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Abstract: Cavitation is harmful to water turbines and may cause operation delays of several
weeks. The real-time detection of cavitation risk is increasingly important, and even narrow
cavitation-free power ranges can be utilised in load optimisation. Higher derivative signals x(3)

and x(4) calculated from acceleration signals are very suitable for detecting impacts. This paper
introduces a generalised moment τ

σMp
α which is defined by three parameters: the sensitivity of

the moment improves when the order p of the moment increases, especially when short sample
time τ is used. In this study, sufficently good results were obtained with moments where the
order of derivation α = 4, p ≈ 4, and τ = 3 s. These moments detect the normal operating
conditions, which are free of cavitation, and also provide a clear indication for cavitation risk at
an early stage. Sufficiently long signals are required for producing reliable maximum moments
and data for analysing short-term cavitation. On-line cavitation monitoring is feasible with this
approach since the analysis does not need high frequency ranges and the sample times are very
short. The moment can be analysed first, and it is then possible to obtain the cavitation index
if the moment value exceeds the threshold. Data compression is very efficient as the detailed
analysis only requires the feature values of the appropriate samples.

Keywords: cavitation; vibration analysis; higher order derivatives; feature extraction; water
turbine.

1. INTRODUCTION

Condition monitoring provides a reliable, economical
method for performing maintenance operations in modern
industrial plants. The increasing number of measurement
points and more complex problems require automatic fault
detection. Advanced signal processing methods expose
failures earlier and provide information on suitable op-
erating conditions. Intelligent methods have increasingly
been used in model-based fault diagnosis and intelligent
analysers. The methods provide various techniques for
combining a large number of features.

Cavitation is possible when vapour bubbles are formed in
a liquid at a constant temperature. If pressure decreases
below the saturated vapour pressure of the liquid at the
same time, the bubbles grow. If this phenomenon takes
place in a flow, the vapour bubbles grow intensively in
a region of lower pressure. When the bubbles move to a
higher pressure region, they collapse rapidly. The collapse
takes place in a very short time period and causes high
vibration levels, see [Brennen, 1995]. Traditionally, there
have been efforts to detect cavitation using vibration,
pressure, acoustic emission or sound measurements. A
variety of studies concentrate on the cavitation of pumps,
see [Čudina, 2003], [Alfayez et al., 2005] and [Al-Hashmi
et al., 2005].

Cavitation is extremely harmful to turbines, as it damages
the surfaces of runners and flow channels, e.g. a revision
of the runner may cause delays of several weeks in the
operation of the turbine. Cavitation and avoiding cavita-
tion in water turbines has been investigated in some recent
studies: [Roussopoulos and Monkewitz, 2000], [Bahaj and
Myers, 2003], and [Escaler et al., 2006].

The power ranges should be selected in a way that min-
imises the possibility of cavitation. For instance, if one
wants to produce as high output powers as possible at flood
periods, advantages and disadvantages can be estimated
when the severity of cavitation is known at the maximum
power levels. As water turbines are used for fast reaction
on fluctuations in electricity consumption, the power need
to be changed quickly. Research on the hydropower plant
modelling and control focus on turbine control with large
load variation in the power system, see [Kishor et al., 2007].

The real-time detection of cavitation risk is increasingly
important in both low and high power ranges. Even narrow
cavitation-free power ranges can be utilised in load opti-
misation. Cavitation in water turbines has often been ex-
amined with standard vrms measurements in the frequency
range 10 - 1000 Hz or by selecting 1 Hz as the lower cut-off
frequency [Juuso and Lahdelma, 2006]. However, practical
experiences have shown that this analysis does not provide
a sufficient picture of cavitation in the case of Kaplan tur-
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Fig. 1. Kaplan water turbine.

bines (Fig. 1). Higher order time derivatives have already
been used to improve this analysis, see [Lahdelma et al.,
1999].

The measurement signals traditionally used in vibration
analysis are displacement, velocity and acceleration, i.e.
x(0) , x(1), and x(2). The signals x(3) and x(4) are very suit-
able for condition monitoring when the ability to detect
impacts is important, see [Lahdelma, 1995] and [Lahdelma
et al., 1999]. Lahdelma has used time derivatives of a
higher order than acceleration, such as x(3) and x(4), in
various condition-monitoring studies and features of these
signals are also very sensitive in detecting cavitation in
water turbines as seen in references [Lahdelma et al., 1999]
and [Lahdelma, 2002].

Intelligent methods provide various techniques for com-
bining a large number of features, see [Juuso, 1994] and
[Juuso, 1999]. Linguistic equations introduced in [Juuso
and Leiviskä, 1992] are designed for integrating knowledge
and data in the development of nonlinear multivariable
systems for intelligent process analysis, process control,
fault diagnosis and forecasting, see [Juuso, 2004]. An in-
sight to the process operation is maintained since all the
modules can be assessed on the basis of expert knowledge,
and membership definitions relate the measurements to
appropriate linguistic terms on different operating areas.

Juuso and Lahdelma [2006] introduced a nonlinear scaling
approach to features generated from vibration measure-
ments and compared several cavitation indices constructed
from these features in a water turbine.

This paper continues the cavitation analysis by comparing
different features and sample times. A new generalised
moment is introduced and compared to the previously
studied features in model-based condition monitoring.

2. VIBRATION MEASUREMENTS

The turbine shown in Figure 1 has sleeve bearings and
four blades and its rotation speed is 115 rpm. The turbine
operates with a constant rotation speed and the output
power is controlled by varying the volume flow rate of
water through the turbine. Acceleration measurements
were carried out vertically on the supporting bearings at
29 power levels varying from 1.5 to 59.4 MW [Juuso and
Lahdelma, 2006, Juuso et al., 2007, Lahdelma et al., 2007].

A Wilcoxon accelerometer model 726 with a permanent
magnet was used in the measurements and signals were
recorded using a Casio DA-7 16-bit DAT recorder in
the frequency range 10 Hz to 20 kHz. The recorded
acceleration signals were transferred to a computer using
the LabVIEW 8.0 software and NI PCI-4472 24-bit data
acquisition card. The sampling frequency in the data
transfer was 12800 Hz, which is rather low but sufficient
in this case. The use of a higher sampling frequency would
naturally increase the absolute values of different features
but also increase sample file size.

An analogue differentiator/integrator was used in [Juuso
and Lahdelma, 2006]. The analogue signal was differen-
tiated and integrated by means of analogue differentia-
tor/integrator MIP 1518ID2 manufactured by MIP Oy.
The linear range of the equipment was from 2 to 2000
Hz, and the upper limit was defined by means of a low
pass filter. Sharp band-pass filtering was performed for
the velocity signal and its frequency range was from 100
to 1000 Hz. The signals x(3) and x(4) were obtained in
frequency range 10 to 2000 Hz. The lower limit 10 Hz is
based ISO standard of vibration measurements in condi-
tion monitoring.

Certain features at varying frequency ranges were calcu-
lated from the stored acceleration signals using LabVIEW
8.0 software. The features were processed using the MAT-
LAB software, version 7.3. The numerical derivation and
integration of the acceleration signals were performed with
LabVIEW, and all the signals were filtered by means of
a sixth order Butterworth bandpass filter. The frequency
ranges were 10-1000 Hz, 10-2000 Hz, 10-3000 Hz and
10-4000 Hz. In this way, the time domain signals were
generated at different power levels, see [Juuso et al., 2007].

Acceleration signals can reveal cavitation, but x(4) is more
sensitive [Juuso et al., 2007]. The x(4) signal at the 2 MW
shows strong, stochastic impacts. For instance, the signal
at 10 MW has slightly more impacts, whereas the level of
the impacts is lower. The signal levels at the cavitation-free
power range are very low. Vibration levels grow when the
power is increased above the clearly cavitation-free area,
but the detected impacts are significantly weaker than in
the 2 and 10 MW measurements.

3. FEATURE EXTRACTION

In a previous study, strong cavitation was observed at
power levels 2, 10 and 59.4 MW. There is a favourable,
cavitation-free operating range from 13 to 40 MW. For
the low power range, i.e. cases of 1.5-1.8, 3-6, 8, 9, 11
and 12 MW, these short periods of cavitation were seen
and heard from the acceleration signals as there are fairly
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Fig. 2. Knowledge-based cavitation index.

strong impacts in the turbine. The impacts were much
weaker than in the stronger cavitation cases and clearly
stronger than in the case of 7 MW. For the high power
range, i.e. cases of 45, 50, 56.5, 57 and 57.5 MW, the
cavitation periods are seen and heard as a slightly higher
noise level. The cases 58 and 58.1 MW have a continuously
higher noise level, see [Juuso and Lahdelma, 2006].

The cavitation indices based on the signals x(3) and x(4)

efficiently indicated all the levels of cavitation. If all the

index values I
(4)
C above 40 MW are slightly reduced, also

the cavitation index supports the fact that the favourable
operating range extends to 50 MW. The index value
for strong cavitation points at the low power range is

emphasised by increasing the index values I
(4)
C for the low

power range. The resulting knowledge-based cavitation

index I∗C is presented in Figure 2. The indices I
(1)
C based

on the features of velocity do not indicate cavitation, see
[Juuso and Lahdelma, 2006].

Signals, x(2), x(3), and x(4) have been analysed in each
frequency range for rms values, kurtosis and peak values,
see [Juuso et al., 2007]. The kurtosis of each signal corre-
lates with the index I∗C in the low power range: the strong
cavitation at 2 MW is clearly detected. For the power
range from 13 MW, kurtosis is close to value 3, which
corresponds to a Gaussian signal, i.e. kurtosis does not
give an indication of cavitation in the high power range.
The spikes caused by cavitation are hidden in the signal
since the noise level is increasing. However, the indication
is achieved with the rms values, which includes the effects
of spikes and noise. Both the features need to be combined
in the power range 3 . . . 12 MW: the cavitation point at 10
MW corresponds to high values in both the features. Only
short periods of cavitation at 5 MW are needed to raise
kurtosis when the signal levels are low, i.e. the rms value
is low. An alternative feature for kurtosis is peak value,
which has fairly similar changes in the low power range
and small changes in the high power range. [Juuso et al.,
2007]

Widening the frequency range makes the features more
sensitive in detecting cavitation at 10 and 59.4 MW.
Also the absolute values of the features increase with the
widening frequency range. The changes in kurtosis and
peak values are different in different power ranges, e.g.
the relative height of the spike becomes stronger at 10
MW and weaker at 5 MW. However, expanding the upper
limit frequency from 2000 to 4000 Hz does not improve

possibilities to observe cavitation at the power level of 2
MW. Thus the detection of cavitation does not require
the use of very high upper limit frequencies. Even the
upper limit frequency of 1000 Hz seems to be sufficient for
detecting strong cavitation in this turbine. Model-based
cavitation indices are needed for a more detailed analysis.
[Juuso et al., 2007]

Previous studies have shown that several features need
to be combined in cavitation analysis. To compare the
possibilities of different approaches, a generalised moment
is introduced here:

τ
σMp

α =
1

N(σα)p

N∑

i=1

| x
(α)
i − x̄(α) |p, (1)

where the real number α is the order of derivation, the real
number p is the order of the moment, τ is the sample time
(s), and x̄(α) and σα the mean and the standard deviation,
respectively, calculated for the signal x(α). The number
of signal values N = τNs, where Ns is the number of
samples per second. The order of derivation ranges from
1 corresponding to velocity to 4, which corresponds to the
signal x(4). The moment τ

σM2
α = 1, and the moment τ

σM4
α

correspond to the kurtosis of the signal x(α).

The moments were studied in the power range 1.5 . . . 59.4
MW from the measurements collected with sampling fre-
quency 12800 Hz. The order p was in the range from 0.2
to 8, and totally 11 different sample times were used:
τ = 1, 2, . . . , 6, 8, 10, 20, 30, and 40 seconds. The length
of the signals x(1), x(3), and x(4) was 50 seconds.

In the cavitation-free power range, the signal x(4) is close
to a Gaussian distribution as can be seen from the moment
τ
σMp

α which is close to 3 when the order p = 4. The sample
time τ does not have any practical effect in this range.
In cavitation cases, the order p has a very strong effect if
p > 2. Therefore, the other power levels were studied by
comparing them to the case at 15 MW.

The maximum values of the moments τ
σM

p
4 , which were

calculated for different sample times, are compared in low
and high power levels, e.g. for the sample time τ = 3 s the
maximum is obtained from 16 samples, each with 38400
signal values. The values in Figure 3 are relative values
compared to the cavitation-free case at 15 MW. The strong
cavitation at 2 MW and 10 MW is clearly detected with
all τ values if the p value is close to 4 or higher (Figs. 3(a)
and 3(b)). The fairly good areas between the cavitation
cases have values close to the cavitation-free cases. High
values are also obtained at 5 and 8 MW which has not
as strong cavitation as at 2 and 10 MW. The moments
become smaller with increasing sample time τ (Fig. 3(b)).
However, the moments calculated at 5 MW decrease less
than the others.

The cavitation case at 59.4 MW is only detected by the
moments based on short signals (Fig. 3(c)). For long
sample times, the moments become much smaller (Fig.
3(d)). The levels of the signal x(4) are quite high at the
high power range and considerable impacts take place only
seldom. Most of the impacts are hidden. In the cavitation-
free power ranges, the moment value can occasionally be
even lower than in the comparison case at 15 MW.
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Fig. 3. Relative maximum moment τ
σM

p
4 for the signal x(4) in the frequency range 10 - 2000 Hz.

The moments τ
σM4

4 calculated for the sample time 40
seconds correspond to the kurtosis values calculated for
the signal x(4) in [Juuso et al., 2007] and [Lahdelma et al.,
2007]. The other moments in Figure 4 are kurtosis values
calculated for shorter sample times: 1, 2 an 3 seconds.
In the low power range, the most sensitive results are
obtained with the sample time 3 seconds (Fig. 4). The
cavitation-free cases are correctly classified by the moment
values close to 3. The cavitation case at 59.4 MW is also
detected with the short sample times.

The moments τ
σM4

1 calculated for shorter sample times
show some improvements but the results are much poorer
than with the moments τ

σM4
4 . The cavitation case at 10

MW is clearly detected, and the moment values at 2 MW
are also slightly higher than the kurtosis of the long sample
time in these cases (Fig. 5) but the operation at the power
ranges around 5 MW is even poorer.

The generalised moment τ
σMp

α can be defined by means of
three parameters α, p, and τ . Quite short sample times
τ can be used in the cavitation analysis. The moments
τ
σM

p
4 calculated for shorter sample times and p values

around 4 provide useful features and an alternative for
the kurtosis based on long sample times. Short sample
times also provide new possibilities for analysing short-
term cavitation periods.

4. MODELLING

The moments indicate possible cavitation but one moment
value is not enough for a detailed analysis. The moments
should be combined with other features, i.e. rms values
used in [Juuso et al., 2007] are needed to get the correct
sequence for the severity of cavitation in the low power
range. This model is closely related to the model used
in [Juuso and Lahdelma, 2006] where peak values were
calculated in a different way. Also the fraction of the values
exceeding the normal range has clear similarities with the
rms values.

Features are transformed to a linguistic scale from -2 to 2
through nonlinear scaling for the linguistic equation (LE)
models in the same way as in the previous studies [Juuso,
2004, Juuso and Lahdelma, 2006, Juuso et al., 2007].
The scaling can be performed for the features in different
frequency ranges by means of membership definitions. As
the shape of the functions is quite similar, the features
provide a good basis for a model-based analysis.

The detailed model-based analysis is excluded from this
paper. Models for the cavitation index can be developed
in different frequency ranges analysed from the features
obtained at ten power levels, as presented in [Juuso et al.,
2007]. The training set has to contain examples of cavita-
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range 100 - 1000 Hz. The maximum values are obtained from several samples.

tion, short-term cavitation and cavitation-free cases. The
same knowledge-based cavitation index I∗C shown Figure
2 is used partly for tuning and partly for testing in all
the frequency ranges. The groups analysed for the signals
x(1), x(2), x(3), and x(4) contain rms value and either the
generalised moment or peak value of the signal.

The value ranges of the moments are drastically lower in
the high power range (Fig. 3(c)) than in the low power
range (Fig. 3(a)). This can be handled by means of specific
sets of scaling functions, or by means of both rms values
and moments. Cavitation in the high power range is less
serious than in the low power range.

5. MONITORING

Cavitation, short-term cavitation and cavitation-free oper-
ating conditions need to be detected in condition monitor-
ing. Reliable indicators could be useful in turbine control
when large load variations need to be handled.

Cavitation-free conditions are reliably detected with fea-
tures obtained in the frequency range 10-1000 Hz. The
most difficult part is to find differences between cavita-
tion and short-term cavitation. Although the acceleration
features provided good fits with the train and test data,
they are not sensitive enough for detecting the operating
conditions. The features of the higher derivatives x(3) and
x(4) have much better overall performance, especially in
wider frequency ranges, 10-3000 Hz and 10-4000 Hz, the
features of the signal x(4) provide better results. [Lahdelma
and Juuso, 2007]

The new moments τ
σMp

α can be used in the same way
as kurtosis in the previous studies [Juuso et al., 2007,
Lahdelma et al., 2007]. The moments calculated for higher
order derivatives x(3) and x(4) are more sensitive than the
ones calculated for velocity. The sensitivity of the moment
improves when the order p of the moment increases. The
order p is selected to be close to four, and the sample
time should be fairly short in the cavitation analysis.
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In this study, the sample time τ = 3 s provided the
most sensitive results. However, sufficiently long signals
are required to produce reliable maximum moments and
material for analysing short-term cavitation.

On-line cavitation monitoring is feasible with this ap-
proach since the analysis does not need high frequency
ranges, and the sample times are very short. The moment
τ
σMp

α can be analysed first and then combined with the rms
values to obtain the cavitation index if the moment value
exceeds the threshold value. Data compression is very
efficient as the detailed analysis only requires the feature
values, i.e. the moment and the rms value, of the appro-
priate samples. Uncertainty can be handled by presenting
the indices as time-varying fuzzy numbers analysed from
several samples. The classification limits and thresholds
can also be considered fuzzy. Generalised moments can also
provide informative features for fault diagnosis in bearings
and gear boxes.

6. CONCLUSIONS

Features of the velocity x(1), acceleration x(2) and higher
derivatives x(3) and x(4) were compared in detecting cav-
itation. The features of the velocity had a very low cor-
relation with the knowledge-based cavitation index. The
new generalised moment provides the first indication of a
cavitation risk. Moments obtained from the signals x(4)

are also highly informative features to be used in model-
based cavitation indicators. Short sample times and rela-
tively low requirements for the frequency ranges make this
approach feasible for on-line analysis and power control.
The generalised moment can be defined by the order of
derivation, the order of the moment and sample time.
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