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Abstract: This paper presents the application of artificial pneumatic muscle actuators in a
novel motorized orthosis for an intensive home-based gait training in patients with neurological
disorders. Owing to the inherent elasticity of these actuators, they are an ideal choice in realizing
a soft and tractable assistance to aid the physiological movements of the lower extremities.
Special focus is paid to the modeling of the dynamic nonlinear force characteristics of the
muscles as a steerable mass-damper system, and to the approximation of the variation of muscle
volume under different operating conditions. The model description uses polynomial functions
for which coefficients are identified by minimizing a quadratic performance index. Based on the
mechanical model of the knee joint of the apparatus, a nonlinear stability-oriented backstepping
control supported by observer-based disturbance compensation is derived and applied to the
prototype of the rehabilitation robot.

1. INTRODUCTION

The ability to walk is one of the most obvious attributes of
human life. In patients with lesions of the central nervous
system, particularly spinal cord injuries (SCI) or stroke,
this ability is impaired to a more or less extent. In case
of incomplete lesions with some preserved motor func-
tions in the lower extremities several clinical trials have
shown, that an intensive gait training leads to an essential
improvement in gait capacity. This is mainly due to the
enhancement of neural plasticity either in the spinal cord
or the brain by the generation of physiologic afferent stim-
uli. Over the last decade, body weight supported treadmill
training (BWSTT) has been established as a very effective
tool to apply a sufficient training intensity in terms of
step repetitions [Dietz et al. (1995), Hesse et al. (1995)].
During the BWSTT, the patients are put in a harness
for body weight unloading and - in patients with weak
muscles - their step movements are manually assisted by
up to three therapists. In the last few years, first steps
towards automation of BWSTT have been undertaken
to free therapists from this considerably exhausting work
[Colombo et al. (2001)]. Recent research work has inves-
tigated the influence and significance of afferent input
from load receptors and joints in more detail [Dietz et al.
(2002)]: comparable to some animal species, it has been
found in spinal cord injured patients that the physiological
movement of the hip joint and the appropriate gait-phase
related loading and unloading of the foot soles are the key
trigger sources of the spinal gait pattern generator. The
aim of our present research is the development of an ad-
justable and modular motorized orthosis for gait training,
which is operable in a sitting position and is capable of
generating the key sensory stimuli mentioned above. Due
to economical reasons, the primary rehabilitation period of

Fig. 1. Prototype of the rehabilitation robot for the lower
limbs

patients in hospital is getting shorter and shorter. Since the
therapeutically sufficient intensity of gait training cannot
be maintained on an outpatient basis, the opportunity
for operating the device at the patients’ home has been
explored as one of the most important design criteria.
Therefore, artificial pneumatic muscles with their excel-
lent weight-force ratio and price distributed by Festo AG,
Germany, have been integrated as dynamic actuators to
generate the movements of all the joints of the lower
extremities. The artificial Fluidic Muscle is a vulcanised
rubber hose strengthened by aramid fibers. Increasing the
inner muscle pressure results in a longitudinal contraction
combined with a concomitant expansion in the radial di-
rection. The contraction causes a tensile force along the
longitudinal direction. By antagonistic arrangement of the
muscles, each movement can be realized. Two actuators
of the type DMSP-20 are driving the knee joint via a
cogwheel fixed to the knee axis. The ankle joint is driven
by means of a rope-lever mechanism by muscles of the type
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Fig. 2. Measurement setup for model identification

MAS-10. While frequently used in industrial applications,
only few rehabilitation applications using artificial muscles
are known. Gordon et al. (2006) and Herr and Kornbluh
(2004) have been utilized them in actuating an ankle-foot
orthosis. In these studies, artificial muscles are used to
provide single-joint support to the plantar flexion in dif-
ferent phases of gait, whereas here the antagonistic muscle
actuation is supposed to track a physiological trajectory
of the knee and ankle angle. To ensure stable tracking of
the highly nonlinear system over a wide operating area at
different velocities and conditions, nonlinear models of the
muscles, pressure dynamics and mechanical dynamics are
derived. The first functional prototype of the rehabilitation
robot is depicted in fig. 1.
In this paper, the force and volume modeling of the pneu-
matic muscles is addressed first. Parts of the models are
identified automatically by measurements in the test rig
shown in fig. 2. Therefore, a nonlinear position control
using exact input-output linearization is derived. In order
to design a nonlinear position controller by backstepping
for the knee joint, the mechanical model is computed
by the use of Lagranges equations. A nonlinear observer
with disturbance estimation ensures stable and accurate
control.

2. MODELING OF THE FLUIDIC MUSCLE

2.1 Measurement Setup for Model Identification

The force and volume behavior in relation to the muscle
contraction ∆L and the muscle pressure pM , are identified
with the measurement setup shown in fig. 2. On the right
side, a forceful muscle of the type MAS-40 is responsible
for the positioning of the carriage of mass mS and causes
the varying contraction of the left muscle. The muscle on
the left is held on a constant pressure, while the position
of the carriage is varied and the force at the position M is
measured. The equation of motion for the carriage is given
by

ẍS =
1

mS
· [FM,d − FM,r(pM,r,∆LM,r)] . (1)

The force FM,d of the investigated muscle on the left is
regarded as a disturbance. In contrast to FM,d, the effects
of friction and model uncertainties can be neglected. The
contraction length ∆LM,r is calculated according to fig. 2

∆LM,r = XS − xS . (2)

The pressure in the left muscle is adjusted by PI-control.
The position controller is based on the theory of exact

Fig. 3. Block diagram of the control configuration in the
identification setup

input-output linearization (fig. 3). The dynamics of the
internal pressure in the muscle i can be obtained on the
supposition of a polytropic, ideal process

pM,i = p0 ·
(

V0

VM,i

)n

, (3)

where p0 is the barometric pressure, V0 the volume of
the environment and n the polytropic exponent for this
process. The total derivation of (3) leads to

dpM,i =
∂pM,i

∂p0
· dp0 +

∂pM,i

∂V0
· dV0 +

∂pM,i

∂VM,i
· dVM,i , (4)

wherein the environmental pressure and volume have been
regarded as constant. The ideal gas law is utilized to
describe the thermodynamic behavior

pM,i · VM,i = m · R · TM,i . (5)
The total derivation of (5) and the account of the muscle
volume VM,i(∆LM,i, pM,i) as a function of the contraction
∆LM,i and the inner muscle pressure pM,i lead to

ṗM,i =
n

VM,i + n · ∂VM,i

∂pM,i
· pM,i

[R · TM,i · ṁM,i

− ∂VM,i

∂∆LM,i
· ∂∆LMi

∂xS
· pM,i · ẋS ] .

(6)

The system (1) can be transformed to state space with the
states x1 = xS , x2 = ẋS and the output y

ẋ1 = x2 ,

ẋ2 =
1

mS
· [FM,d − FM,r(pM,r,∆LM,r)] ,

y = x1 .

(7)

The force characteristics of the MAS-40 muscle as a
polynomial fit of the measured force at variable pressure
and constant contraction is borrowed from [Aschemann
and Hofer (2004)]

FM,r = FM,r(∆LM,r, pM,r) . (8)
The physical actuating variable u is the mass flow of air
ṁM,r into the muscle. In order to realize exact input-
output linearization, the relative degree of the system δ
has to be determined. The relative degree is equivalent
to the number of differentiations of y required to obtain
a dependency of the actuating variable u. With the time
derivative of (8)

ḞM,r =
∂FM,r

∂pM,r
· ṗM,r +

∂FM,r

∂∆LM,r
· ∆L̇M,r , (9)
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and the replacement of the derivative of the pressure pM,r

by (6), the third derivative of the system output y is
influenced by the actuating variable u = ṁM,r.

ẏ = ẋ1 = x2 ,

ÿ = ẋ2 =
1

mS
· [FM,d − FM,r(pM,r,∆LM,r)] ,

...
y =

1
mS

·

ḞM,d︸ ︷︷ ︸
≈0

−ḞM,r(uM,r)

 .

(10)

Therefore, the relative degree of the system is δ = 3. The
derivative of the disturbance force generated by the left
muscle is neglected. Alternatively, if better position track-
ing is desired, it could be estimated e.g. by a disturbance
observer. Now, a control law that yields a linear differential
equation relating a new input v and the output y = x1 is of
interest. Owing to a lack of space, the indices are neglected.
With

u =

(
−v · mS − ∂F

∂∆L · ∆L̇
)
·
(
V + n · p · ∂V

∂p

)
n · R · T · ∂F

∂p

+

(
n · p · ∂V

∂∆L · ∂∆L
∂xS

· ∂xS

∂t

)
n · R · T

,

(11)

we obtain the linear input-output relationship. The error
dynamics can be asymptotically stabilized by

v =
...
x d

S + α3 · (ẍd
S − ẍS) + α2 · (ẋd

S − ẋS)

+ α1 · (xd
S − xS) + α0 ·

t∫
0

(xd
S − xS)dτ .

(12)

The coefficients αk, k = {0, ..., 3}, are determined by pole
placement.

2.2 Force Behavior of the Fluidic Muscle

In order to describe the nonlinear force characteristics of
the muscles in different operating states, a comprehensive
model is needed. For this purpose, the muscle is considered
as a controllable damped spring-mass oscillator, where the
flexibility of the spring depends on the active contraction
∆L and the inner pressure pM

FM = c(∆L, pM ) · ∆L︸ ︷︷ ︸
Ftow

−D · ∂

∂t
∆L︸ ︷︷ ︸

Fdamp

. (13)

The damping factor D is assumed to be constant, although
in reality there exists an interdependency to ∆L and pM .
The reason for the omission is the use of a load cell in
the measurement rig, which has a maximum preciseness
of 50N . The characterization of the tensile force Ftow

leads to an approximately linear dependency of the muscle
pressure pM for both DMSP-10 and DMSP-20. The force
dependency on the contraction ∆L is of a higher order.
The towing force is partitioned into two terms

Ftow = c(∆L, pM ) · ∆L = F (∆L) · pM − f(∆L)

=
3∑

j=0

(aj · ∆Lj) · pM −
4∑

k=0

(bk · ∆Lk) .
(14)

The first term F (∆L) possesses a positive sign and rep-
resents an area function. The second term f(∆L) with

negative sign signifies a counterforce produced, in essence,
by the fiber arrangement in the rubber hose.

2.3 Volume Behavior of the Fluidic Muscle

The muscles volume is approximated by a cylinder with
two frustums at its ends. The total volume is obtained by
adding the volumes of the partial bodies

VM = Vcyl + 2 · VF . (15)
On the assumption of a linear dependency between the
frustums height hF and the total length L, the volume
can be calculated by only measuring the diameter Dcyl

and the length Lcyl of the cylinder. The characterization
measurements lead to two different assumptions for the
DMSP-10 and the DMSP-20 muscle

VM10 =
1∑

i=0

(vM10
i · ∆Li) ·

2∑
j=0

(wM10
j · pj

M ) , (16)

VM20 =
2∑

i=0

(vM20
i · ∆Li) ·

2∑
j=0

(wM20
j · pj

M ) . (17)

2.4 Determination of the Damping Factor

As the muscle system represents a real vibratory system,
the oscillation must be damped. In order to characterize
the oscillatory behavior, the investigated muscle is held
under constant pressure. The carriage is then pulled from
its position of rest manually and released and this results
in a near harmonic oscillation. The amplitude ratio of the
two consecutive oscillations yk and yk+1 is assumed to be
constant

yk

yk+1
= e

D
2·m ·Td = constant . (18)

The amplitudes yk and yk+1 as well as the time Td can
be extracted out of the measured oscillation and the
damping factor D can be computed. Indeed, the damping
factor is also dependent on the muscle pressure and the
contraction length. As the dynamic model error goes below
the accuracy of the load cell, this interdependency has
been neglected.

2.5 Model Identification

To determine the tensile force in relation to muscle pres-
sure, contraction and contraction velocity, the test rig
depicted in fig. 2 is used [Klee Barillas (2007)]. Generally,
there are two different ways to vary the three interdepen-
dencies Ftow, ∆L and pM . Either the contraction or the
muscle pressure can be held constant, while the force is
measured. Here, the alternative with constant pressure and
variable contraction is employed, because it better emu-
lates the application and shows lower hysteresis behavior.
Thereby, the forces Ftow and Fdamp will be determined
separately. In order to vary the position of the carriage, a
nonlinear position control using input-output linearization
for the forceful MAS-40 muscle has been designed. The co-
efficients of the polynomial fitting (14), (16), and (17) are
determined by minimization of a quadratic performance
index (21). The identification procedure is as follows. A
constant pressure between 2 bar and 7 bar is set by
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Fig. 4. Comparison of measured and calculated muscle
force (DMSP-20)

the pressure control in the investigated muscle. Without
any load, the elevated pressure effects a contraction. The
position control on the right side stabilizes the position,
where no force is measured. Next, the forceful muscle on
the right tows the left muscle to zero contraction, while
the pressure is held constant and the antagonized force is
measured. The unknown coefficients aj and bk are wrapped
up in the parameter column vector θ. In vector notation,
the model force FM can be calculated from the vector of
the variable parameters θ, the measurement matrix B and
the contraction velocity vector v, deducting the damping
part.

FM = B · θ − D · v . (19)
Defining the model error as the difference between the
measured force values Fm and the model force values FM

eM = Fm − FM = Fm − [B · θ − D · v] , (20)
a quadratic performance index can be defined as

J(θ) = eT
M · eM . (21)

The necessary condition to obtain a minimum is a vanish-
ing derivative

∂J(θ)
∂θ

!= 0 . (22)

Solving (22) for θ, results in

θ =
[
BT · B

]−1 [
BT · Fm + D · BT · v

]
, (23)

where the product BT · B has to be invertible.

The unknown coefficients of the volume model are deter-
mined analogously. In fig. 4 the modeled and the measured
forces are compared. Fig. 5 shows a set of characteris-
tic curves of the muscle volume including the measuring
points.

3. MODELING OF THE MOTORIZED ORTHOSIS

Generally, both the patient’s leg and the apparatus have
to be modeled. The mechanical models of the orthosis and
the patient’s leg consist of four rigid bodies (fig. 6): the
thigh, the knee, the shank and the foot. The thigh and
the shank of the apparatus are aluminum profiles, which
are assumed to be quadratic bodies, with masses mth,a,
msh,a and moments of inertia Jth,a, Jsh,a. The orthosis
knee joint, with the lumped mass mk,a, connects the thigh
and the shank over an arbor to which a cogwheel wound

Fig. 5. Volume model (DMSP-20) with measuring points

by a chain is mounted. The ends of the chain are attached
to the lower ends of the pair of muscles, whereas the upper
ends are fixed. At the ankle, a mechanism for stimulating
the sole of the foot, which shall be referred to henceforth
as the ’Stimulative Shoe’, is installed. In this paper, the
focus will only be put on the movement of the knee joint.
The patient’s foot has a mass of mf,p and the Stimulative
Shoe has a mass of mf,a, which can be regarded as lumped
masses. While the length of each component can be varied,
by adjustment, to adapt the length of each patient’s leg,
the hip joint is held fixed by a swivel-joint and the ankle
joint is mounted on a linear bearing with low friction (fig.
6). Each leg is modeled and controlled separately. As the
ankle joint is assembled on a linear bearing, the movement
of the knee joint also induces a movement of the hip joint.
Due to this constraint, the degrees of freedom are reduced
from f = 2 to f = 1. This leads to an interdependency of
the hip angle a and the knee angle q

a = a(q, k1) . (24)
This relation can be derived by the use of the inverse
kinematics. The configuration factor k1 takes the ambi-
guity of knee angles q > 0 into account. The thigh of the
patient is modeled as a frustum (mth,p, Jth,p), the shank
as a cylinder (msh,p, Jsh,p). All bodies are assumed to be
rigid. The equations of motion can be obtained by the use
of Lagranges equations. The evaluation of

∂

∂t

(
∂L

∂q̇

)
− ∂L

∂q
= Qnk , (25)

wherein L = T − U represents the difference between the
potential energy U and the kinetic energy T. The term
Qnk stands for the non-conservative forces. Evaluating
(25) leads to the equation of motion of the form

m(q) · q̈ + k(q, q̇) + G(q) = Mk − τ . (26)
In the equation of motion, m(q) represents the iner-
tial term, k(q, q̇) contains the centrifugal and Coriolis
forces, G(q) includes the gravitational terms and τ rep-
resents the disturbance torque. The masses of the patients
lower limbs are computed hinging on their dependency
on body weight. These bodywise-segmented inertial pa-
rameters have been estimated in [De Leva (1996)]. The
required knee torque Mk is produced by a pair of DMSP-20
pneumatic muscles. With the identified force model (13),
Mk(q, q̇, q̈, k1) follows out of the equilibrium condition

Mk =
dcw

2
· (F e(∆Le, pe) − F f (∆Lf , pf )) , (27)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

776



Fig. 6. Model assumptions for mechanical modeling

wherein dcw stands for the cogwheel diameter, F e
tow and

F f
tow are the force of the extensor and the flexor muscle,

respectively. Since a cascaded control structure (fig. 7)
is chosen, the system description for the nonlinear knee
position-system can be given

ẋk
pos = f(xk

pos) + C(xk
pos) · uk

pos ,

xk
pos =

[
q
q̇

]
, uk

pos =
[
pk

e

pk
f

]
.

(28)

The muscle pressure dynamics for the decoupled backstep-
ping pressure control (fig. 7) is given in (6).

4. NONLINEAR OBSERVER

Since the velocity q̇ of the knee angle cannot be measured,
a nonlinear observer is utilized to expedite the same.
Furthermore, the paralepsis of the inherent weight of
the muscles and sensors, in addition to the imprecise
estimation of the patients masses and model assumptions,
lead to ample disturbances. Hence, the disturbance torque
τ is estimated by a disturbance observer. The states

xB = [q q̇ τ ]T , (29)
shall be observed. The knee angle q can be measured and
is a further input parameter into the observer

yk
pos

= q . (30)

The observer system is given by
˙̂x = f(x̂, uk

pos) + h(x̂, uk
pos) · (yk

pos
− ŷ) ,

ŷ = c(x̂) ,
(31)

wherein h(x̂, uk
pos) represents a column vector depending

on the observed states x̂ and the control variables uk
pos.

With the estimation error x̃ = xB − x̂ and the first-order
Taylor series approximation of ẋB = f(xB , uk

pos), the error
system is given by

˙̃x =
[
∂f

∂x
(x̂, uk

pos) − h · ∂c

∂x
(x̂)

]
· x̃ =: Ã · x̃ . (32)

The components of the vector h(x̂, uk
pos) are specified by

pole placement [Foellinger (1993)] for the system matrix
Ã of the estimation error system (32). The validation of
the velocity and disturbance estimation is realized in sim-
ulation. Fig. 8 shows the angle, velocity and disturbance
tracking for a sinusoidal disturbance.

Fig. 7. Block diagram of the nonlinear observer-based
control of the knee joint

5. NONLINEAR BACKSTEPPING CONTROL

The control unit design by backstepping [Knestel (2006),
Aschemann et al. (to appear)] is based on the asymptotic
stability theorem of Lyapunov, whereby, the complete
system of order n is separated into n partial systems. Each
partial system is then stabilized separately by a Control-
Lyapunov-Function (CLF) V (xk

pos) over a new virtual
input parameter, whereas the CLF has to be positive
definite and its time derivative has to be negative definite.
The position controller and the muscle pressure controller
are implemented as a cascaded structure (fig. 7). The inner
pressure of each muscle and the angle at each joint are
recorded by sensors. The mass flow of air into the muscles
is regulated by proportional valves. The conversion of the
mass flow into the valve voltage is realized by means of
an inverse valve model (IVM). As a trajectory control is
desired, the rest position is the tracking error e = 0. The
backstepping design is exemplarily demonstrated for the
position control of the knee joint. The position system
description is given in (28). The error system of the first
partial system is determined as follows

e1 = qd − q ,
ė1 = q̇d − α ,

(33)

wherein α represents the new virtual input parameter. A
reasonable CLF that satisfies all constraints is

V1 =
1
2
· e2

1 . (34)

The time derivative is dependent on the new input param-
eter α, by which the V̇1 < 0 for asymptotic stability can
be enforced

V̇1 = e1 · ė1 = e1 · ( q̇d − α︸ ︷︷ ︸
!
=−c1·e1

) . (35)

The second partial system contains the velocity error,
where the new input parameter α is the reference

e2 = α − q̇ = q̇d − q̇︸ ︷︷ ︸
ė1

+c1 · e1 . (36)

The second partial system is stabilized by a further posi-
tive definite and quadratic CLF. By fulfilling the following
condition

V̇2 = −c1 · e2
1

+ e2 · (e1 + q̈d − q̈(uk
pos) + c1 · (e2 − c1 · e1)︸ ︷︷ ︸

!
=−c2·e2

) , (37)
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Fig. 8. Tracking performance of the nonlinear observer

Fig. 9. Position error and tracking performance of the
nonlinear backstepping controller

the control variables uk
1,pos = pk

e and uk
2,pos = pk

f are
obtained. To achieve antagonistic muscle movement and
to enable independent computation of each actuating
variable, the intermediate pressure pk

im = 1
2 · (pk

e + pk
f )

of each pair of muscles is introduced.

6. RESULTS

The force model of the muscle, which is dependent on
the inner pressure and the muscle length, is compared
with the measured force in fig. 4 for varying contractions.
Maximum force errors up to approximately 30 N dip below
the measurement accuracy of the load cell and occur after
changes in direction. The nonlinear observer exhibits an
accurate estimation of the velocity and the disturbance
investigated in simulation (fig. 8). After a short settling
time, the velocity is estimated accurately. The distur-
bance prediction exhibits a small angular phase shift of
approximately 25 milliseconds, which is dependent on the
chosen dynamical setting. The tracking performance of the
nonlinear backstepping position control is experimentally
investigated for the prototype of the rehabilitation robot
(fig. 1) built at the Institute of Measurement, Control,
and Microtechnology of the University of Ulm. For the
measurement, the apparatus has been operated without a
test person. Maximum tracking errors of approximately 3
degrees are found to occur during maximum acceleration
and deceleration, particularly during the swing phase (fig.
9). The steady-state error at the beginning of the step is
less than 1 degree. The desired trajectory of the knee angle
is obtained by fitting it to the mean knee angle trajectory
of ten healthy persons. This data has been provided by the
Orthopedic University Hospital II of Heidelberg.

7. CONCLUSION

In this paper, the volume and force modeling of pneumatic
artificial muscles of the type DMSP-10 and DMSP-20 is
presented. The model description is derived by use of
polynomial approaches, whose coefficients are dynamically

identified in a test rig depicted in fig. 2. The investigated
muscle is held on constant pressure, while a forceful po-
sitioning muscle varies its contraction and the applied
force to induce the movement is measured. In order to
demonstrate the applicability of the pneumatic artificial
muscle, a nonlinear observer based backstepping controller
is derived. For this, the mechanical model of the partial
system of the knee joint is deduced. The observer compen-
sates disturbances caused by friction, model uncertainties
or unpredictable patient movements with an acceptable
angular phase shift that bears a dependency on stipulated
error dynamics. Due to its stability-oriented design, the
controller demonstrates high robustness at adequate ac-
curacy. The inevitable high complexity of model based
control is justified by the many advantages of the use
of muscles in this application, e.g. simple safety concept
owing to their elasticity and relocatability when depressur-
ized, soft and tractable control, low weight, high dynamics
and low price.
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