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Abstract: This paper deals with the trajectory control problem for a rotary-wing nonlinear
vehicle model. The control of this kind of systems is one of the most challenging and attractive
research areas. The design scheme presented is based on the use of fractional order controllers,
originated from the application of the theory of Fractional Calculus to control system design.
One of the interesting features of the control strategy proposed is the use of a fractional order
derivative to ensure the robustness of the nonlinear system in spite of using a linearized design
model. It is shown that by assuring constant phase margin on a frequency range around
the roll-off frequencies the resulting control system is robust to parameter variations and
nonlinear effects. With this strategy the control design problem becomes much simpler and
gives very straightforward tuning rules. Fundamental operational principles are also considered
for establishing the bandwidth of the input-output channels of the system. The performance of
the controller is shown through nonlinear simulations.

1. INTRODUCTION

In the past years there has been a steady increase in
the development of sophisticated unmanned aerial vehi-
cles (UAVs) for military and civilian applications. UAVs
are for local reconnaissance, fire control, and detection of
intruders. Law enforcement organizations use UAVs for
hostage rescue, border patrol, traffic surveillance and riot
control (Davis et al. [1998]). The commercial success of
UAVs together with the revolutionary advances in the
miniaturization of computers, sensors and mechanical ac-
tuators have posed new challenges to control engineers.
Nowadays, UAVs are considered challenging benchmarks
for the development of new controllers. On the other hand,
new UAV configurations are being proposed (Kendoul et
al. [2005]). Existing UAVs can be classified mainly in two
classes: rotary wing vehicles and fixed wing vehicles. For
missions requiring the vehicle to remain stationary (hover)
or to maneuver in tightly constrained environments rotary
wing vehicles have significant advantages over fixed wing
vehicles. For example, traffic surveillance around buildings
requires a hovering vehicle with good manoeuvrable char-
acteristics. It is important to point out that hover flight
consumes approximately twice the power of a similarly
loaded fixed wing vehicle moving forward. However, it is
expected that new power technologies will allow to achieve
reasonable endurance for rotary wing vehicles.

On the other hand, nowadays the better understanding
of the potential of Fractional Calculus (FC) and the
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increasing number of studies related to the applications
of fractional order controllers (FOC) in many areas of
science and engineering have led to the importance of
studying aspects such as the analysis, design, tuning and
implementation of these kind of controllers.

In this paper a rotorcraft powered by four non-tilting
rotors known as the X4-flier (Hamel et al. [2002]) or the
Dragan-flyer is considered. Besides its practical relevance,
this system is an interesting case of study since it is a
six degrees of freedom mechanical system whose dynamics
is described by an under-actuated twelfth order highly
coupled nonlinear model.

The goal of this work is to solve the trajectory tracking
problem. It is important to point out that this problem has
been addressed in Salazar et al. [2005], using a nested satu-
ration control algorithm, and in Hamel et al. [2002], Arujo
et al. [1998], Castillo et al. [2007], using back-stepping
techniques. However, in this paper the problem is solved
by introducing fractional order derivative controllers that
guarantees the robustness of the system to variations in
its dynamics and parameters, giving a constant phase
margin in the frequency response. Since the approach
here presented is specifically tailored to our particular
rotorcraft dynamics, the control design problem becomes
much simpler and gives very straightforward tuning rules.
A similar strategy, though with a different application, has
been also used in Feliu et al. [2005].
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Fig. 1. Rotary wing vehicle

2. THE MODEL

The rotary wing vehicle is shown in Figure 1. It is powered
by four non-tilting rotors attached to a rigid frame. The
dynamical model of the rotary wing vehicle considered
can be obtained as follows. Let 0xeyeze denote a right-
hand inertial frame (earth frame) such that ze points
downwards into the centre of the earth and 0xbybzb a
right-hand frame fixed to the center of mass of the aircraft
structure (body frame). The vehicle dynamics in the body
frame is described by (Roskam [1982])

m V̇ b
CM + m Ω × V b

CM = F b
e

I Ω̇ + Ω × I Ω = M b
e

(1)

where m represents the vehicle mass, V b
CM = [ u v w ]

⊤

denotes the linear velocity of the vehicle center of mass

expressed in the body frame, Ω = [ p q r ]
⊤

denotes
the angular velocity of the body frame, I is the vehicle
inertia matrix 1 , F b

e represents the external applied forces
expressed in the body frame, and M b

e represents the
external applied moments expressed in the body frame.

In order to express the motion dynamics (1) referred to
earth axis, it is necessary to specify the orientation of the
body axis with respect to the earth frame. Considering
the classical Euler yaw-pitch-roll rotation sequence, the
rotation matrix is given by

R =

[

cθcψ cθsψ −sθ

cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ

]

(2)

where η = [ φ θ ψ ]
⊤

are the Euler angles with φ, θ,
and ψ the roll, pitch, and yaw angular displacements,
respectively, and cx = cos(x) and sx = sin(x). On the
other hand, Ω is related to the Euler angles velocity as
follows (Roskam [1982])

Ω = Wη̇ =

[

1 0 − sin(θ)
0 cos(θ) cos(θ) sin(φ)
0 − sin(φ) cos(θ) cos(φ)

]

η̇ (3)

From equation (2) the relationship between the velocity
components in the earth frame and the velocity compo-
nents in the body frame is defined as

V b
CM = R V e

CM (4)

1 As the vehicle has two symmetry axes I = diag{Ixx, Iyy , Izz}.

where V e
CM = [ ẋ ẏ ż ]

⊤
is the linear velocity of the vehicle

centre of mass expressed in the earth frame. Thus, the
vehicle dynamics expressed in the earth frame can be
written as

m V̇ e
CM = R⊤F b

e

Iη η̈ + W⊤ IẆ η̇ + W⊤ (W η̇ × I W η̇) = W⊤M b
e

(5)

where the following facts have been considered: R−1 = R⊤,
Ṙ R⊤ V b

CM = −Sk(Ω) V b
CM with Sk(Ω) a matrix such that

Ω × V b
CM = Sk(Ω) V b

CM , and Iη = W⊤I W .

The external applied forces expressed in the body frame
are the vehicle weight and the total thrust produced by
the four rotors, that is,

F b
e =

[

−mg sin(θ)
mg cos(θ) sin(φ)
mg cos(θ) cos(φ)

]

+

[

0
0

−TT

]

(6)

where TT =
∑4

i=1 Ti with Ti the thrust of each rotor.
It is shown in Gessow and Myers [1978] that the thrust
generated by each rotor can be expressed as

Ti = CTi
π r4

i ρω2
i

where CTi
is the rotor i thrust coefficient, ρ is the air

density, ri is the radius of rotor i and ω is the angular
velocity of rotor i.

The external moments in the body frame are defined as
follows. The pitching motion is actuated by the moment
around yb produced by increasing the thrust of rotor 2 and
reducing the thrust of rotor 4. The roll movement is gen-
erated in a similar way, that is, by producing a differential
thrust between rotors 1 and 3. Due to the torque applied to
the rotor shaft by the motors, a reactive torque of the same
magnitude but opposite direction is experienced on the
structure of the vehicle. By manipulating these reaction
torques it is possible to control the yaw moment. That is,

M b
e =

[

L
M
N

]

=









(T3 − T1) ℓ
(T2 − T4) ℓ

4
∑

i=1

Qi









(7)

where ℓ is the distance between the rotor rotation axis and
the aircraft center of mass and Qi is the reactive moment
produced by rotor i. This reactive moment is given as
(Gessow and Myers [1978])

Qi = CQi
π r5

i ρω2
i

As shown in Hamel et al. [2002], there exist a globally

defined change of coordinates from [−TT L M N ]
⊤

to
[

ω2
1 ω2

2 ω2
3 ω2

4

]⊤
for CTi

> 0 and CQi
> 0.

3. THE CONTROL PROBLEM

Regarding the control strategy, first, the vehicle verti-
cal motion controller is designed and then, through the
pitch and roll angles, the vehicle position in the plane is
controlled. The motion in the yaw direction is controlled
independently.

From the first equation in (5) the translational dynamics
is described by
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mẍ = TT sin(θ)
mÿ = −TT cos(θ) sin(φ)
m z̈ = −TT cos(θ) cos(φ) + m g

(8)

These equations are typical for the X4-flier (Hamel et al.
[2002]).

In order to preserve the altitude of the aircraft, priority
on the heave motion control is necessary, fact that any
helicopter pilot would certify. Thus, the heave response
should be faster than that of the longitudinal and lateral
dynamics. These dynamical characteristics can be achieved
by selecting the bandwidths of the input-output channels
accordingly. Therefore, the control design can be stated
in terms of specifications that guarantee altitude control
and robustness before executing other manoeuvres. Longi-
tudinal and lateral control systems are specified in terms
of the heave closed-loop dynamics and the achievement of
appropriate bandwidth separation.

Heave Control. It is assumed that during normal flight
pitch and roll angles are bounded. Otherwise the vertical
force component of the thrusters will not compensate
the weight of the aircraft. Thus, −35◦ < θ < 35◦ and
−35◦ < φ < 35◦ so that 0.67 < cos θ cos φ < 1 in order
to preserve enough lifting vertical thrust for maintaining
a prescribed altitude.

Under this restriction and assuming m = 1kg, a control
design model from the third equation in (8) can be defined

z̈ = −KzTT + g (9)

with Kz = cos θn cos φn

mn
, where θn and φn are time varying

but bounded and mn is a nominal value of the mass. The
rotor thrust TT should compensate the effect of gravity
and add extra thrust for executing manoeuvres. That is,

TT =
1

K̂z

(Tv + ĝ) (10)

where ĝ is the nominal value of the acceleration due to
gravity and K̂z is constant. The resulting heave dynamics
is

z̈ =
−Kz

K̂z

(Tv + ĝ) + g (11)

which can be rewritten as

z̈ = −K̄zTv + ḡz (12)

where K̄z = Kz

K̂z

and ḡz = −K̂z ĝ + g. Clearly Tv should be

designed as a stabilizing controller for a double integrator
with uncertain gain under the influence of a constant
disturbance. That is, the design model is

Z(s)

Tv(s)
= gz(s) = −

K̂z

s2
(13)

and

Tv(s) = cz(s) ez(s) (14)

where cz(s) is the controller expressed as a transfer func-
tion and ez(s) is the heave error.

Longitudinal Control. The longitudinal dynamics

ẍ =
1

m
sin θ TT (15)

with the heave control system becomes

ẍ =
1

m
sin θ

1

K̂z

(cz(s) ez(s) + ĝ) tan θ (16)

θ̈ = τθ (17)

This abuse of notation allows to write the longitudinal
dynamics in closed form, where τθ is the pitch moment and
acts as the input. The system has relative degree rd = 4
and the input-output relationship is

x(IV ) = Kx(cz(s) ez(s) + ĝ) sin θ θ̈2 +

Kx(cz(s) ez(s) + ĝ) cos θτθ (18)

with Kz = m̂
cos φn cos θn

, where φn, θn and m̂ are the

nominal fixed values. Note that the term cz(s) ez(s) will
vanish if the heave control has high performance. On the
other hand, sin θ θ̈2 is in general negligible.

A design model can be obtained by a simple linearization
around straight level flight, resulting

X(s)

τθ(s)
=

g

s4
(19)

Lateral Control. The lateral control can be analyzed
similarly. That is

ÿ =
1

m
sinφ cos θ TT (20)

By substituting the heave controller, the above equation
is transformed into

ÿ = K̂y sinφ cos θ (cz(s) ez(s) + ĝ) (21)

with

φ̈ = τφ (22)

where τφ is the roll control torque and K̂y = m̂
m cos φn cos θn

.

The system input-output relationship is

y(IV ) = K̂y cos θ(cz(s) ez(s) + ĝ) sin φ φ2 −

K̂y cos θ(cz(s) ez(s) + ĝ) cos φ τφ (23)

Linearizing (24) considering straight level flight, the fol-
lowing design model is obtained

Y (s)

τφ(s)
= −

g

s4
(24)

Further considerations. It is clear that the design
models defined here may lack aspects such as nonlinearities
and coupling. Also uncertainty due to parameter variations
should be considered. Nevertheless, it has been proven that
the vertical system is dominated by the double integral
action and the longitudinal and lateral dynamics by two
double integrators (Kendoul et al. [2005], Hamel et al.
[2002], Salazar et al. [2005]). In recent years the control
of such systems has called the attention of the control
community. As follows, a new strategy is proposed by
applying fractional order controllers.
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4. CONTROL DESIGN

4.1 Introduction to FOC

Fractional calculus is a generalization of the integration
and differentiation to the non-integer (fractional) order
fundamental operator aDα

t , where a and t are the limits
and α (α ∈ ℜ) is the order of the operation. Among many
different definitions, two commonly used for the general
fractional integro-differential operation are the Grünwald-
Letnikov (GL) definition and the Riemann-Liouville (RL)
definition (Podlubny [1999]). The GL definition is

aDα
t f(t) = lim

h→0
h−α

[ t−a
h

]
∑

j=0

(−1)j (α
j )f(t − jh) (25)

where [·] means the integer part, while the RL definition
is

aDα
t f(t) =

1

Γ(n − α)

dn

dtn

t
∫

a

f(τ)

(t − τ)α−n+1
dτ (26)

for (n − 1 < α < n) and where Γ(·) is the Euler’s gamma
function.

For convenience, the Laplace domain notion is commonly
used to describe the fractional integro-differential opera-
tion. The Laplace transform of the RL fractional deriva-
tive/integral (26) under zero initial conditions for order α
(0 < α < 1) is given by

£{aD±α
t f(t)} = s±αF (s). (27)

As follows a trajectory controller for the rotor craft follow-
ing the fractional operation approach is designed.

4.2 The fractional order integrator

Fractional integro-differential operators were introduced in
a feedback structure by Bode in Bode [1940] and Bode
[1945]. Originally the aim was to design feedback amplifiers
with uniform performance in spite of changes of the
amplifiers gain. Bode presented an elegant solution to this
robust design problem, which he referred to as the ideal
cutoff characteristic or the ideal loop transfer function. In a
Nyquist plot, such a characteristic is reflected as a straight
line through the origin, giving a phase margin invariant to
gain changes. This ideal system is a fractional integrator
with transfer function G(s) =

(ωcg

s

)α
, known as Bode’s

ideal transfer function, where ωcg is the gain crossover
frequency and the constant phase margin is ϕm = π−απ

2 .
This frequency characteristic is very interesting in terms
of robustness to parameters changes or uncertainties.

4.3 Controller design

Firstly the controller for the z-axis movement is designed.
As shown previously in (13), the plant to control is a

double integrator with transfer function Gz(s) = K̂z/s2,

with K̂z = 0.82m/sec2. The condition for a constant phase
margin can be expressed as

arg

[

C(jω)
K̂z

(jω)2

]

= constant,∀ω (28)

where C(s) is the controller. The resulting phase margin
ϕm is

ϕm = arg [C(jω)] (29)

For a constant phase margin 0 < ϕm < π/2 the controller
that achieves this must be of the form

C(s) = kzs
α, arg(C(s)) = α

π

2
= ϕm, α = ϕm

2

π
(30)

with 0 < α < 1. This C(s) is a fractional derivative
controller of order α.

The design of the controller thus involves the selection of
two parameters: (1) α, the order of the derivative, which
determines: (a) the overshoot of the step response, (b) the
phase margin, or (c) the damping; (2) kz, the controller
gain, which determines for a given α: (a) the speed of the
step response, or (b) the crossover frequency.

In the frequency domain, the selection of these parameters
can be regarded as choosing a fixed phase margin by
selecting α, and choosing a crossover frequency ωcg by
selecting kz for a given α. That is

α =
2

π
ϕm, kz =

(ωcg)
2−α

K̂z

(31)

The frequency specifications required for the z-system are:
phase margin ϕm = 70◦, approximately, and crossover fre-
quency around ωcg = 10 rad/sec. Therefore, accordingly
to the previous equation, the parameters of the fractional
derivative controller are α = 0.77 and kz = 20.71, resulting

Cz(s) = 20.71s0.77 (32)

For the control of the motion in the x and y axes the
same design method is followed. However, the dynamics
in these two axes is given by two double integrators
with transfer function Gx,y(s) = g/s4 (from (19) and
(24)), with g = 9.8m/sec2. For that reason, the resulting
controller will be of the form Cx,y(s) = kx,ys2+α, that is,
a double integer derivative (s2) to reduce the dynamics to
a double integrator, and also a fractional order derivative
(sα) to fulfill the design specifications as explained in the
previous case. These specifications are, for both x and y
systems: phase margin ϕm = 70◦, and crossover frequency
around ωcg = 5 rad/sec. Therefore, the parameters of the
fractional order derivative controller for both motions are
α = 0.77 and kx,y = 0.7388, resulting

Cx,y(s) = 0.7388s2.77 (33)

4.4 Implementation of controllers Cx(s), Cy(s), and Cz(s)

When fractional order controllers have to be implemented,
fractional transfer functions are replaced by integer trans-
fer functions which approximate the frequency response
of the fractional controller on a frequency range around
the cross over frequency. There are many different ways of
finding such approximations.

One of the methods commonly used for the implementa-
tion of fractional order operators is the Oustaloup con-
tinuous approximation (see Oustaloup [1995]). With this
method a rational transfer function whose frequency re-
sponse fits the original function within a frequency range
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Fig. 2. Bode plots of the system with controller C5
z (s)

is obtained. Controller Cz(s) will be approximated by a
fifth-order transfer function C5

z (s) with ωh = 1000rad/ sec
and ωb = 0.1rad/ sec. Controllers Cx,y(s) will be ap-
proximated by a fifth-order transfer function C5

x,y(s) with
ωh = 1000rad/ sec and ωb = 0.05rad/ sec. The resulting
controllers are

C5

z
(s) = 4225

(s + 196)(s + 31)(s + 5)(s + 0.78)(s + 0.12)

(s + 809)(s + 128)(s + 20.32)(s + 3.22)(s + 0.51)
(34)

C5

x,y
(s) = 1.5 · 108

(s + 24)(s + 3.3)(s + 0.45)(s + 0.062)(s + 0.008)

(s + 5771)(s + 796)(s + 110)(s + 15.16)(s + 2.1)
(35)

Approximations of greater order can be considered in order
to improve the adjustment of the frequency response of the
rational controllers to those of the irrational controller. It
was observed that a fifth-order transfer function rendered
an acceptable approximation. However, a transfer function
of lower order could also be effective. The frequency and
time responses of the system with these controllers are
discussed next, together with stability requirements.

5. SIMULATION RESULTS

The results from a nonlinear simulation of equation (8)
with controllers (34) and (35) are shown next. First of
all, the responses obtained with controller C5

zs for the z-
motion and controllers C5

x,y(s) for the x-motion and y-
motion are presented. The Bode plots of the open loop sys-
tems for the different axis motions are shown in Figures 2
and 3, respectively. As can be observed, the gain crossover
frequencies for the z and x-y motions are ωcg = 10 rad/sec
and ωcg = 5 rad/sec, respectively. The phase margin
is ϕm = 70◦ for the three systems. Besides, an almost
constant phase margin is ensured in each case within a
frequency range of two decades around the gain crossover
frequencies to guarantee a system response exhibiting ro-
bustness performance, independently of parameters uncer-
tainties.

The time responses of the z-system, x-system, and y-
system are presented in Figure 4, showing the motion
animation in Figure 5. The trajectory tracking problem
is solved with a minor error, as can be observed. The
initial (x,y,z) position of the rotorcraft in the space is
(0,12,20) (in meters). The input reference for the z-motion
is given by rz = 20e−0.1t, and the input references for
the x-motion and y-motion are rx = 12sin(0.12t) and
ry = 12cos(0.12t), respectively, describing the parametric
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Fig. 3. Bode plots of the system with controller C5
x,y(s)
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Fig. 5. Motion animation
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Fig. 6. Rotor thrust TT

equation of a circumference. Parameters TT , θ, and φ are
shown in Figures 6, 7, and 8, respectively, preserving the
restriction 0.67 < cos θ cos φ < 1 stated before.
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6. CONCLUSIONS

The trajectory control problem of a rotary wing vehi-
cle, known as the X4-flier, has been solved by applying
fractional order derivative controllers. The design speci-
fications were defined by considering basic operation re-
quirements of rotary wing aircraft. Such specifications
are fundamental for achieving decoupling and stability.
It is shown that fractional controllers eliminate the non-
linear effects and parameter uncertainty by maintaining
appropriate stability margins over a specified range of the
frequency response. An advantage of the control system
here proposed is that the controllers are expressed and de-
signed as transfer functions. Moreover, the controllers are
implemented as integer order transfer functions, so that
no need of state estimation is required. The effectiveness
of the controller is shown by simulation results.
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Oustaloup A, La Dérivation non Entière. Hermes, Paris,
1995.

Podlubny I. Fractional Differential Equations. Academic
Press, San Diego. 1999.

Roskam J. Airplane Flight Dynamics and Automatic Flight
Controls, Part I. Roskam Aviation and Engineering
Corporation, USA, 1982.

Salazar-Cruz S, Palomino A, and Lozano R. Trajectory
tracking for a four rotor mini-craft. Procc. of the 44th
Conference on Decision and Control and the European
Control Conference 2005, Seville, Spain, December 12-
15, 2005.

Valerio D. Fractional Robust System Control. PhD Thesis.
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