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Abstract: The active queue management (AQM) problem of networks is discussed. An AQM scheme is 
presented based on improved sliding model controller. The proposed controller combines the excellent 
characteristics of linear sliding model controller (LSMC) and the terminal sliding model controller 
(TSMC). The LSMC is used to speed up the error convergence when the error is greater than one, and the 
TSMC is adopted to guarantee the error convergence to zero in a finite time when the error is around the 
zero. The chattering in the conventional sliding model control systems is avoided with the employed 
continuous controller. The simulation results show that the proposed scheme has strong robust against the 
network modeling uncertainties and disturbances, as well as leads to the convergence of the output queue 
to the desired value quickly and precisely than employing either LSMC or TSMC alone. 

 

1. INTRODUCTION 

If there are more data packets in networks, then the network 
performance will descend, that is called congestion (Nagle, 
1984). It seems that it is the direct results of lacking network 
resource (Luo et al., 2001, Ren et al., 2003). But increasing 
the single resource purely is no sense. It needs a congestion 
control scheme on the networks to solve the congestion 
problem. The TCP congestion control mechanisms, while 
necessary and powerful, are not sufficient to provide good 
services in all circumstances, especially with the rapid 
growth in size and the strong requirement for QoS guarantee, 
because there is a limit much control can be accomplished at 
the end system. It is needed to implement some measures in 
the intermediate nodes to complement the end system conge-
stion avoidance mechanisms. 

Active queue management (AQM), as a class of packet 
marker/dropping mechanism in the router queue, is recently 
proposed to support the end-to-end congestion control in the 
Internet (Braden et al., 1998). It has been a very active 
research area in the Internet community. RED (Floyd et al., 
1993) is originally proposed to achieve fairness among 
sources with different burst attributes and to control queue 
length. Despite of its meeting the requirements of AQM, it 
dependents on experience and the optimal parameters are 
hard to obtain, as well as the design is not always scientific 
and reasonable for all conditions. 

There are different methods based on TCP model to over-
come its disadvantages. For example, Hollot et al. (2001) 
employs the control theory to set the parameters. The non-
linear dynamic model for TCP flow control (Misra et al., 
2001) is inspired by Hollot to design the PI controller for 
AQM. But systems can not work well under the dynamics 

circumstance, for they always base on the certainly linear 
model. Considering the uncertain parameters, the method to 
control the congestion should have strong robustness. 

In this paper, we will follow the design approach based on 
the theoretical model. Sliding mode control (SMC) is robust 
to uncertainty and disturbances, as well as has good transient 
performance. SMC is employed to solve this problem in 
several references. But based on the references (Man et al., 
1994, 1995), we can see that the error convergence in linear 
sliding mode control (LSMC) systems is faster if the absolute 
values of errors are greater than one and then the error will 
asymptotically converge to zero if the time t tends to infinity. 
However the terminal sliding control system (TSMC) has a 
different convergence property. That is, if the error is greater 
than one, the error convergence is slower than that in the 
LSMC. After the error is less than one, the error can quickly 
converge to zero in a finite time in the TSMC systems.  

Based on the above observation, we propose a new fuzzy 
sliding mode controller to combine the advantages of both 
the LSMC and TSMC to improve the error convergence. It is 
shown that the design of sliding mode control system is 
divided into two steps. An LSMC controller is designed first 
to speed up the error convergence. A TSMC controller is then 
designed to guarantee that the error converges to zero in a 
finite time near the system origin. In order to have a smooth 
switching from the LSMC controller to the TSMC controller, 
a fuzzy logic technique is used to connect the two sliding 
mode surfaces. 

This paper is organized as follows. The mathematical model 
is depicted in Section 2. The sliding switching surface is 
designed in Section 3. Then the fuzzy sliding mode controller 
(FSMC) is designed in Section 4. In Section 5, the simulation 
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results show that the proposed approach is feasible. Finally, 
some concluding remark is drawn in Section 6. 

2. TCP MATHEMATICS MODEL 

By considering the time-delay in state, the TCP model can be 
written as follows (Misra et al., 2001). 

1 ( ) ( ( ))( ) ( )
( ) 2 ( )
( )( ) ( ) ( )
( )

W t W t R tW t p t
R t R t

N tq t W t C t
R t

−⎧ = −⎪⎪
⎨
⎪ = −
⎪⎩

               (1) 

where ( )W t is the size of congestion window, ( )q t is the 
instantaneous queue in the buffer, ( )R t is the round-trip delay. 
(where ( ) ( ) / ( )pR t T q t C t= + )， pT  is the transport time-
delay. 0 ( ) 1p t≤ ≤  is the marker/dropping probability. ( )C t  
is the link capacity. ( )N t  is the TCP connections.  

The instantaneous queue and the size of the congestion 
window are positive, namely, ( ) [0, ]q t q∈ , ( ) [0, ]W t W∈ , 

where ( )q t ,W denote buffer capability and maximum size 
of congestion window respectively. The value of marker/ 
dropping probability ranges from 0 to 1. 

Consider the network topology structure with singularity 
bottle-neck. Its various structure diagram is shown in Fig. 1. 

 
Fig. 1. The configuration chart of TCP changed congestion  
window 

Let 0 0( ) , ( )N t N R t R= =  and 0( )C t C=  be the normal value. 

System (1) is linearized at equilibrium 0 0 0( , , )W q p   (Hollot 
et al., 2001), then, 
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where 0 0( ) ( ) , ( ) ( )W t W t W q t q t qδ δ= − = − , 0( ) ( )p t p t pδ = − . 

Let 1e q xδ= = , 2e q xδ= = , u pδ＝ . Neglecting time-delay, 
Equation (2) can be depicted as (Ren et al., 2003) 
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2
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0 00 0 0
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It can be seen that the system parameters ( )N t , ( )R t , and 
( )C t  change with time. Therefore it incorporates uncertainty, 

and disturbances. Thus, consider the model as follows, 

1 2

2 1 1 2 2 ( , ) ( )
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Assume that the matching conditions holds, i.e.,  

1( , ) ( , )f t x b t xγ= , 2( ) ( )b t b tγΔ = . 

and 1 2( , ), ( )t x tγ γ  are bounded, i.e. 1 2( , ) ( )t x t lγ γ+ < . Thus 
(4) can be written as 

2 1 1 2 2 1 2( ( , ) ( ))x a x a x b u t x tγ γ= − − − − −             (5) 

Let 1 2' ( , ) ( )u u t x tγ γ= − − . We obtain 

2 1 1 2 2 'x a x a x bu= − − −                           (6) 

 
3. FUZZY SLIDING MODE COONTROL 

Let 1e x= , where e  is the error, then 1 2e x x= = ，and 

1 1 2 2
'( )e a x a x bu= − + + . 

If the absolute value of e  is bigger than be , the linear sliding 
mode control is used to speed up the error convergence. If the 
absolute value of e  is smaller than ae , a terminal sliding 
mode is employed to obtain a finite error convergence. A 
fuzzy switching function ( )eα  is introduced to smoothly 
change the sliding mode surfaces when the error e  is 
between ae  and be , or between ae− , and be− . 

For the linear sliding mode control part, the hype-plane is 
defined as 

s e he= +                                     (7) 
For the terminal sliding mode control part, the hype-plane is 
defined as 

ps e he= +                                    (8) 
where 1 2/p p p=  and 1p , 2p  are positive odd integers, also 

1 2p p<  is a positive constant. 
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Then the new fuzzy hype-plane variable can be written as: 

(1 )

( ) (1 )( )
(1 )

T L
p

p

s s s
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e h e h e

α α

α α
α α

= + −

= + + − +
= + + −

                  (9) 

The trapezoid membership function is chosen as in Fig. 2. 

 
Fig. 2. Membership function 

Then we get the membership function ( )eα as 
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The fuzzy sliding mode variable s  in (9) works according to 
the following rules: 

(a) If e  is smaller than ae , then ( ) 1eα =  and the fuzzy 
sliding mode variable in (8) is a pure terminal sliding mode 
variable Ts s= . The error dynamics will converge to zero in 
a finite time. 

(b) If e  is bigger than be , then the fuzzy sliding mode 

variable is a pure linear sliding mode variable Ls s= . 

(c) If a be e e< < , then 
3

b a
T L

b a b a

e e e es s s s
e e e e

− −
= = +

− −
. 

(d) If b ae e e− < < − , then 4
b a

T L
b a b a

e e e es s s s
e e e e

+ +
= = −

− −
. 

4. CONTROL DESIGN 

The design of the controller and the stability analysis using 
the proposed fuzzy sliding mode in (6) are stated as follows: 

1

2

3 3

4 4
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'
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   (11) 

where 
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−
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Theorem 1 The system is stable and the error will converge 
to zero in finite time, by using the rules above. 

Proof: Define the Lyapunov function as follows. 

21
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If b ae e e− < < − , then 

4
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b a b a

e e e e
s s s s

e e e e
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= = −
− −  
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According to e  belonging to different conditions, (12)~(15) 
will ensure 0V < . Therefore, according to the Lyapunov 
stability theorem, the system is stable and the error will 
asymptotically converge to zero. 

Thus we choose 1, 2, 3, 4i iΔ =（ ） in (8) as follows. 

If ae e< , then 

1 1
1 1 1 2 2( ) pb a x a x hpe e− −Δ > − + +  

If be e> , then 

1
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5. SIMULATION 

In this section, we will prove the efficiency and advantages 
over the linear sliding mode control and terminal sliding 
mode control by simulations.  

The network topology structure considered is as in Fig. 3. 

 

Fig. 3. Simulation network topology 

Let 1ae = , 10be = . Choose the parameters 
1 2

3, 5,p p= =  
2h = ; 0.533sR = , 50, 300packet/sN C= =  as chosen in the 

reference (Quet et al., 2004). 

Neglected the time-delay, simulations are given according to 
the parameters chosen above, we get the parameters 

0 1 0
,   

2.2014 3.0495 900
A B

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

In order to show the advantages of the fuzzy sliding mode 
control over the LSMC and the TSMC, the simulations are 
given for LSMC and TSMC, respectively, with the same 
network parameters.  

The simulation results are shown in Fig. 4 and Fig. 5. 
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Fig. 4. The queue length using LSMC 
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Fig. 5. The queue length using TSMC 

From Fig. 4 and Fig. 5, we can see that the two controllers 
both can ensure the systems stability, and can almost drive 
the queue track to the anticipate value.  

Fig. 4 shows that the queue chatters are around the anticipate 
value, and cannot track the anticipate value 100 in finite time. 
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Fig. 5 shows that the queue can track the anticipate value 100, 
but it seems more time needed. 

In order to explain conveniently, we put the two simulation 
results together, as in Fig. 6.  

It is shown (where real line figures the LSMC, and dotted 
line figures TSMC) that, under the control of LSMC, the 
queue can arrive at anticipate value 100 in about 1 second, 
but fluctuates near it. But under the control of TSMC, the 
queue arrives at anticipate value 100 in about 2 seconds, and 
almost keep this value all the time.  

So LSMC cannot show the objective characters if system 
states approach the anticipate value, i.e., it cannot drive the 
queue to track the anticipate value with no error; but if it is 
away from the anticipate value, the queue can approach it 
quickly.  

TSMC shows the contrary characters, although the queue can 
track anticipate value with no error, it needs more time for 
arriving. 
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Fig. 6. The comparison of TSMC and LSMC 

In order to compare with the TSMC control, the simulation 
for FSMC is also given with the same network parameters.  

The simulation results are shown in Fig.7 (where real line 
figures the FSMC, and broken line figures TSMC).  

If the absolute value of e  is bigger than 10, it employs the 
LSMC method. If the error e  is between 1 and 10, or 
between − 1 and − 10, it employs the FSMC method. If the 
absolute value of e  is smaller than 1, it employs the TSMC 
method. And it converges to zero completely in about 2 
seconds, while the TSMC method needs more than 4 seconds.  

Also, it is can be seen that the FSMC method employed has 
more robust characteristics and less chattering than 
employing the TSMC method. 

So, it proves that the FSMC method has more advantages 
over the TSMC method in tracking the anticipate queue. At 
the same time, it has more accurate tracking ability than the 
LSMC. 
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Fig. 7. Comparison between  FSMC and TSMC 

Fig.8 shows its robustness to the uncertainty. ( )N t  changes 
from 50 to 100, and it can converge to zero quickly, despite 
of a little oscillations. That is, the queue can track the antici-
pate queue 100 quickly. 
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Fig. 8. FSMC with varying parameters 

It can be seen that the FSMC method always has the faster 
error convergence though the values of parameters are time 
varying. 

6. CONCLUSIONS 

TCP/IP network is a dynamic system, and its parameters are 
time varying. And there exists extern disturbance to systems. 
The traditional AQM controllers usually depend on the ac-
curate mathematical model. But sliding mode control (SMC) 
is not sensitive to the various parameters and disturbance. So 
SMC is employed in designing the AQM controllers.  

This paper discussed the problem of designing the AQM 
controller. Based on the advantages of SMC, we combine the 
excellent characteristics of the LSMC and the TSMC to 
design the AQM controller. 
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As the theoretical analysis and the simulation results, it can 
be concluded that the proposed AQM based on fuzzy sliding 
mode control possesses the advantages of both the linear 
sliding mode control and the terminal sliding mode control. 
Convergence time is shortened, despite the presence of the 
uncertainties and disturbances. As well, for employing the 
fuzzy logic technique, it smoothes the switching, therefore, 
reduces the chattering. 
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