponding stock price increment, we first obtain incre-
mental contributions to trading gains given by

dg =
dp

p
I.

Now, noting that the incremental contribution to the
account value comes from both the stock gains and idle
or borrowed cash, we obtain

dV = dg + m(V − I)dt

Note that when I > V , we can use the same equation
above provided that m is interpreted to be the broker’s
margin rate.

3.1 Non-Saturation Regime

When I < Imax, recalling that the incremental investment
is given by dI = Kdg, we have I = I0 + Kg and the
incremental gain above is rewritten in closed loop form as

dg =
dp

p
(I0 + Kg).

Now, by re-arranging the equation above as
dg

I0 + Kg
=

dp

p
,

a straightforward integration leads to the trading gain
formula

g(t) =
I0

K

[

(

p(t)

p0

)K

− 1

]
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and resulting investment, as a function of price, given by

I(t) = I0

(

p(t)

p0

)K

.

Notice that the non-negativity of I(t) assures that this
type of controller never leads to a short position. It now
remains to obtain a solution for the associated account
value V (t). Indeed, rewriting the infinitesimal dV equation
in time derivative form and substituting the solution
for I(t) above, after some algebra, we obtain the closed
loop account value equation

dV

dt
= mV + I0

(

p

p0

)K [

1

p

dp

dt
− m

]

whose solution is given by

V (t) = emtV0+I0

t
∫

0

(

p(τ)

p0

)K [

1

p(τ)

dp(τ)

dτ
− m

]

em(t−τ)dτ.

3.2 Saturation Regime

Letting [t∗, t] denote a time interval over which we
have I = Imax, the incremental trading gains above be-
come dg = dp

p
Imax which integrates to

g(t) = g(t∗) + Imax log

(

p(t)

p(t∗)

)

where t∗ is the time at which this saturation begins. From
the analysis for the non-saturation regime above, it is easy
to see that the first such time is given when the price
reaches level

p∗ = ∆
1

K p0

and in a manner analogous to the non-saturating case, the
corresponding value function V (t) can be obtained.

4. PROPERTIES AND ROBUSTNESS RESULTS

The saturation reset controller described in the preceding
section has a number of robustness properties. That is,
via the next two lemmas and the theorem which follows,
we establish properties that are enjoyed by V (t), I(t)
and g(t) which are guaranteed to hold no matter what
price realization p(t) occurs within the designated sub-
class of P. Due to space limitations, only sketches of the
proofs are given. The first such property is that one never
requires the use of margin. That is, along any admissible
price trajectory p(t), the condition V (t) ≥ I(t) is always
satisfied.

4.1 No-Margin Lemma

For any p ∈ P, it follows that the saturation reset con-
troller results in a closed loop system satisfying V (t) ≥ I(t)
for all t ∈ [0, T ].

Sketch of Proof: It suffices to prove the result with zero
money market rate m = 0. That is, the V (t) resulting
from m = 0 will be a lower bound and I(t) is invariant
to m. Now, for notational simplicity, we work with the

relative price ρ(t)
.
= p(t)

p0

. It suffices to show that the

price ρ∗ = ∆
1

K at which saturation occurs is no greater
than the price, call it ρM , at which use of margin is

triggered. Indeed, by setting V (t) = I(t) to trigger margin,
a straightforward computation leads to

ρM =

[(

K

K − 1

) (

∆ −
1

K

)]
1

K

.

To complete the proof, one calculates the quotient

ρM

ρ∗
=

(

K

K − 1

[

1 −
1

K∆

])
1

K

from which it can be deduced, using ∆ ≥ 1, that ρM ≥ ρ∗.

The second robustness property which we now establish is
that the saturation reset controller results in trading gains
which depend only on the initial price p0, the maximal
price pmax and the final price p(T ). That is, the trading
gains g(T ) are invariant to “wiggles”in p(t) for 0 ≤ t ≤ T .

4.2 Price Wiggle Invariance Lemma

The saturation reset controller results in terminal gain g(T )
which depends only on p0, pmax and p(T ).

Sketch of Proof: For the case when p(t) never enters the
saturation regime, the result follows from the formulae
given in Section 3. In this case pmax does not enter g(T ).
On the other hand, for the case when saturation occurs,
we consider the subcase when p(t) increases monotonically
to pmax and then decreases monotonically to p(T ). Using
the formulae in Section 3, a lengthy computation, leads to

g(T ) =
1

K

(

p(T )

pmax

)K

+

(

pmax

p0

)

∆−
1

K −
1

K∆
− 1.

In other words, the gains are invariant to the time vari-
ations in the price. Finally, to complete the sketch of
the proof, we note that the case of non-monotonic price
variations can be reduced to the monotonic case.

4.3 Arbitrage-Like Possibilities

The saturation reset controller has an important arbitrage-
like property which we now illustrate in the context of
round-trip price variations. In the full version of this paper,
analogous arbitrage results will also be given for the classes
of bullish and bearish price variations. More specifically,
the main result in this section is that the saturation reset
controller will outperform a buy-and-hold strategy when-
ever a round trip in prices occurs which includes satura-
tion. Whereas the buy-and-hold leads to g(T ) = 0, we show
below that a the saturation reset controller will result in
a strictly positive gain g(T ) > 0. While this property is a
plus over this class of round-trip variations, it should be
noted that there is no “free lunch.” In this regard, we note
that there are cases for which a buy-and-hold strategy will
result in superior performance over saturation reset con-
trol; e.g., a suitably large monotonic bullish price variation
which outweighs the gains attributable to money market.
On the flip side, for a bearish price variation, as illustrated
by examples in the examples to follow, the saturation reset
control results in superior performance over buy-and-hold.
This is important when capital preservation is emphasized.
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4.4 Arbitrage Theorem

For γ > ∆
1

K and p ∈ P0(γ), the trading gain is given by

g(T ) = γ∆−
1

K +
1

KγK
−

1

K∆
− 1.

Moreover, for such a round-trip price variation, it follows
that g(T ) > 0.

Proof: To focus on the dependence on γ, we use the
shorthand notation G(γ) to denote the value of g(T ) with

all parameters but γ fixed. With γ∗
.
= ∆

1

K denoting the
saturation value for γ, observing that that G(γ∗) = 0, to
complete the proof, it suffices to show that dG/dγ > 0

for all γ > ∆
1

K . Indeed, a straightforward differentiation
yields

dG

dγ
= ∆−

1

K −
1

γK log(γ)
.

Since pmax > p0 forces γ > 1, using lower bound γ > ∆
1

K ,
the positivity of G(γ) and hence g(T ) is immediate.

4.5 Example

To illustrate the use of synthetic prices in the context of
saturation reset control and the Arbitrage Theorem, we
consider the synthetic price variation

p(t) = 10 + 3 sin 2πt + 0.5 sin 9πt.

with terminal time T = 1 representing one year and
money market rate of 5% per annum. We implement
the saturation reset controller with feedback gain K =
4, maximum investment Imax = $10, 000 and initial
investment I0 = $5, 000. Note that the price variation
above is in P0(γ) with γ ≈ 1.346. Hence the Arbitrage
Theorem predicts that we should improve upon the break-
even performance of buy-and-hold. This is verified in
Figures 2 and 3 where trading gains and investment are
plotted. From these two figures, one can also observe the
controller performance with respect to the classes of bullish
and bearish price variations. For example, over the period
between that the maximum price and its first zero crossing,
we observe the investment is rapidly attenuated and leads
to a loss which is far less than the one resulting from buy-
and-hold.

0 0.2 0.4 0.6 0.8 1

−3000

−2000

−1000

0

1000

2000

3000

4000

Saturation Reset Control 

Buy and Hold 

GAIN or LOSS in ACCOUNT VALUE V − V
0

TIME 

Figure 2: Saturation Reset Versus Buy and Hold

5. PRACTICAL IMPLEMENTATION

As noted in the introduction, the use of synthetic
prices p(t) with their required smoothness is an ideal-
ization. In this section, we consider the saturation reset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000

TIME 

AMOUNT INVESTED 

Figure 3: Investment Using Saturation Reset

controller in a more real world environment. To this end,
we now introduce sampling time between trading oppor-
tunities and note that the scale of the inter-sample times
has no effect on the model equations below provided the
appropriate rate constant m is used; e.g., the constant m
could equally well be an interest rate per day or an interest
rate per annum. Indeed, we let p(k), V (k), I(k) and g(k)
denote the discrete-time counterparts of p(t), V (t), I(t)
and g(t) respectively. Now, beginning from the initial
state p(0) = p0, V (0) = V0, I(0) = I0 and g(0) = 0 and
defining the one period rate of return

ρ(k)
.
=

p(k + 1) − p(k)

p(k)
,

it follows from the continuous-time analysis that in the
non-saturation regime, the dynamic update equations are

g(k + 1) = g(k) + ρ(k)I(k);

V (k + 1) = (1 + m)V (k) + (ρ(k) − m)I(k);

I(k + 1) = (1 + Kρ(k))I(k).

Note that when the controller saturates, we simply
use I(k + 1) = Imax above.

5.1 Example (NASDAQ Round Trip)

In this example, we illustrate the use of the saturation
reset controller in the context of trading an exchange
traded fund, the QQQQ, representing the NASDAQ. We
consider turbulent fourteen month period beginning on
October 18, 1999. During the first half of this period, the
raging dot com bull market was in full swing and the
index approximately doubled. During the second half of
this round-trip, we see the beginning of the dot com bust.
Hence, the buy and hold investor breaks even. To simulate
the performance of the saturation reset controller, we used
maximum investment Imax = $10000, initial investment
I0 = 7500, controller gain K = 4 and a money market
rate of 5% per annum. Closing prices for the QQQQ
were used in the simulation. Whereas the buy and hold
cannot generate a profit on a round trip price variation, the
saturation reset controller results in a a gain of $3582; note
that this result is consistent with the Arbitrage Theorem;
see also Figure 5 where the amount invested is shown.

6. CONCLUSION

In this paper, a new paradigm for trading of equities was
introduced. Instead of assuming a stochastic model for
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Figure 4: Nasdaq Roundtrip
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Figure 5: Amount Invested

stock price variations, a robustness approach was pursued.
The saturation reset controller was introduced in order to
demonstrate the “potential” for use of control concepts in
an equity trading context. It may well be the case that
future researchers can derive other simple control laws
which result in robust performance which is better than
that provided here. Finally, it should also be mentioned
that this initial work suggests further research on many
new and important problems. For example, the choice of
the controller gain K, while de-emphasized in this initial
work, would be important to consider in the future.
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