
New Mechatronics Development

Techniques for FPGA-Based Control and

Simulation of Electromechanical Systems

Brian MacCleery ∗ and Zaher M. Kassas ∗∗

∗ Industrial Embedded Design Senior Product Manager, National
Instruments, Austin, TX (e-mail: brian.maccleery@ni.com).

∗∗ Control Design and Simulation R&D Engineer, National
Instruments, Austin, TX (e-mail: zkassas@ieee.org)

Abstract: Field programmable gate arrays (FPGAs) have been widely adopted in high volume
commercial applications, but not as much in the industrial control and simulation arenas. Due to
the attractive features of FPGAs, such as their inherent flexibility, performance, parallelism, and
low-level reconfigurability, industrial control design and simulation vendors have been creating
the next generation FPGA development tool chains that are designed for engineers with little
or no digital design expertise. The goal of these next generation system-level design tools is
to empower control design, simulation, and signal processing engineers to harness the full
power of the FPGA technology, while providing relatively competitive performance and resource
usage, as compared to traditional text-based hardware description level (HDL) methods. This
paper discusses some of the traditional challenges that prohibited wide adoption of FPGAs in
the industrial control and simulation fields, and how new graphical system design tools are
helping mechatronics engineers leverage the full power of FPGAs as deployment platforms.
Moreover, it discusses some particularly useful development techniques for FPGA-based control
and simulation in mechatronics applications.

Keywords: Mechatronics, hybrid simulation, FPGA, implementation

1. INTRODUCTION

Field programmable gate array (FPGA) technology is
gaining more popularity and is increasingly being adopted
in several industrial applications, Mears et al. [2006],
Gomez and Goethert [2006], Dase et al. [2006]. This is
due to different factors, such as their inherent flexibility,
performance, parallelism, and low-level reconfigurability,
besides the fact that their price is rapidly decreasing.
FPGA chips combine software programmability and field
upgradability with the performance, robustness, and flex-
ibility of a custom circuit design. Unlike processors based
on the Von Nuemann architecture, which provide a fixed
instruction and register set, FPGA devices provide a re-
configurable matrix of elemental computing elements that
can be arranged and optimized for a particular computing
task. Recent benchmark reports suggest that some FP-
GAs may have recently bypassed processors and digital
signal processors (DSPs) with respect to cost and power
consumption per signal processing unit, BDTI [2007].

FPGA compilers use a process called synthesis to convert
processing logic and algorithms into a highly optimized
digital logic design that gets implemented at the hard-
ware level in silicon gates; thus, effectively translating the
design requirements from the software domain into the
hardware domain. This results in a true parallel processing
implementation of the design, with the ability to parti-
tion and reconfigure processing resources for each task in
the application. For example, one portion of the FPGA

device may be reading motor current by communicating
with analog to digital converters (ADCs) via the serial
peripheral interface (SPI) communication protocol, while
another portion of the chip is executing a proportional-
integral-derivative (PID) control algorithm, and a third
section is reading hall effect sensors and is performing
brushless motor commutation logic.

Many processing tasks can be executed within a single
clock tick of the FPGA; hence bringing computation
and event response speeds down to the order of tens of
nanoseconds. Unlike traditional processor or DSP devices,
in which the chip vendor pre-determines the instruction
set, I/O interface resources, and configuration registers;
the FPGA can be customized down to the silicon level
by the designer. Fig. 1 illustrates a typical FPGA chip
architecture.

Fig. 1. Internal architecture of a typical FPGA chip

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4434 10.3182/20080706-5-KR-1001.3658

The rest of this paper is organized as follows. Section 2
discusses some of the traditional challenges that prohibited
the wide adoption of FPGAs in industrial control and sim-
ulation applications, and how such challenges are being re-
solved with the evolution of new development tools for FP-
GAs. Section 3 discusses some of the necessary characteris-
tics that FPGA simulation environments for mechatronics
applications should possess. Section 4 demonstrates some
FPGA simulation techniques for timing and triggering.
Section 5 outlines some useful techniques for developing
FPGA intellectual property (IP) blocks, whereas Section
6 discusses experimental validation results. Concluding
remarks are discussed in Section 7.

2. TRADITIONAL CHALLENGES AND THEIR
RESOLUTIONS

Despite the attractive features of FPGAs, their adoption
by industrial control and signal processing engineers has
been slower than processors and DSPs. This is due to
several factors. First, these engineers traditionally pro-
grammed processors and DSPs using higher level lan-
guages, such as C. However, FPGAs possessed complex de-
velopment tool chains that required designs to be specified
using hardware description level (HDL) and register trans-
fer level (RTL) semantics. Furthermore, traditional FPGA
development tools lacked intellectual property (IP) blocks
for common industrial applications, such as ADC and
encoder interface logic, pulse-width modulation (PWM)
and commutation logic, timing and triggering functions,
PID control algorithms, memory management, and data
transfer functions. In addition, FPGAs natively supported
integer data types only, which significantly increased de-
velopment complexity for analog control and signal pro-
cessing applications that required math, control, and DSP
algorithms to be implemented using floating point data
types. Also, traditional FPGA simulation tools operated at
the digital signal level and were not interoperable with the
type of dynamic simulation tools used by control systems
and signal processing engineers for modeling continuous-
time dynamic systems. Moreover, FPGAs compilation
times were relatively long, as compared to processors and
DSPs. For example, typical FPGA compilation times to-
day range from 15 to 90 minutes, whereas processor and
DSP compilations are typically completed in less than one
minute. Finally, the sequential text-based semantics of tra-
ditional register level development tools made it relatively
difficult to specify timing and concurrency among paral-
lel processing tasks in a way that leverages the inherent
parallel processing capability of FPGA devices, Lee and
Neuendorffer [2004].

Despite these traditional development challenges, the suc-
cessful adoption of FPGAs in application areas such as
consumer electronics, and the resulting drop in the price of
FPGAs has spurred the interest of industrial control design
and simulation vendors. Such vendors are creating the next
generation FPGA development tools that are designed
for engineers with little or no digital design expertise.
The goal of these next generation “system-level” graphical
design tools is to empower control, simulation, and signal
processing engineers to harness the full power of the FPGA
technology, Falcon and Trimborn [2006]. Graphical system
design tools are intended to provide a more intuitive, high

level programming paradigm that simplifies the creation of
complex parallel processing and control applications. Also,
they are intended to provide relatively competitive per-
formance and resource usage, as compared to traditional
text-based HDL development tools.

Graphical data flow programming languages are a natural
fit for FPGA development due to their inherent sense
of parallelism and concurrency that intuitively maps to
hardware design. Also, recent technological advances are
enabling designers to place their FPGA code within a
high level dynamic simulation environment. This ability
to cross the boundary between the digital domain of
the FPGA and the analog multi-physics domain of the
system is facilitating a “true” mechatronics approach to
development, in which the complex interplay between
FPGA silicon logic, power electronic components, electric
motor drives, and mechanical systems can all be simulated
in a virtual environment without the need to wait for
long FPGA compilations. The ability to quickly iterate
and optimize the FPGA logic design in a mechatronics
simulation environment, combined with the new high level
programming tools for FPGAs is lowering the barriers that
prohibited wide adoption of FPGAs in industrial control.

In addition to the improved design and simulation ca-
pabilities for FPGA designers, the next generation tools
are providing a rapidly growing library of IP blocks for
common control and DSP algorithms through online code
sharing services, NI [2007a]. For instance, the table below
exemplifies a snippet of the library of available IP through
online code sharing, whereas Fig. 2 shows some of the IP in
the LabVIEW FPGA math and signal processing palette.

Furthermore, new fixed point math tools are becoming
available, which is simplifying the development of com-
plex control and DSP applications. These factors are sig-
nificantly lowering the complexity barrier for developing
custom sophisticated math, control, and signal processing
IP on FPGAs, NI [2007b].

Category Example

Mathematics DC & RMS measurements,
& DSP custom digital filters
Data Multirate analog output,

Acquisition 64-bit counters, PWM
Signal Sine wave, white noise,

Generation look-up tables
Linear & Nonlinear PID, Zero-order hold

Control backlash, relay, saturation
Communication Buses SPI, Huffman decoder, I2C
& Digital Protocols custom serial protocol, SSI

Sensor Thermocouples, resolvers,
Simulation LVDT sensors

3. A MECHATRONICS APPROACH TO FPGA
SIMULATION

3.1 Background

Mechatronics-oriented design attempts to synergistically
combine the disciplines of mechanical, control, electronics,
and embedded computing. As such, mechatronics develop-
ment tool chains should allow the developer to transition
seamlessly from one discipline to the other throughout the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4435

Fig. 2. LabVIEW FPGA Math and Signal Processing
palette. Each subpalette contains several IP blocks
that are functionally grouped. Shown (expanded) is
the Discrete Nonlinear Systems subpalette

design cycle, which typically consist of four stages, namely
modeling and identification, design, simulation, and de-
ployment and implementation. Fig. 3 depicts the different
engineering domains that require simulation capability to
enable a truly multidisciplinary approach to embedded
system design.

Fig. 3. Typical mechatronics design tools

As the adoption of FPGAs as deployment platforms for
mechatronics systems becomes more widespread, design
and simulation tools must be able to simulate the cou-
pled dynamics between the FPGA logic and multi-physics
systems more tightly. Traditionally, HDL simulation tools
provided information about the clock, digital bus, and
signal level timing performance of the FPGA logic. Un-
fortunately, it has been often labor intensive, if not impos-
sible, to validate system level behavior across the multi-

physics domain boundaries between FPGA hardware logic,
software code running in a processor, ADC converters and
signal conditioning circuitry, insulated-gate bipolar tran-
sistors (IGBTs) and metal-oxide semiconductor field-effect
transistors (MOSFETs), electric motors and hydraulic ac-
tuators, and mechanical assemblies. Validating the design
of such FPGA-based control systems requires a simula-
tion environment that can span the domain boundaries
to accurately model the coupled dynamic behavior of the
interconnected electromechanical system. This mechatron-
ics approach to design enables the designer to simulate the
FPGA in the context of the dynamical world in which it
is embedded, as well as to examine the complex interplay
between the FPGA logic inside the chip and the outer
electromechanical world.

3.2 Mixed Continuous/Discrete Simulation

A special requirement for electromechanical simulation
is to enable FPGA logic validation with co-simulation
of continuous-time electromechanical systems like motors,
drives, hydraulics, and pneumatics, Dase et al. [2006].
In this respect, the FPGA code must simulate in a
functionally-correct and time-correct manner in a mixed
continuous/discrete time simulation environment contain-
ing variable time-step solvers. Designers must be able to
specify the discrete execution rate of the FPGA block
and run the code in the simulation environment without
skipping execution cycles. This is sometimes referred to as
“cycle-by-cycle” or “cycle accurate” simulation.

For example, consider the simulation of a brushed DC
motor, where the electrical model (motor armature circuit)
and mechanical model (motor torque and inertial load) are
characterized, respectively, by the differential equations

d i(t)

dt
=−

R

L
i(t) −

Ke

L

dθ(t)

dt
+

vm

L

d2θ(t)

dt2
=

Kt

J
i(t) −

B

J

dθ(t)

dt
,

where i(t) is the armature current; R and L represent the
resistance and inductance of the motor armature circuit,
respectively; Ke is the motor back electromotive force

(emf) constant; dθ(t)
dt

is the shaft velocity that results in a
back emf voltage; vm is the motor terminal voltage; Kt is
the torque constant; J is the rotor inertia; and B is the
friction torque constant; see Fig. 4.

Fig. 4. Electrical and mechanical models of a brushed DC
motor

In this particular example, the simulation environment,
illustrated in Fig. 5 and 6, is simulating the DC motor
dynamics by solving the differential equations through a
Runge-Kutta 45 variable time-step solver. On the other

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4436

hand, the PWM FPGA block (subVI) has been set to run
at discrete-time instants at a period of 25× 10−9 seconds.
Fig. 7 shows how to set the simulation solver parameters
as well as the timing of the different blocks inside the
simulation node.

Fig. 5. LabVIEW Simulation block diagram of a brushed
DC motor

Fig. 6. Simulating the differential equations of the brushed
DC motor

Fig. 7. Simulation solver parameters and subVI node setup

3.3 FPGA Code Validation Using Functional Simulation

Next generation FPGA development tools, such as Lab-
VIEW FPGA, use the same programming language for
programming the FPGAs as they do for programming

general purpose operating systems, such as Windows. This
means that the FPGA functions can be dropped into a
Windows application for test-bench simulations to validate
the functional behavior of the FPGA code. For functional
simulation, the FPGA code must behave in a logically
equivalent manner when running in a Windows test-bench
to when the same code gets deployed to the FPGA target.
This enables the designer to validate the code and test it
using the full suite of debugging capabilities found in the
development tool chain for Windows code development.
Using functional simulation techniques, designers can be
confident that their FPGA logic is correct before compiling
the code to the FPGA. In particular, functional simulation
helps identify logical and timing mistakes in the FPGA
code that would be difficult to capture during full speed
execution in hardware.

4. FPGA SIMULATION TECHNIQUES FOR TIMING
AND TRIGGERING

4.1 Simulating the FPGA Clock

Since FPGA functions typically depend on a clock timer,
the simulation environment must have a way to pass a
simulated clock signal to the FPGA function block to
mimic the hardware timer. For instance, a PWM function
uses a timer to determine when to switch its digital output
on and off. Fig. 8 shows how to simulate the FPGA
clock. In this respect, the “Simulation Time” clock is
getting multiplied by 40 million and converted to a 32-
bit unsigned integer for use by the PWM FPGA function
during simulation. Within the FPGA code a “Conditional
Disable” structure is used. This causes the compiler to use
the simulated clock signal when running under Windows.
When the same code is compiled for the FPGA, however, a
40 MHz FPGA hardware clock is used and no unnecessary
logic for the simulated clock signal is instantiated in the
FPGA fabric.

Fig. 8. Simulating the FPGA Clock and converting from
floating point to integer values

4.2 Capturing Discrete Events

Many FPGA blocks base their execution time on digital
events, rather than on a fixed discrete-time step. Hence,
the simulation environment must also have the ability to
trigger execution based on events that occur at arbitrary

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4437

times during the simulation, Rabbath et al. [2000]. In
Fig. 8, a “Detect Zero Crossing” function is used to
help the dynamic simulation tool capture asynchronous
discrete-time events, such as the Boolean transition of the
PWM digital output. For variable step-size solvers, this
function forces the differential equation solver to evaluate
and update the simulation output when the discrete event
occurs.

4.3 Triggering Logic

The simulation environment must be able to accurately
model the triggering logic that is used to time and synchro-
nize the execution of the various subsystems in the FPGA
application. For example, a typical motor control appli-
cation involves a function for PWM, current sampling,
PID control, and encoder feedback processing. In a typical
loop synchronization scheme, the current is sampled at the
midpoint of the PWM high-time, based on the rising edge
of the “Sample Clock” signal, while the PID function is
executed near the end of the PWM cycle on the rising
edge of the “PID Clock” signal. Sampling the armature
current at the mid-point of the PWM high time provides
an approximation of the average current, since the current
ripple in a motor is roughly triangular in shape, Song et al.
[2000], see Fig. 9.

Fig. 9. Motor current is often sampled asynchronously at
the mid-point of the PWM high-time

Fig. 10 shows the FPGA logic for acquiring the motor
armature voltage and current after the rising edge of the
“Sample Clock” signal (Sample CLK) occurs. In order
to create a high fidelity simulation of the motor control
circuit, the FPGA simulation tool must be able to support
this type of high precision timing and triggering logic.

Fig. 10. FPGA code for sampling voltage and current on
the rising edge of the “Sample CLK” signal

5. FPGA IP DEVELOPMENT TECHNIQUES

FPGA chips might be considered the ultimate multi-core
processors. Due to their parallel processing capability,

FPGAs provide additional degrees of freedom compared
to processors; the design may be optimized either for
size (gate resources) or speed (loop rate). Unlike multiple
execution threads running on a single processing core, the
parallel processing operations running in an FPGA do not
compete for resources with other functions so there is no
penalty for running each of the parallel loops at the fastest
possible rate. Typically, FPGA applications are written as
a set of parallel functions, where the code for each function
block acts like its own processor “core”. The extremely fast
execution rates of the FPGA logic can be attributed to
the fact that the processing resources are synthesized and
optimized by the compiler to meet the unique requirements
of the particular computing task. In effect, the instruction
set of the FPGA is customized for each processing task.
Typically, the processing performance of the FPGA is
orders of magnitude faster than the bandwidth of sensors,
actuators and ADCs. Thus, FPGA developers typically
spend their time optimizing the application to minimize
gate resources rather than optimizing for speed. In an
FPGA, the developer can partition the application into
an unlimited number of parallel processing cores up until
the FPGA gates are completely consumed. However, if
processing speed is sufficient, and the developer wishes
to reduce FPGA gate resources, the code can be imple-
mented in a “single core” implementation in which a single
instance of the processing logic is implemented rather than
multiple parallel instantiations.

Some of the key development techniques that should be
kept in mind, while developing FPGA IP are discussed
next. First, modularize the code into blocks that can be
tested individually. For example, encoder interface, PWM,
PID, filtering, and ADC/DAC interfaces should all be
encapsulated as independent blocks. This enhances code
modularity, portability, and testability. Second, do not
embed input/output (I/O) nodes for ADCs and DACs
in the IP core function block. This way, the IP can
be easily tested with simulated I/O signals and moved
from one system configuration to the next. Third, feed-
in a simulated FPGA clock time signal when running the
code in a Windows simulation. This enables emulating
the precise cycle-by-cycle timing of the FPGA code when
running the code in the simulation environment. Fourth,
use a state-machine architecture to capture a time-based
or event-based triggering, rather than using hard-coded
delay timers. If a hard-coded delay timer is used, the
execution of the function block is halted while waiting
for the elapsed time delay to occur, which makes the
function unresponsive. Hard-coded delay timers blocks can
also complicate the cycle-by-cycle simulation of the FPGA
code, since they do not typically have the ability to use
simulated clock time. Fifth, use a parallel approach if
speed is desired and a serial approach if gate resource
minimization is desired. For the latter, a “multichannel”
or “multiplexed” approach can be used to dramatically
reduce gate resources. In a multichannel implementation,
a single instance of the signal processing logic is used
to reduce FPGA gate resources, while the configuration,
state, and I/O data for each channel is swapped into and
out of memory. In a recent development project, a single-
channel proportional-integral-derivative (PID) algorithm
was ported from a single channel implementation to an
optimized multichannel configuration; enabling up to 256

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4438

PID channels to be implemented in just 30% of a 1M
gate Virtex-2 FPGA device at PID loop rates exceeding
30 kHz for all channels. This translates to nearly 100-fold
reduction in gate usage per PID loop compared to the
single channel implementation.

6. EXPERIMENTAL VALIDATION

The techniques outlined in Section 5 were employed re-
cently in the development of a cascaded PID control
system that provides high speed multi-axis coordinated
motion control and commutation for three brushed DC
motors using the NI CompactRIO reconfigurable control
system. CompactRIO is an off-the-shelf FPGA-based con-
trol and acquisition system which contains a floating point
processor, programmable FPGA, and hot swappable I/O
modules full-bridge motor drive modules. This FPGA ap-
plication includes function blocks for the optical encoder
interface, PWM commutation, cascaded current and posi-
tion PID control loops, spline position interpolation, and
interrupt request (IRQ) signal generation. The real-time
processor provides path planning and coordinated motion
trajectory data for three-dimensional straight-line, arc, or
contour motion profiles. The FPGA-based cubic spline in-
terpolation algorithm enables the FPGA control system to
execute at rates up to 200 kHz, by providing smoothly in-
terpolated position set point commands in between slower
motion trajectory updates. Simulation provided the ability
to quickly and safely test the FPGA logic under a variety
of worst-case and extreme scenarios.

By inserting the FPGA logic into the dynamic simulation
model and validating its performance using a simulated
physical system, the developers were able to gain insight
into the system that otherwise would be difficult or im-
practical due to real-world physical limitations, such as the
sampling rate of the current sensor ADC and the resolution
of the optical encoder sensor. This enabled several logical
mistakes in the original timing and triggering scheme to
be detected. These simulations provided the motivation for
the design of the “PID Clock” and “Sample Clock” timing
scheme. Simulation results predicted that the PWM mid-
point sampling method should provide an adequate esti-
mate of average motor torque even for small inductance
motors that demonstrate large fluctuations in the motor
current signal during the PWM cycle.

Once an actual motor drive module was available for
prototyping, experimental results were compared to simu-
lation results for design validation purposes. Comparison
against the simulation benchmark revealed several flaws in
the electronic design of the motor commutation circuitry,
which resulted in improved performance and current sens-
ing ability for the final product without increasing cost or
delaying the development schedule. Fig. 11 shows a typical
simulation test bench result used to validate the design
of the FPGA-based multi-axis coordinated motion control
and commutation system.

7. CONCLUSION

This paper presented the traditional challenges that have
prohibited wide adoption of FPGAs in industrial control
and simulation applications along with proposed resolu-
tions. Also, it presented several development techniques

Fig. 11. Electromechanical simulation test bench appli-
cation used to design a robust FPGA-based motor
control and commutation system

for FPGA control and simulation of mechatronic systems.
These techniques enable faster design iteration cycles by
avoiding long FPGA compilation times and provide robust
debugging capabilities for FPGA code by using software
as the debugging scope within a dynamic electromechani-
cal simulation environment. By using a mechatronics ap-
proach, the design can be optimized across engineering
domain boundaries and engineers can reduce risk by as-
suring robust application performance over a wide range
of simulated operating conditions.

REFERENCES

BDTI. Berkeley Design Technology Inc. Focus Report:
FPGAs for DSP. Berkeley, CA, 2nd edition, 2007.

C. Dase, J.S. Falcon, and B. Maccleery. Motorcycle control
prototyping using an fpga-based embedded control sys-
tem. IEEE Control Systems Magazine, 26:17–21, 2006.

J.S. Falcon and M. Trimborn. Graphical programming for
field programmable gate arrays: applications in control
and mechatronics. In Proceedings of the American
Control Conference, pages 1394–1400, Jun. 2006.

A. Gomez and E. Goethert. Control system design using
labview fpga for a digital picture kiosk. In Proceedings
of the American Control Conference, pages 1406–1409,
Jun. 2006.

Edward A. Lee and Stephen Neuendorffer. Formal methods
and models for system design: a system level perspective.
Kluwer Academic, Norwell, MA, 2004.

M.L. Mears, J.S. Falcon, and T.R. Kurfess. Real-time
identification of sliding friction using labview fpga. In
Proceedings of the American Control Conference, pages
1410–1415, June 2006.

NI. LabVIEW FPGA Intellectual Property (IP) Network.
2007a. URL www.ni.com/ipnet.

NI. NI Labs Experimental Prototype Pre-Release. 2007b.
URL www.ni.com/labs.

C.A. Rabbath, M. Abdoune, and J. Belanger. Effec-
tive real-time simulations of event-based systems. In
Proceedings of the 2000 Winter Simulation Conference,
pages 232–238, Orlando, FL, Dec. 2000.

S.H. Song, J.W. Choi, and Sul S.K. Current measurements
in digitally controlled ac drives. IEEE Magazine on
Industry Applications, 6:51–62, 2000.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4439

