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Abstract: Look-ahead cruise controllers and other advanced driver assistance systems for
heavy duty vehicles require high precision digital maps. This contribution presents a road grade
estimation algorithm for creation of such maps based on Kalman filter fusion of vehicle sensor
data and GPS positioning information. The algorithm uses data from multiple traversals of the
same road to improve previously stored road grade estimates. Measurement data from three test
vehicles and six road traversals have been used to evaluate the quality of the obtained road grade
estimate compared to a known reference. The obtained final grade estimate compares favorably
to one acquired from a specialized road grade measurement vehicle with a DGPS receiver and
inertial measurement unit.

Keywords: Kalman filtering techniques in automotive control; Automotive system
identification and modeling; General automobile/road-environment strategies

1. INTRODUCTION

Modern heavy duty vehicles (HDV) employ several elec-
tronic control systems which utilize information about the
vehicle and its environment to increase efficiency, safety
and comfort. The road grade is one key variable which
heavily influences the longitudinal dynamics and energy
flow in a heavy duty vehicle. Knowledge of the current
and future road grade can be used in engine and gearbox
control systems to help meet the instantaneous power
demand while keeping fuel consumption and environmen-
tal impact as low as possible. If the road grade for the
kilometer directly ahead of the vehicle is known, it is
possible to automatically adjust the speed in advance of
up- and downhill sections and thus conserve fuel without
increasing trip time. The preview road grade information
can also be utilized when determining if a gearshift should
be performed or the state of some energy buffer changed.

Information about the current state of the vehicle is com-
monly acquired through various on-board sensors. Infor-
mation about factors which will influence the vehicle in
the future cannot generally be sensed directly. However,
a map with stored information from previous trips can
provide the required look-ahead information and enable
new control algorithms to improve overall vehicle perfor-
mance. In order to use the map the vehicle needs to be
able to position itself, both when writing to and reading
from the map. Satellite positioning receivers are already
commonplace in vehicles, and they may be used for this
task as well as other position-based services. Digital maps
are widespread, but mostly used for navigation rather than
direct vehicle control.

A sufficiently detailed road grade estimate is currently
not generally available in navigation maps, and has to

be obtained by other means. One method is to use on-
board sensors to estimate the road grade and create a
map as the vehicle drives down the road. If a road is
driven frequently, many estimates of the road grade can
be obtained. These can be used to increase confidence in
the created map. This paper investigates properties of a
proposed method for road grade estimation. The method
combines road grade estimates based on standard mounted
on-board sensors and information from a GPS receiver for
many overlapping road traversals into a road grade map.
Each time a known road is driven the map is updated. The
method has been implemented and results from tests with
the three types of HDVs shown in Figure 1 are presented.

Fig. 1. Vehicle types used for verification of the proposed
road grade estimation method. Starting from the left a
tractor-semitrailer combination (A), tractor only (B),
and rigid truck (C) were used.

1.1 Related Work

The potential for improved energy efficiency through speed
optimization based on future road grade has recently been
treated, e.g., Terwen et al. [2004], Hellström et al. [2007],
Fröberg and Nielsen [2007]. Knowledge of future energy
needs combined with new auxiliary units which enable
improved power consumption scheduling over time can
improve total energy efficiency, as explored in Pettersson
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and Johansson [2006]. In this context the future road grade
is assumed to be known, for example from a map. A
multitude of methods for estimating the road grade can
be found in the literature. One approach is to use a sensor
to directly measure the grade. A direct road grade sensor
for automotive use is described in a patent application filed
as early as 1971 by Gaeke [1974]. A GPS receiver with 3D
velocity output is used for example in Bae et al. [2001]
where the grade is calculated from the ratio of the vertical
and horizontal velocities. Such a method relies heavily
on the existence of a high quality GPS signal, something
which is not always available. The idea of using vehicle sen-
sor information to find the road grade has been explored
in Lingman and Schmidtbauer [2001] where a Kalman
filter is used to process a measured or estimated propulsion
force or estimated retardation force and a measured veloc-
ity. A similar method, where the grade is estimated using
Recursive Least Squares based on a simple motion model
has been suggested by Vahidi et al. [2005]. On-line road
grade estimation based on accelerometers or a calculated
driveline torque and a vehicle model is state-of-the-art
in today’s vehicles. These methods have the advantage
of not needing any extra sensors, such as the GPS, but
hence don’t provide the extra bias compensation or easy
inclusion of data from multiple road traversals. Earlier
treatments of the proposed grade estimation method can
be found in Sahlholm et al. [2007b,a].

1.2 Contribution

This paper introduces a method for HDVs to estimate
the road grade using only standard mounted sensors and
a GPS receiver. Two implementations are presented, one
based on a non-linear vehicle model and extended Kalman
filtering and one based on a piecewise linear model and a
standard Kalman filter. The method includes a systematic
way of improving the current grade estimate using new
passes over a known road segment. Incremental improve-
ments are made possible by the use of spatial sampling
and storage of the estimated error covariance matrix for
the current road grade estimate. The storage requirement
for a particular road will not grow as new measurements
are incorporated. A step by step illustration of the effects
of adding new measurements is presented. The proposed
method is evaluated using three test vehicles driven a total
of six times over the same test road segment. The obtained
final grade estimate compares favorably to one acquired
from a specialized road grade measurement vehicle with a
DGPS receiver and inertial measurement unit.

1.3 Outline

The paper is organized as follows. Section 2 describes
the the road grade estimation method by introducing the
vehicle model and the filtering, smoothing and data fusion
steps. It also explains the experimental setup. Results are
given in section 3, and the paper ends with conclusions
and a discussion in section 4.

2. METHODOLOGY

A non-linear vehicle model and an extended Kalman
filter (EKF) are used to estimate the road grade. A

piecewise constant linear version of the vehicle model is
also developed as a tool to evaluate the effect of the non-
linearity. Road grade estimates based on six test runs
on highway E4 south of Södertälje, Sweden have been
calculated and merged using a the proposed method.

2.1 Vehicle Model and Measurements

The first step of the road grade estimation method is
to combine a driving torque estimate from the engine
control unit and vehicle speed measurements from the
wheel sensors with GPS data. A longitudinal vehicle model
is used to relate the sensor signals to the road grade.
The road grade can be calculated from the model when
the vehicle mass, engine torque, active gear and vehicle
speed are all known. In this work the vehicle mass has
been assumed known, which is reasonable in a lab setting
but not in the real world. In a real system the mass will
have to be estimated, which introduces an additional error
source in the grade estimate. The engine torque estimate
comes from the on-board engine management system and
is based on fuel injector opening times. The current gear
is continuously reported from the gearbox management
system, and the vehicle speed is measured by standard
mounted wheel speed sensors. The most important forces
affecting the vehicle are shown in Figure 2. The forces

Froll

FgravityFairdrag

Fbrake Fengine
α

Fig. 2. Longitudinal forces acting on the vehicle.

are generally time varying, time has been left out of
the equations for clarity. Fengine = itifηtηf

rw
M is the net

engine force. Knowledge of the current gear yields the
gear ratio it and the efficiency ηt from tables. The final
gear ratio if , efficiency ηf and wheel radius rw are known
vehicle constants. M denotes the engine torque. Fairdrag =
1
2cwAaρav

2 is known through the measured vehicle speed
v and the constants air drag coefficient cw, vehicle frontal
area Aa, and air density ρair. A very simple model Froll =
mgcr gives the rolling resistance from the vehicle mass m,
gravity g, and coefficient of rolling resistance cr. The road
grade α enters the model through the gravity induced force
Fgravity = mg sin α. The brake force Fbrake is excluded
from the model since it is generally unknown in a standard
HDV, its influence is considered at a later stage. The
total dynamic vehicle mass is expressed as mt = Jw

r2
w

+

m +
i2
t
i2
f
ηtηfJe

r2
w

where Jw and Je represent the inertia of

the engine and the wheels respectively. Newton’s laws of
motion are used to attain a differential equation describing
velocity changes based on forces.

A GPS receiver provides a three dimensional position
(latitude, longitude, and altitude) together with a signal
indicating the number of satellites used for the position fix.
The vehicle speed and the road grade are used to calculate
the time derivative of the altitude and thus provide a link
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between the GPS and the vehicle model. Changes in the
road grade are assumed to be random on the time scale
of the filter, and are thus not modeled. The engine torque
is regarded as an input signal u(t) = M(t). Put together

with the state vector x = [v z α]
T

this gives the continuous
time vehicle and road model ẋ(t) = f(x) with

v̇(t) =
1

mt
(Fengine

− Fairdrag − Froll − Fgravity)

ż(t) =v(t) sin α(t)

α̇(t) =0

(1)

See Kiencke and Nielsen [2003]. In order to easily obtain
estimates at specific spatial locations rather than time in-
stants a spatially sampled version of the model is derived.
The continuous model is then discretized with the distance
step ∆s. The discretized model is

[
vk

zk

αk

]

︸ ︷︷ ︸

xk

=






vk−1 + ∆s
dvk−1

ds
zk−1 + ∆s sin αk−1

αk−1






︸ ︷︷ ︸

fk(xk−1,uk−1)

+





wv
k−1

wh
k−1

wα
k−1





︸ ︷︷ ︸

wk−1

(2)

The rate of change in velocity is given

dvk−1

ds
= c1

Mk−1

vk−1
− c2vk−1 − c3

1

vk−1
(cr + sinαk−1) (3)

c1 =
rwitifηtηf

Jw + mr2
w + i2t i

2
f ηtηfJe

c2 =
1
2r2

wcwAaρa

Jw + mr2
w + i2t i

2
f ηtηfJe

c3 =
r2
wmg

Jw + mr2
w + i2t i

2
f ηtηfJe

It can be noted that the values of c1,c2, and c3 depend
on the vehicle parameters as well as the selected gear.
The presence of the efficiencies ηt and ηf also make the
expression (3) dependent on whether the net engine torque
is positive or negative.

To evaluate the influence of the nonlinearity in the vehicle
model a piecewise constant linear version is derived. The
linear model is changed at gear changes and depends on
the direction of power flow in the drive line. Each gear
and power flow direction will lead to a different mode,
denoted by m, with a specific required torque to maintain
a constant speed, and equilibrium in the model. The linear
discretized model around the equilibrium xm is given by
the system transition matrix Fm and the input model G
according to

x̃k = Fmx̃k−1 + Gũk−1 (4)

where x̃ = x− xm is the state relative to the linearization
point and ũ = M −Mm is the relative engine torque. The

transition matrix is given by Fm = I + ∂f
∂x

∣
∣
∣
xm,um

∆s.

Two states and the input torque M are available for
the state estimation. The measured states are the vehicle
velocity v and the altitude z. This leads to a linear
measurement equation

yk =

[
1 0 0
0 1 0

]

︸ ︷︷ ︸

Hk

[
vk

zk

αk

]

+

[
ev
k

ez
k

]

︸︷︷︸

ek

(5)

which is be used with both the linear and non-linear vehicle
models.

2.2 State Estimation

Two different Kalman filters are used to estimate the road
grade and other model states. The non-linear model is used
together with an EKF, and the piecewise linear model with
a standard Kalman filter (KF).

Fig. 3. Overview of the data filtering, smoothing and fusion
of the proposed road grade estimation method.

Using the notation of the previous section the estimation
model for the nonlinear EKF with a linear measurement
equation is given by

xk = f(xk−1, uk−1) + wk−1

yk = Hxk + ek
(6)

The process and measurement noise covariances are up-
dated depending on the characteristics of the driving sit-
uation and GPS positioning conditions. In the EKF the
non-linear model is linearized around the current state at
every time step. The obtained transition matrix Fk is then
used to complete the steps of the standard Kalman filter
recursions. These recursions are described by two update
steps: a time update and a measurement update. In the
time update the system model is used to predict the future
state of the system. Using the notation x̂k|k−1 to denote
the quantity x̂ at time k based on information available
up to time k − 1 the time update is done according to

x̂k|k−1 = f(xk−1, uk−1)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk

(7)

Similarly to Fm in the piecewise linear model the tran-
sition matrix Fk is defined to be the Jacobian Fk =
∂f
∂x

∣
∣
∣
x̂k−1|k−1,uk−1

. Pk|k−1 is the estimated error covariance,

and Qk = E[w2
k] is the process noise covariance. After

the time update the measurement at time k is used in a
measurement update to improve the estimate. The mea-
surement update is described by

Kk = Pk|k−1H
T (HPk|k−1H

T + Rk)−1

x̂k|k = x̂k|k−1 + Kk(yk − Hx̂k|k−1)

Pk|k = (I − KkH)Pk|k−1

(8)

Here Kk is the Kalman gain, and Rk = E[e2
k] is the

measurement noise covariance.

The piecewise constant linear model is used with a regular
Kalman filter. At each mode change between different
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linearizations the final state of the old filter is used to
initialize the new one. The linear system model in each
mode is

x̃k = Fmx̃k−1 + Gũk−1 + wk−1

ỹk = Hx̃k + ek
(9)

where ỹk = yk − Hxm. This leads to the KF time update
equations

x̂k|k−1 = Fmx̂k−1|k−1 + Guk−1

Pk|k−1 = FkPk−1|k−1F
T
k + Qk

(10)

The measurement equations are identical to the EKF case.

For this method the true process and noise covariances
Rk and Qk are not known from the start. Instead they
are used as time varying design parameters to tune the
filter to different driving situations. To simplify the design
the noise covariance matrices were chosen to be diagonal.
The diagonal elements are directly associated to the three
model states and two measured quantities. For normal
driving at a fixed gear Qk was tuned to give a filter with
a time constant similar to the one used to produce our
reference road grade estimate. Rk was adjusted depending
on the number of GPS satellites available. While other
factors also affect the GPS position accuracy the number
of satellites was the only relevant signal available from
the satellite receiver used. When satellite coverage was
lost a very high variance for was set for the altitude
measurement, causing the grade estimate only to depend
on vehicle signals. Driving events such as gearshifts and
braking affect the vehicle in ways that are not covered
by the relatively simple vehicle model given in (1). To
account for this the process variance for the velocity state
was increased during those events.

By carrying out the estimation off-line when complete
road sections have already been recorded it is possible
to use smoothing to compensate for the filtering delay
and include later measurements in the estimate for each
data point. Rauch-Tung-Striebel fixed point smoothing
algorithm, introduced in Rauch et al. [1965], was used in
this work.

2.3 Data Fusion

In order to merge data from many passes over the same
road segment a distributed data fusion method is used.
The distributed approach has the important advantage
that the data which has to be stored does not increase
as additional measurements of known road segments are
incorporated into the map. For each road segment, the
map consists of the road related states (altitude z and
slope α) and the associated estimated error covariance
estimates for those states. Based on the estimated error
covariances stored in the map and the estimated error
covariances of a new smoothed estimate an updated map
is created each time a new measurement of a road segment
becomes available. The new map becomes a weighted
average of the two sources

P
f
k = ((P 1

k )−1 + (P 2
k )−1)−1

x̂
f
k = P

f
k ((P 1

k )−1x̂1
k + (P 2

k )−1x̂2
k)

(11)

where P
f
k is the resulting error covariance, x̂

f
k is the

new state estimate for the map. The quantities P 1
k , P 2

k ,

x̂1
k, and x̂2

k are the source estimates and estimated error
covariances. Details on the data fusion algorithm (11) can
be found in Gustafsson [2000].

2.4 Experiment setup

The proposed road grade estimation algorithm has been
tested on highway E4 south of Södertälje in Sweden. Three
test vehicles, representing the different types shown in
Figure 1 were used. Important properties for the test
vehicles are listed in Table 1. A total of six round-trip
measurements were conducted. The different vehicles were
driven on different days under varying weather conditions.
Most of the signals needed for the road grade estimation
are available on the CAN bus of stock production trucks.
These are the vehicle speed, engine torque (calculate based
on fuel injection times), current gear, gearshift status,
and brake utilization. The CAN bus signals were recorded
using a laptop. There was no GPS data available on the
vehicle bus, instead an external VBOX GPS receiver with
a CAN interface was used. The GPS data was logged using
the same computer as the vehicle data.

Table 1. Key properties of the test vehicles
used to collect experiment data.

Vehicle Configuration Weight Axles Meas.

A Tractor and semi-trailer 39 t 5 1,2,3

B Tractor 13 t 2 4,5

C Rigid truck 21 t 3 6

The absolute position obtained from the GPS was used
to synchronize data from the different measurements. A
reference point was chosen in one of the measurements, the
closest points in the other measurements were then used
as their respective starting points. From the starting point
the traveled distance information in each measurement was
used to resample all signals to a common distance vector.
With common distance indexing it was then possible to
complete the road grade estimation and data fusion steps.

3. RESULTS

Road grade estimates obtained from regular highway driv-
ing at the normal cruising speed are very good. Using
more than one road traversal and more than one vehi-
cle improves the final grade estimate. All result figures
presented share the same distance scale for easy cross-
referencing. A reference grade profile obtained from a
specialized measurement vehicle is used to evaluate the
estimates. Figure 4 shows the agreement of the final grade
estimate with the reference for a part of the test road.
The part of the test road shown in Figure 4 contains a
downhill section, from s = 1000 m to s = 2600 m. Around
s = 2000 m vehicle A needs to apply the brakes in order to
avoid over speeding. During braking the torque affecting
the vehicle is unknown. The process noise term in Qk

corresponding to the velocity state is increased in order
to decrease the reliance on the model and increase the
estimated slope error covariance.

Figure 5 shows a comparison of the smoothed estimates
from all six traversals with the final grade estimate and
the reference grade profile. The downhill section from
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(a) The first measurement forms a road grade
map by itself. Estimation errors cause it to
differ from the reference road grade.
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(b) When a second measurement is added
to the one in (a) a new road grade map is
obtained. The large disturbance in measure-
ment two at s = 1900 m has high uncertainty
and thus a low weight in the data fusion.
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(c) The third estimate from vehicle A does
not differ much from the map based on the
previous two road traversals.
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(d) The larger difference in the fourth es-
timate is probably due to different model
parameter errors in relation to vehicle B.
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(e) Estimate five is based on vehicle B, just
like the one in (d).
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(f) When the sixth estimate, recorded with
vehicle C, has been added the map is com-
plete.

Fig. 6. As more measurements are added the road grade map is improved. The sub-figures (a)-(f) show the progression
as six measurements are combined into one road grade map. Each figure shows the latest measurement (dashed),
the road grade map based on all measurements added so far (solid) and the reference road grade (dotted).

s = 1300 m to s = 2300 m is the hardest part of the
test road to estimate accurately. The mean value at each
sample point is included to illustrate the effect of the data
fusion step. The grade maps resulting from the progressive
inclusion of the six recorded road traversals can be seen in
Figure 6.

The results from using the piecewise constant linear model
instead of the time-varying non-linear model indicated
only marginal changes in the estimated slope. A compari-
son of road grade estimates obtained with the two methods
is shown in Figure 7. The main non-linearity in the vehicle
model, for the magnitude of slopes considered, is in the ve-
locity. The linear model is only valid for velocities close to
the linearization point of 80 km/h. During most of the test
road measurements the velocity of the measuring vehicle
was close to this value. The proposed method is primarily
suited for highway estimation, and it would probably be
wise to reject any data sets with large velocity deviations.

4. CONCLUSIONS AND DISCUSSION

For the investigated test cases the piecewise linear model
performs in a similarly to the time-varying non-linear
model for the task of estimating highway grades. This
opens up possibilities both to lower the computational
requirements and to gain more insight into how the fil-
ter can be improved. One such planned extension is the
estimation of the true process and measurement noise co-

variances Q and R. Better synchronization of the different
measurement runs by the use of more reference positions is
likely to improve the performance gain from using multiple
traversals.

Measurements from more vehicles and more road passes
will make it possible to deduce more precisely what grade
estimation errors are random and reduced with additional
data, and which are systematic and more crucial to deal
with in the method. Further analysis of the linear vehicle
models can help identify areas for improvement. Already
at this stage the proposed method is feasible for collecting
road grade data of sufficient quality for model predictive
control based energy optimization of the vehicle longitu-
dinal motion.
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