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Abstract: This paper is about state estimation for nonlinear uncertain continuous-time systems
in a bounded-error context. We introduce a method for designing a guaranteed interval observer
which is based on (i) the application of Müller’s theorem for bracketing the solution of ordinary
differential equations in a way which ensures the positivity of the observation error, (ii) the
analysis of the monotonicity of each component of system field vectors with respect to both the
uncertain parameters and state variables and (iii) the choice of a tailor-made observation gain
matrix in order to ensure that the observation error converges to the interior of a bounded box.
The set of state estimation obtained in this context is a guaranteed approximation of the real
solution set in the sense that no solution can be lost.
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1. INTRODUCTION

A great number of industrial or natural processes are usu-
ally modeled by a set of complex and uncertain differential
equations. Let us consider the following type of uncertain
nonlinear systems{ ẋ(t) = Ax(t) +ψ(x,p,u(t))

y(t) = Cx(t)
x(t0) ∈ [x0] ∧ p ∈ [p]

}
(1)

where A is a matrix of dimension n × n, t ∈ [t0, tnT
],

ψ ∈ Ck−1(D × U × [p]), D × U × [p] ⊆ Rn+nu+np

is an open set; n, nu, m and np are the dimension of
respectively the state vector x, the input vector u, the
output vector y and the uncertain parameter vector p.
The choice of the type of systems (1) is not restrictive
since one can find reservible mappings for the state vector
in order to transform a given system to a system of type (1)
[Isidori, 1995]. Measurements are subject to an unknown
but bounded, with known bound, additive error

Y(t) = [ym(t)− b, ym(t) + b] (2)
where b is the vector of maximal measurement error.
In addition, we will assume that system (1) satisfies the
following hypotheses
Hypothesis 1. The matrix pair (A,C) is observable.
Hypothesis 2. There is a positive matrix K such as the
non-diagonal elements of the matrix A − KC are non-
negative.
Hypothesis 3. All the components ψi(.) of the vector func-
tion ψ(.) are Lipschitz with respect to the state vector for
any p ∈ [p]. Moreover, there exist two known functions
ψ(.) and ψ(.) built according to the bounds of [p] and a
known number M < +∞ such that:


∀p ∈ [p], ∀(u(t),x) ∈ U× D,

ψ(x,p,u(t)) ≤ ψ(x,p,u(t)) ≤ ψ(x,p,u(t)),
‖ψ(x,p,u(t))−ψ(x,p,u(t))‖ ≤M.

(3)

In order to apply advanced concepts of control and diag-
nosis to practical applications, the knowledge of system
state variables is often required. In practice, the direct
measurement of some state variables x is impossible for
many reasons (physical, economical . . .). But it is possible
to estimate them under some conditions of observability
[Hermann and J.Krener, 1977] by means of state observers.
The estimated state vector is usually given by the following
model:

˙̂x(t) = Ax̂(t) +ψ(x̂,p,u(t)) + K(x̂)(y∗m(t)− y(t)) (4)
where y∗m(t) ∈ Y(t). Obviously, the observer contains
two terms: the first one is only a duplication of the
state equation of (1) and the second is a corrective term
intended to make the observation error converge towards
zero

lim
t→∞

‖x̂(t)− x(t)‖ = 0 ∀x0 6= x̂0(t) (5)

For linear systems, one can find two standard types of
observers according to the deterministic or random con-
text, respectively the Luenberger observer and the Kalman
filter. On the other hand, for nonlinear continuous-time
systems there exist many kinds of observers to be used
depending on the mathematical structure of the process
model and the available information. For instance, the
extended Luenberger observer and the extended Kalman
filter [Misawa and Hedrick, 1989], the high gain observer
[Gauthier et al., 1992], the sliding mode observer [Slotine
et al., 1986], . . . . All these nonlinear approaches are more
or less robust with respect to the disturbances and the
measurement noise, however they often provide unsat-
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isfactory estimations in the presence of uncertainties in
model parameters [Dochain, 2003]. To circumvent this
kind of problems, several methods have been developed
recently in the set membership framework. Their principle
consists in computing sets guaranteed to contain all the
state vectors consistent with all uncertainties. These two
approaches are founded on the reachability analysis of
uncertain systems based on special geometrical forms, such
as ellipsoids [Chernousko, 2005], zonotopes [Combastel,
2005] . . . to represent the state flow generated by uncer-
tain dynamics. In this paper we will use boxes (interval
vector) for characterizing the reached state space. There
are mainly two types of set membership approaches:
(i) The first approach addresses the case of continuous-
time state estimation from discrete-time measurement and
was introduced in [Jaulin et al., 2001, Räıssi et al., 2004,
2005, Kieffer et al., 2006]. It relies on a two-stage method-
ology: a prediction stage, which consists in reconstructing
the state vector by using validated numerical integration
methods in order to derive a guaranteed numerical evalu-
ation of the solution of the ordinary differential equations
at measurement time steps [Nedialkov, 1999]; a correction
stage, which consists in studying the consistency between
the feasible domain of the measured output and the one of
the simulated output in order to eliminate the inconsistent
part of the estimated state vector computed in prediction
stage. This approach will not be considered in this paper.
(ii) The second approach addresses the case of continuous-
time state estimation from continuous-time measurement,
and was proposed for the first time in [Gouzé et al., 2000].
The main idea consists in building a closed loop interval
observer which takes into account model’s parameters un-
certainties. It computes a lower and an upper bounds for
the estimated state vector, i.e., respectively x̂(t) and x̂(t)
which bracket all the possible state vectors generated by
the uncertain system and which are consistent with the
measured data

∀x(t0) ∈ [x̂(t0), x̂(t0)], ∀t > t0
x̂(t) ≤ x(t) ≤ x̂(t)

lim
t→∞

‖ x̂(t)− x̂(t) ‖= w(p,b)
(6)

Where w(.) depends only on the width of the boxes
characterizing the uncertain parameters and the feasible
domain for measurements. Initially, this type of observers
was used with nonlinear systems when the dynamics of the
observation error was cooperative [Gouzé et al., 2000] and
when the uncertain parameters were exclusively related to
the input or the output of the system:

ẋ = Ax(t) +ψ(p,u(t)) (7)
More recently, this type of observers were generalized to
the case of systems where the nonlinear term ψ depends
also of the state vector [Rapaport and Gouzé, 2003, Moisan
and Bernard, 2005]:

ẋ = Ax(t) +ψ(x,p,u(t)) (8)
In order to design this interval observer, the difficulty
resides in the derivation of a guaranteed tight enclosure
for the function ψ when both model parameter and state
vectors are taken as uncertain quantities. A manner to cir-
cumvent this difficulty is based on the concept of observers
bundle which consists to run simultaneously a broad set
of interval observers and select over each lapse of time the
best one [Gouzé, 2004, Moisan and Bernard, 2005].

In this work, our main contribution consists in the intro-
duction of a method for building the closed loop interval
observer in a guaranteed way for a large class of non linear
systems not necessarily cooperative. Our method uses the
classical Müller’s existence theorem [Walter, 1997, Kieffer
et al., 2006], the theory of quasi-monotone dynamical sys-
tems, mainly developed by Smith after the seminal work
of Müller, Kamke and Krasnoselskij (see [Smith, 1995]
and the references therein) and interval methods for initial
value problems (IVPs) for ordinary differential equations
(ODEs). However, the observer gain matrix is still choosen
in the same way as in [Rapaport and Gouzé, 2003]. This
paper is organized as follows. In section 2, we introduce
the main idea of validated methods for IVPs for ODEs. We
recall the Müller’s theorems in section 3. In section 4, we
introduce a methodology for building guaranteed interval
observers for uncertain systems. Finally, two examples
are given in section 5 to illustrate the application of our
approach.

2. INTERVAL METHODS FOR IVP IN ODE

Interval analysis was initially developed to account for
the quantization errors introduced by the floating point
representation of real numbers with computers and was
extended to validated numerics [Jaulin et al., 2001]. A real
interval [a] = [a, ā] is a connected and closed subset of R.
The set of all real intervals of R is denoted by IR. Real
arithmetic operations are extended to intervals. Consider
an operator ◦ ∈ {+,−, ∗,÷} and [a] and [b] two intervals.
Then: [a] ◦ [b] = {u ◦ v | u ∈ [a], v ∈ [b]}.
Consider ψ : Rn 7−→ Rm ; the range of this function over
an interval vector [a] is given by:

ψ([a]) = {ψ(u) | u ∈ [a]} (9)
The interval function [ψ] : IRn 7−→ IRm is an inclusion
function for ψ if ∀[a] ∈ IRn, ψ([a]) ⊆ [ψ]([a]). An
inclusion function of ψ can be obtained by replacing each
occurrence of a real variable by the corresponding interval
and each standard function by its interval counterpart: the
resulting function is called the natural inclusion function.
The performance of this inclusion function depends on the
formal expression for ψ.
Consider now the following differential equation:

ẋ(t) = f(x, t), x(t0) ∈ X0 ⊂ D, (10)
with t0 ≥ 0. The function f is assumed to be at least
k−times continuously differentiable in a domain D ⊆ Rn.
The objective is to compute interval vectors [xj ], j =
1, . . . , n, that are guaranteed to contain the solution of
(10) at t1, t2, . . . , tnT

. Effective methods for solving such a
problem are based on Taylor expansions, see [Nedialkov,
1999] and the references therein. These methods are usu-
ally one-step methods which proceed with two phases: (i)
they first verify existence and uniqueness of the solution
using the fixed point theorem and the Picard-Lindelöf
operator [Nedialkov, 1999], compute an a priori enclosure
[x̃j ] such that x(t) ∈ [x̃j ] for all t ∈ [tj , tj+1] and adapt
integration step size if necessary; (ii) then they compute a
tighter enclosure [xj+1] of the solution of (10) at tj+1 as

[xj+1] = [xj ] +
k−1∑
i=1

hi
jf

[i](tj , [xj ]) + hk
j f

[k]([tj , tj+1], [x̃j ])

(11)
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which corresponds to a Taylor expansion of order k where
[x̃j ] is used to compute the remainder term. The coeffi-
cients f [i] are the Taylor coefficients of the solution x(t)
which can be computed either numerically by automatic
differentiation or analytically via formal methods. The
enclosures thus obtained are said validated which is in con-
trast with conventional numerical integration techniques
which derive approximations with unknown global error
and where the accumulation of both truncation and round-
off errors may cause the computed solution to deviate
widely from the real one. However, the wrapping effect –
i.e., the overestimation of the solution due to the bracket-
ing of a set of any shape by a box – makes the explicit
scheme (11) width-increasing and thus not suitable for
numerical implementation. Therefore, one must use mean
value forms, matrices preconditioning and linear transform
[Nedialkov, 1999] to yield practical results. Finally, there
are open source softwares available which implement most
of the above techniques. In this paper, all computations are
performed with the VNODE software [Nedialkov, 1999].

3. THE MÜLLER’S THEOREM

In this section, we introduce an approach for bracketing an
uncertain dynamical systems when both the initial state
and parameter vectors are defined by boxes. The main idea
consists in building a lower and an upper dynamical system
which involve no uncertainty and enclose in a guaranteed
way all the dynamics generated by the original uncertain
system. This approach relies on comparison theorems for
differential inequalities [Smith, 1995], and in particular the
work of Müller [Walter, 1997].

3.1 Müller theorem

Theorem 4. [Walter, 1997, Kieffer et al., 2006] Consider
the dynamical system

ẋ(t) = f(x,p,u(t)), (12)
where function f is continuous over a domain T defined by

T :


ω(t) ≤ x(t) ≤ Ω(t)

p ≤ p ≤ p
t0 ≤ t ≤ tnT

(13)

Functions ωi(t) and Ωi(t) are continuous over [t0, tnT
] for

all i and satisfy the following properties

(1) ω(t0) = x0 and Ω(t0) = x0

(2) the left derivatives D−ωi(t) and D−Ωi(t) and the
right derivatives D+ωi(t) and D+Ωi(t) of ωi(t) and
Ωi(t) are such that

∀i, D±ωi(t) ≤ min
T(t)

fi(x,p, t) (14)

∀i, D±Ωi(t) ≥ max
T(t)

fi(x,p, t) (15)

where T(t) is the subset of T(t) defined by

Ti :


xi = ωi(t)

ωj(t) ≤ xj ≤ Ωj(t), j 6= i

p ≤ p ≤ p
(16)

and where T(t) is the subset of T(t) defined by

Ti :


xi = Ωi(t)

ωj(t) ≤ xj ≤ Ωj(t), j 6= i

p ≤ p ≤ p
(17)

Then for all x0 ∈ [x0,x0], p ∈ [p,p], system (1) admits a
solution x(t) that stays in the domain

X :
{

t0 ≤ t ≤ tnT

ω(t) ≤ x(t) ≤ Ω(t)
(18)

and takes the value x0 at t0. If, in addition, for all p ∈
[p

0
,p0], function f(x,p, t) is Lipschitzian with respect to

x over D then this solution is unique for any given p.

Finally, an enclosure for the solution of (12) is given by
∀t ∈ [t0, tnT

], [x](t) = [ω(t), Ω(t)] (19)
The main difficulty is to obtain suitable bracketing func-
tions ω(t) and Ω(t) in the general case. However, when
the components of f are monotonic with respect to each
parameter or each state vector component, it is quite easy
to define these systems [Kieffer et al., 2006], while avoiding
possible divergence that may occur when both upper and
lower components of the parameter/state vector appear
simultaneously in the same expression of the components
of the bracketing systems [Ramdani et al., 2006].

Rule 1 - Use of monotonicity property [Kieffer et al., 2006]
In order to build the upper system, i.e. the one which yields
the maximal solution Ω(t), one can replace in the formal
expression of fi, xi by Ωi, xj (j 6= i) by Ωj if ∂fi

∂xj
≥ 0 or by

ωj if ∂fi

∂xj
≤ 0 and pr by pr if ∂fi

∂pr
≥ 0 or by p

r
if ∂fi

∂pr
≤ 0.

The components of the lower system, i.e. the one which
yields the minimal solution ω(t) are derived by reversing
monotonicity conditions.

Obviously ω(t) and Ω(t) are in general, solutions of a
system of coupled differential equations, i.e.

ω̇(t) = f(ω,Ω,p,p, t)

Ω̇(t) = f(ω,Ω,p,p, t)
ω(t0) = x0 ∧ Ω(t0) = x0

(20)

which involves no uncertain quantity. Therefore interval
Taylor models such as the one introduced in the previous
section can be used for efficiently solving (20). Indeed when
these methods are used for solving differential equations
with no uncertainty, they are usually able to curb the
pessimism induced by the wrapping effect, even over long
integration time.

Remark : Althoug interval Taylor models can be used for
solving in an efficient way the system (20), there is no
guaranty that the size of the enclosure [ω(t),Ω(t)] will
not diverge. However, when the system under study is
cooperative, a property to be defined later, the size of this
enclosure seldom diverges.

3.2 Case of cooperative systems

Cooperative systems are systems whose state variables
act positively the ones on the others. In fact, the coop-
erativity property is satisfied by a large number of real
systems. Most diffusion-reaction systems are cooperative,
most models written in biology, chemistry or economics
are cooperative or can be rewritten in order to satisfy this
property [Smith, 1995].
Definition: The dynamical system (12) is cooperative over
D, if all the off-diagonal terms of its Jacobian matrix are
non negative over D, i.e.
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∀i 6= j, t ≥ 0, x ∈ D,
∂fi(x, t)
∂xj

≥ 0. (21)

An interesting property of cooperative linear systems is as
follows
Property 1. The linear non-autonomous system,

ẋ = Ax + B(t); x(t0) = x0 (22)
where A is a cooperative matrix and B(t) ≥ 0 ∀t ≥ 0 has
the following property: If x0 ≥ 0 then x(t) ≥ 0 for t > t0.
When function f in (12) is cooperative, functions ω(t) and
Ω(t) appear no longuer coupled in (20). Hence the upper
system and the lower one can be computed and analyzed
independantly.

4. GUARANTEED INTERVAL OBSERVER

After having introduced in the two preceding sections the
main tools and methods used for enclosing the state flows
generated by an uncertain system, we introduce in this
section a methodology for building guaranteed interval
observers. The main idea for designing an interval observer
for the uncertain system (1) is to build two point observers
which estimate in real time the lower and the upper
bound of the state vector. The dynamics of the lower and
the upper observer are interconnected according to the
following set of differential equations :{

Ω̇(t) = (A−KC)Ω(t) +ψ(ω,Ω,p,p,u(t)) + Kym(t)
ω̇(t) = (A−KC)ω(t) +ψ(ω,Ω,p,p,u(t)) + Ky

m
(t)
(23)

In order to obtain validated numerical computations of the
interval obserer, we will use Interval methods for IVPs for
ODEs, to solve the set of differential equations (23). We
will now show that the observation error remains positive
and under which conditions on the gain matrix K this
error converges.

4.1 The positivity of the observation error

Thanks to rule 1, it is possible to derive the upper and
lower functions ψ and ψ which satisfy the following double
inequalities

∀t ≥ t0, ∀x(t0) ∈ [x0], ∀p ∈ [p]
ψ(ω,Ω,p,p,u(t)) ≤ ψ(x,p,u(t)) ≤ ψ(ω,Ω,p,p,u(t))

(24)
From (1) and (23) one can write the dynamics of the upper
observation error e(t) = (Ω(t)− x(t)) as follows

ė(t) = (A−KC)e(t) + φ(z) (25)

were φ(z) = ψ(ω,Ω,p,p,u(t)) − ψ(x,p,u(t)) + Kb and
z = (ω,Ω,p,p,x,p,u,b)T . So according to the double
inequality (24) and hypothesis 1 on the gain matrix K, we
can write

∀t ≥ t0, ∀x(t0) ∈ [x0], ∀p ∈ [p], φ(z) ≥ 0. (26)
In this context, if the observation gain matrix K ensures
the cooperativity of the matrix [A−KC] (hypothesis 2),
then from property 1 the upper observation error remains
positive, i.e.
if ∀x(t0) ∈ [x0], ∀p ∈ [p], e(t0) ≥ 0 ⇒ ∀t ≥ t0, e(t) ≥ 0

In the same way, we can characterize the dynamics of the
lower observation error e(t) = (x(t)− ω(t)) as follows

ė(t) = (A−KC)e(t) + φ(z) (27)

and
∀t ≥ t0, ∀x(t0) ∈ [x0], ∀p ∈ [p], φ(z) ≥ 0. (28)

where φ(z) = ψ(ω,Ω,p,u(t)) − ψ(ω,Ω,p,p,u(t)) + Kb,
finally

if ∀x(t0) ∈ [x0], ∀p ∈ [p], e(t0) ≥ 0 ⇒ ∀t ≥ t0, e(t) ≥ 0

4.2 The convergence of the observation error

In the preceding subsection, we have shown that the
observation error is positive. This ensures that all the
state trajectories consistent with parameter and initial
state vectors uncertainties are enclosed by the observer
in a guaranteed way. It remains to consider the problem
of the convergence of the observation error. To do so, we
will analyze the differential equation which governes the
dynamics of the error e(t) = e(t) + e(t). Note that this
error remains always positive. We have

ė(t) = (A−KC)e(t) + Γ(z), (29)

where
Γ(z) = ψ(ω,Ω,p,p,u(t))− ψ(ω,Ω,p,p,u(t)) + 2Kb.

The material we will use in the sequel is very similar to
the one used in [Rapaport and Gouzé, 2003] where readers
can find further details. Consider the change of variables

ξ = V{λi}P
−1Ω,

ξ = V{λi}P
−1ω,

(30)

where, P is the transformation matrix which makes it
possible to obtain the companion observability form of the
matrix A−KC for any K and V is the Vandermonde ma-
trix of eigenvalues of A−KC which allows diagonalisation
of the matrix P−1(A−KC)P

V{λi}P
−1(A−KC)PV−1

{λi} = ∆{λi} (31)

where ∆{λi} is the diagonal matrix of eigenvalues λi.
Moreover, consider the function

γ(x,p,u(t)) = P−1ψ(x,p,u(t)) (32)

Then the observation error s = ξ−ξ in the new state base
is

ṡ = ∆{λi}s + V{λi}(γ(ω,Ω, ., .)− γ(ω,Ω, ., .) + 2P−1Kb)

Note that since function ψ is assumed Lipschitz with
respect to vector state with constant L then γ is also Lip-
schitz with constant ‖P−1‖L (see [Rapaport and Gouzé,
2003]). Now, denote λ the smallest eigenvalue of A−KC
in absolute value. We obtain

d

dt
‖s‖ ≤ −|λ|‖s‖

+(
n∑

i=1

λi−1
j (γi(ω,Ω, ., .)− γ

i
(ω,Ω, , ., .))

√
n

+2‖V‖‖P−1‖‖Kb‖
hence

d

dt
‖s‖ ≤ −|λ|‖s‖

+‖P−1‖(M + L‖PV−1‖‖s‖)(
m∑

i=1

|λ|i−1)
√
n

+2‖V‖‖P−1‖‖Kb‖
and finally
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d

dt
‖s‖ ≤

(
− |λ|+ cond(P)L‖V−1‖(

m∑
i=1

|λ|i−1)
√
n
)
‖s‖

+‖P−1‖
(
M(

m∑
i=1

|λ|i−1)
√
n+ 2‖V‖‖Kb‖

)
Consequently, an adequate choice of the matrix K will
ensure the convergence of the observation error to a value
which depends on the expression of the function ψ and the
widths of uncertain variables (see [Rapaport and Gouzé,
2003]). Finally, we can also say that the observation error
in the original base e(t) converges towards the ball:

B =
(
0,

D(
|λ| − cond(P)L‖V−1‖(

∑m
i=1 |λ|i−1)

√
n
))

(33)

where

D = cond(P)
(
‖V−1‖M(

m∑
i=1

|λ|i−1)
√
n+ 2cond(V)‖Kb‖

)
5. APPLICATION

To illustrate this approach of designing interval observers,
we will present two examples taken from the biology do-
main. A bioreactor is a reactor in which microorganisms
grow by consuming a substrate. The microorganisms and
the substrate are assumed to be present at low concentra-
tions in the reactor, so that a constant volume assumption
is realistic. In the sequel we will denote by x1 and x2 the
concentrations of microorganisms and substrate, respec-
tively. The issue is to estimate the state variables from the
measurement of some outputs.

5.1 Example 1

In this example we assume that the growth rate is given
by the Contois model [Contois, 1959], we get the following
standard equations for the bioreactor ẋ1 =

a1x1x2

a2x1 + x2
− ux1

ẋ2 = − a3a1x1x2

a2x1 + x2
− ux2 + ua4

(34)

where the partial unknown parameter vector is p =
[a1 a4]T = [0.9, 1.1] × [0.09, 0.11], the other values a2 =
a3 = 1. The initial state of this system is uncertain
x1 = [0.001, 0.1] and x2 = [0.001, 0.1]. System input are
taken as u(t) = 0.08 for t ≤ 10, u(t) = 0.02 for 10 ≤ t ≤ 20
and again u(t) = 0.08 for t ≥ 20. Model output is taken
as y(t) = x1(t) and the maximal measurement error is
b = ±2%ym(∞). System (34) is not cooperative, therefore
by using the methods introduced in sections 3 and 4, and
a gain vector KT = (k1, k2) one can derive the following
guaranteed interval observer

Ω̇1 = −uΩ1 +
a1Ω1Ω2

a2Ω1 + Ω2
+ k1(ym − Ω1)

Ω̇2 = −uΩ2 −
a3a1ω1Ω2

a2ω1 + Ω2
+ ua4 + k2(ym − Ω1)

ω̇1 = −uω1 +
a1ω1ω2

a2ω1 + ω2
+ k1(ym

− ω1)

ω̇2 = −uω2 −
a3a1Ω1ω2

a2Ω1 + ω2
+ ua4 + k2(ym

− ω1)

(35)

In this case for any k1 > 0 and for k2 = 0, we can
ensure both the positivity and the convergence of the
observation error. Figure 1 shows the enclosures of state

(a)

(b)

Fig. 1. (a) Estimated microorganisms concentration; (b)
Estimated substrate concentration.

variables of (34) as obtained with the guaranteed interval
observer (35). The blue curves on Fig. 1(a) and Fig. 1(b)
show the lowers and uppers estimated bounds for the
state components x1 and x2, respectively. In fact, for all
uncertainties in (34) the interval observer estimates a box
for the state vector with a width very close to the maximal
measurement error and which contains in a guaranteed
way the true value of the state vector.

5.2 Example 2

Now, we consider the Monod model for the growth rate,
so the bioreactor is defined by the following equation: ẋ1 = µ0

x2

x2 + ks
x1 − αux1

ẋ2 = −kµ0
x2

x2 + ks
x1 + u(sin − x2)

(36)

where u is the system input, which is taken constant
u = 0.36, the parameters of this system are k = 10.53,
µ0 = [1.15, 1.25], ks = [7.05, 7.15]mmol/l, α = 0.5
and sin = 5.7. The initial state is considered uncertain
x = [0, 2] × [0, 2]. System output is y(t) = x1(t) and the
maximum measurement error is b = ±2%ym(∞). In the
same way as is example 1, this system is not cooperative,
then by using the methods introduced in sections 3 and 4,
we obtain,

Ω̇1 = µ0

Ω2

Ω2 + ks

Ω1 − αuΩ1 + k1(ym − Ω1)

Ω̇2 = −kµ
0

Ω2

Ω2 + ks

ω1 + u(sin − Ω2) + k2(ym − Ω1)

ω̇1 = µ
0

ω2

ω2 + ks

ω1 − αuω1 + k1(ym
− ω1)

ω̇2 = −kµ0

ω2

ω2 + ks

Ω1 + u(sin − ω2) + k2(ym
− ω1)

(37)
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(a)

(b)

Fig. 2. (a) Estimated microorganisms concentration; (b)
Estimated substrate concentration.

As in example 1 any observation gain vector K, such
as k1 > 0 and k2 = 0 ensures both the positivity and
the convergence of the observation error. The guaranteed
observer makes it possible to characterize the whole state
variables consistent with the measured data, the uncer-
tainty bounds as well as the uncertainty bounds on the
parameters. The blue curves in full line on the figures
Fig. 2(a) and Fig. 2(b) show guaranteed enclosures for
these estimated state components.

6. CONCLUSION

In this article we presented a set membership approach
dedicated to the state observation problem of uncertain
nonlinear continuous-time systems. The advantage of this
approach is its robustness with respect to model parameter
uncertainties and measurement errors. In a future work, we
will use this type of interval observers with actual data.
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T. Räıssi, N. Ramdani, and Y. Candau. Bounded-
error moving horizon state estimator for non-linear
continuous-time systems : application to a bioprocess
system. Journal of Process Control, 15(5):537–545,
2005.

N. Ramdani, N. Meslem, T. Räıssi, and Y. Candau. Set-
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