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Abstract: Traffic congestion is an issue in every major city. Many approaches have been tried. In
this paper, we propose to model signalized intersections as finite controlled Markov chains. The
intersection represents a noncooperative game where each player try to minimize its queue, so
ǫ−Nash’s equilibrium is the solution. This paper is focused on the traffic light control problem for
urban traffic, using Game Theory and Extraproximal Method for its realization. The examples
show the effectiveness of the suggested approach.
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1. INTRODUCTION

Among many approaches dealing with the urban intersec-
tions problem, some of them consider isolated intersections
and other consider groups of intersections. The former
case is considered in Allsop [1971, 1976], Impotra [2002],
Impotra and Cantarella [1984] and Sen and Head [1997]
the latter case is talked in Little et al. [1981], Little [1966]
Robertson [1969], Boillot et al. [1992] and McDonald and
Hounsell [1991].

Allsop [1971], Allsop [1976], Impotra and Cantarella
[1984], Impotra [2002] aim to determine the phases that
minimize the total delay or maximize the intersection
capacity. Sen and Head [1997] optimizes the time splits
at an intersection using a global minimization of binary
variables on a large horizon.

The synchronization of the lights on several intersections
of a street is done using MAXBAND proposed in Little
et al. [1981], Little [1966] or TRANSYT developed in
Robertson [1969], Boillot et al. [1992] and McDonald
and Hounsell [1991]. The adaptive version of TRANSYT:
SCOOT, see Hunt et al. [1982], Robertson and Bretherton
[1991], McDonald and Hounsell [1991] and Boillot et al.
[1992] is used worldwide. A more detailed recent review
of control traffic techniques can be found in Papageorgiou
et al. [2003]. The game theory was used by Chen O. J.
[1998] and Bel [2000].

The traffic ligths in Mexico city are controlled using a
cooperative scheme. However, noncooperation drivers, and
a noncooperative behavior between drivers and signals
is frequently observed. Mexico City’s net is constituted
by 3076 intersections with traffic lights of which
there are 314 conflicting cruises. The main cause of
the saturation is the imbalance between the demand and
the supply of services in the metropolitan area. A detailed
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description of Mexico City is presented in del Gobierno del
Distrito Federal [2002].

A landmark in noncooperative games is the equilibrium
introduced in Nash [1950]. Rosen in a seminal paper
Rosen [1965], introduces the numerical methods to find
the noncooperative constrained Nash equilibrium. The
proposed construction does not require the “Strictly Di-
agonal Convexity Condition” as in Rosen [1965], and use
the work of Godoy Godoy et al. [2003] that deals with
a multi-participant dynamic (averaged) non cooperative
finite game with constraints where each player has a fi-
nite number of actions and a finite number of states; the
complete information on the corresponding payoff and con-
straints is assumed to be available. This paper consider the
complete information case and follows the lead of Antipin
[2005a], Antipin [2005b]. Here the extraproximal method is
applied with an additional regularizing term that permits
its convergence to one of Nash equilibrium points. Each
player has a finite number of actions and a finite number
of states. The complete information on the corresponding
payoff and transition matrices is assumed to be available.

This work is structured as follows, first we present concepts
associated with the proposed model, next we define the
game problem, and propose a method to obtain a solution
or ǫ−Nash equilibrium point. After this, the result for
an intersection with several players is presented with a
comparison to a adaptive control.

2. MARKOV CHAIN MODEL

The simplest intersection is formed by the crossing of two
one-way streets. The vehicle flow is controlled by a two
color light u ∈ 1 ≥ R

2 ≥ 0, where u(1) represents the red
light and u(2) is the green light. At time t, see figure (1),
the total number of cars in the street is xt, the number
of cars entering it is ξt, and the number of cars exiting
is νt; the street has a maximum capacity of n|x+. The
dynamics of the vehicle flow at one street is described by
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the following equations

ut = u(1) : red light

xt+1 =

{

x+ : ξt + xt > x+

ξt + xt : ξt + xt ≤ x+

ut = u(2) : green light

xt+1 =

{

x+ : ξt + xt − νt > x+

ξt + xt − νt : 0 ≤ ξt + xt − νt ≤ x+

so a street can be seen as a finite capacity FIFO buffer
or queue. We assume that the input flow is a Poisson

Fig. 1. Flow variables.

Process with parameter λξ. Each control strategy defines
a transition matrix Πut

ji for the controlled Markov chain:

For the red light:

Π
u(1)
ji = P {xt+1 = i | xt = j ∧ ut = u(1)}

Π
u(1)
ji = δi,x+



1 −
x+

−j
∑

s=0

e−λλs

s!



 +

+

i−j
∑

s=0

e−λλs

s!
χ(s ≥ 0)





x+
−j
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s=0

e−λλs
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(1)

For green light:

Π
u(2)
ji = P {xt+1 = i | xt = j ∧ ut = u(2)}

Π
u(2)
ji = δi,x+



1 −
x+
∑

k=0

e−λλ(x+
−j+k)

(x+ − j + k)!
Pνt=k



+

+

x+
∑

k=0





e−λλ(i−j+k)

(i − j + k)!
Pνt=k





x++k−j
∑

s=k−j

e−λλs

s!
χ(s ≥ 0)









(2)
Associating with the two control strategies P (u1

i ) =
d1

i , P (u2
i ) = d2

i we have:

Πij(d) := π
(1)
ij · d1

i + π
(2)
ij · d2

i =

2
∑

k=1

πk
ijd

k
i

Πij(d) := π
(1)
ij · d1

i + π
(2)
ji · (1 − d1

i )

(3)

with:

d1
i ≥ 0, d2

i ≥ 0 d1
i + d2

i = 1
d =

∥

∥dk
i

∥

∥

i=0,...
k=1,2

di = (d1
i , d

2
i ) ∈ S2

where πkl

il,jl
is the transition probability for player l to go

from state j to state i with the control action k and d1
i is

the red light strategy at i − th state.

3. THE GAME DESCRIPTION

The simplest game considers a two one-way-street inter-
section. So the conflict appears when each player wants
to minimize its queue, see figure (2). The extended prob-
ability vector will be used in the payoff function with
the constraints on the behavior in the model. The use
of counter-coalition variables is considered here in order
to obtain the equivalent LPP (Linear Programming Prob-
lem) and its solution, i.e., the Nash equilibrium point, see
Nash [1950],Rosen [1965]. For this intersection we have the
following matrices:
First player

Π11

i1,j1
= Π

u(1)
ji

Π21

i1,j1
= Π

u(2)
ji

Second player

Π12

i2,j2
= Π

u(1)
ji

Π22

i2,j2
= Π

u(2)
ji

Following Gómez et al. [2003], the individual aim of each
player can be formulated as follows:

V1(d) =

n
∑

i1=1

i1Pi1(di1 , di2) → min
d

k1
i1

∈S2

V2(d) =

n
∑

i2=1

i2Pi2(di1 , di2) → min
d

k2
i2

∈S2

(4)

where for stationary strategies dkk

ik
(n) = dkk

ik
and ergodic

Markov chains, see Poznyak and Najim [2000] the following
identities hold

Pi1 (di1 , di2) =

n
∑

i1=1

n
∑

i2=1

2
∑

k1=1

2
∑

k2=1

πk1

i1j1
dk1

i1
pi1d

k2

i2
pi2

Pi2 (di1 , di2) =

n
∑

i1=1

n
∑

i2=1

2
∑

k1=1

2
∑

k2=1

πk2

i2j2
dk2

i1
pi1d

k2

i2
pi2

(5)

3.1 Model in C-variables

The above problem can be reformulated as linear pro-
gramming problem by replacing the variables used. Set
the variables ck1

i1
and ck2

i2
as follow:

ck1

i1
= dk1

i1
pi1 ck2

i2
= dk2

i2
pi2 (6)

The allowed strategies will be limited by the constraints

• each vector ck means a stationary mix-strategy and
belongs to simplex S(nk) defined by

Fig. 2. Flow dynamics of the intersection.
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S(nk) :=











ck ∈ Rn·k | ck1

i1
≥ 0, ck2

i2
≥ 0

n
∑

i1=1

2
∑

k1=1
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i1
= 1,

n
∑

i2=1

2
∑

k2=1

ck2

i2
= 1











(7)

• The joint strategy variable c satisfies the ergodicity
constraints and belongs to the convex, closed and
bounded set Qerg ⊂ R2 defined as

Qerg := Q1
erg × Q2

erg

Qn
erg := Q1,1

erg × Q1,2
erg × · · · × Qn,1

erg × Qn,2
erg

Qn,k
erg :=
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n
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2
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πk1
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i1

ci2 := (c1, ..., cn)
T ∈ R2 |

2
∑

k2=1

ck2

i2
=

n
∑

i2=1

2
∑

k2=1

πk2

i2,j2
ck2

i2



















































(8)

For ergodic Markov chains (see Poznyak and Najim [2000])
one has

pi1 =

2
∑

k1=1

ck1

i1
> 0 dk1

i1
= ck1

i1
/

2
∑

k1=1

ck1

i1

pi2 =

2
∑

k2=1

ck2

i2
> 0 dk2

i2
= ck2

i2
/

2
∑

k2=1

ck2

i2

(9)

3.2 Nash Equilibrium

The regularized payoff function V(k) (c) for each player
depends on players strategies that is,

V
(1)
δ (c) =

n
∑

i1=1

n
∑

i2=1

2
∑

k1=1

2
∑

k2=1

i1c
k1

i1
ck2

i2
+

δ

2

∥

∥ck1
∥

∥

2

V
(2)
δ (c) =

n
∑

i1=1

n
∑

i2=1

2
∑

k1=1

2
∑

k2=1

i2c
k1

i1
ck2

i2
+

δ

2

∥

∥ck2
∥

∥

2

(10)

Using the stationary mixed strategies

dk1

i1
= ck1

i1
/

2
∑

k1=1

ck1

i1
, dk2

i2
= ck2

i2
/

2
∑

k2=1

ck2

i2

each player wants to minimize his penalties (in this case,
the number of waiting cars) within the associated con-
straints. Sure, both aims are in conflict which can be
resolved by the Nash-equilibrium concept.
The Nash equilibrium point c∗ in the case of two players
is given by the matrix c that satisfies:

ck,∗ ∈ Arg min
ck∈S(nk)







Vk

(

cl,∗, ck
)

+
δ

2

∥

∥ck
∥

∥

2

|
(

cl,∗, ck
)

∈ Qk
erg × Qk







l = 1, 2 k = 1, 2 l 6= k

(11)

The uniqueness of the Nash equilibrium point is guaran-
teed by the strict concavity condition (see Rosen [1965],
Poznyak and Najim [2002]).

3.3 Joint Loss Function

Following the approach in Rosen [1965] and Tanaka and
Yokoyama [1991], let us introduce the δ-regularized joint

Loss function ρδ (c∗, c) defined by

ρδ (c, c∗) :=

N
∑

k=1

V k
δ (c, c∗)

c⊺ :=
(

cl, ck
)

∈ S × Qerg

c∗,⊺ :=
(

cl,∗, ck,∗
)

∈ S × Qerg

(12)

for any c ∈ S × Qerg.

The fixed point c∗ ∈ S × Qerg is a Nash equilibrium (see
Nash [1950]) in a N -person Markov chain game (11) if only
if satisfies the equation

c∗ ∈ Arg min
c∈S×Qerg

ρδ (c, c∗) (13)

An equilibrium point c∗ in (13) can be characterized by
the inequality

ρδ (c, c∗) ≥ ρδ (c∗, c∗) , δ > 0 (14)

Theorem 1. (Tanaka and Yokoyama [1991]). A strategy c∗

∈ S × Qerg is a Nash equilibrium point (in the sense 11)
in N -person finite Markov chain game (10) if and only if

min
c∈S×Qerg

ρδ (c, c∗) = ρδ (c∗, c∗) , δ > 0 (15)

3.4 Extraproximal Procedure for Solving Equilibrium Point

An ”extraproximal method”, applied to resolving convex
static two-person games, is designed and analyzed in
Antipin [2005a] and Antipin [2005b]. Here we will apply it
to find a Nash equilibrium c∗ ∈ S ×Qerg, defined by (13),
in Markov chain finite games (8)-(10). The idea of this
method, as it may be applied to this problem, consists of
the following ”iterative rules” implementation:

(1) The first half-step (prediction):

c̄k
n = argmin

{

1

2

∥

∥ck − ck
n

∥

∥

2
+ αV

(k)
δ

(

ck, ck̂
n

)

}

ck ∈ S × Qerg; k = 1, 2; n = 1, . . .
(16)

(2) The second (basic) half-step:

ck
n+1 = argmin

{

1

2

∥

∥ck − ck
n

∥

∥

2
+ αV

(k)
δ

(

ck, c̄k̂
n

)

}

ck ∈ S × Qerg; k = 1, 2; n = 1, . . .
(17)

where V
(k)
δ

(

ck, c̄k̂
n

)

= V k
δ

(

c̄1,k, ck
)

and V k
δ

(

ck, ck̂
n

)

=

V k
(

c1
n, ck

n

)

, with the step size α from a certain fixed
interval 0 < α < α0 and a small enough δ > 0.

Theorem 2. (Antipin [2005a]). Assume that there exists a
solution to problem (13). Then, the sequence cn gener-
ated by the extraproximal method (16)-(17) with the step

size α, chosen from the condition 0 < α <
(√

2C0

)−1

(

C0 = max {Ck} , k = 1, N
)

, converges monotonically in
the euclidean norm to a game equilibrium (one of possible
solutions), i.e.,

ck
n → ck,∗ as n → ∞

4. EXPERIMENT RESULTS

We consider the same average flows for both players.
Incoming and outgoing flows (λ1

ξt
= λ2

ξt
, λ1

νt
= λ1

νt
). This

mean that the transition matrices are identical for both
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players. Since the buffer capacity is x+ = n, we have two n
square matrices. Although we can guess the result, solving
the linear programming problem for the payoff function
(10), the cycle time split that results is

d1
i1

= 0.5 and d2
i1

= 0.5

d1
i2

= 0.5 and d2
i2

= 0.5

This is the Nash equilibrium point for two identical play-
ers, i.e., with equal transition matrices. It assigns the same
time to each participant. This result serves as reference
for intersections with unequal players, i.e., with different
input/output flows.

For the case when x+ = 8, λξt
= 7, λνt

= 4 for one player
and λξt

= 6, λνt
= 7 for the other one, the solution of the

LPP is:

d1
i1

= 0.1571 and d2
i1

= 0.8429

d1
i2

= 0.8429 and d2
i2

= 0.1571

This result could be expected since the first section has a
greater load (having a greater input stream and a smaller
output flow) with respect to the second section that has a
smaller load of automobiles.

5. MORE GENERAL INTERSECTIONS

Other kind of intersections can be treated the same way.
We now can consider a blade –a three street intersection–,
see figure (3).

Fig. 3. Flow dynamics of the three player intersection.

The result for identical players in a blade intersection is:

d1
i1

= 0.6666 and d2
i1

= 0.3333

d1
i2

= 0.6666 and d2
i2

= 0.3333

d1
i3

= 0.6666 and d2
i3

= 0.3333

Notice that we don’t give data of the flows averages (input
and output), because the result will be always the same.
For different players is necessary to set the data: let
x+ = 7, λ1

ξt
= 4, λ1

νt
= 5; λ2

ξt
= 7, λ2

νt
= 5; λ3

ξt
= 6,

λ3
νt

= 6. The Nash equilibrium for each player of this game
is found to be

d1
i1

= 0.9077 and d2
i1

= 0.0923

d1
i2

= 0.2140 and d2
i2

= 0.7860

d1
i3

= 0.8783 and d2
i3

= 0.1217

This result could also be expected since the first player is
under saturated (λ1

ξt
< λ1

νt
) therefore its strategy for green

light d2
i1

is the smallest, the second second player strategy

d2
i2

is greater than third player strategy d2
i3

because this

player (second) is oversaturated (λ2
ξt

> λ2
νt

), and finally
the third player strategy is greater than first player strat-
egy due to its flows are the same (λ3

ξt
= λ3

νt
).

Until now our streets have only one direction; so in order
to get a more realist model we consider opposing flows as
participant pairs; it means that we consider the players
on the same street as only one player, see figure (4).
The following constraints are required in order to avoid

Fig. 4. Flow dynamics of the four flow intersection (two
participants)

collisions

d1
i1

= d2
i2

d1
i2

= d2
i1

d1
i1

+ d2
i1

= 1 d1
i2

+ d2
i2

= 1

The English Turn its a special case and the control of
the traffic lights in this type of crossing looks glance as a
complex task in fact for these is not the case. For these
turn the passage of vehicles are based on the location of
these: in a turn they advance from north to the south
and vice versa, in the following turn they advance from
east to west and vice versa. The structure of this type
of intersection appears in figure (5). The arrows mark

Fig. 5. Flow dynamics of the English turn.

the position of the vehicles within each segment of cars
in the intersection, and the players behavior is based on
the previously described fact. We considered the segments
that go of north to the south and the south to north for the
construction of the transition matrices of our first player
and the segments that go from east to west and the west
to east for the second participant.
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6. COMPARISON

We compare our method against the following time-
varying adaptive strategy, since there is not way to com-
pare the proposed solution versus a similar algorithm,
the following strategy is useful, because characterizes the
behavior of the traffic lights in iterative form.

dkk

i1
=

2

(xi1 + 1)xi1

i, dkk

i2
=

2

(xi2 + 1)xi2

i;

i = 0, 1, 2 . . . , n

We consider sixty iterations or cycles, this mean that our
strategy will be computed every cycle time (cycle time =
green light time + red light time), a buffer size of twenty-
six cars x+ = 26 for each player (the maximum capacity of
the two segments of the street); and random input/output
flows (λl

ξt
, λl

νt
) were generated by Poisson distribution

with λ1
ξt

= 20, λ1
νt

= 21 for first player and λ2
ξt

= 19,

λ2
νt

= 20 for the second; all considerations are based on
participant pairs.

Fig. 6. Game Theory Control.

Fig. 7. Queue evolution for the Intersection

Figure (6) shows the green light strategy value for each
player, which is the red light strategy for the other player
and the figure (7) compares the total queue average
for the intersection; between game theory control and
adaptive control, we can obtain an improvement of 26.45%
in performance when using game theory strategy. The
result is variable and depends on flow averages; several
experiments varing the (input and output) flows gave
better results for saturated intersections and gave the same
performance for unsaturated intersections.

7. CONCLUSION

This paper presents an approach to the urban traffic
problem based on game theory and a Markov chain model.
This technique is compared with an adaptive control, the
results obtained are applied to control the lights cycle time.

At each iteration a game is solved by extraproximal
method to find a ǫ−Nash equilibrium point. The ergodicity
condition is fulfilled; this means that we do not require
past information to manage the actual queue length. An
improvement over the adaptive control is not always ob-
tained, nevertheless in the worst case, our control tech-
nique will work as the adaptive control. This occurs when
we have low traffic because the throughput is higher.

In this work, the approach was applied to simple isolated
intersections, but was extended to more complex cases like
“English” turns. The comparison will be improved using
other methods of traffic lights control. The behavior of
other types of networks, like computer or communication
networks, could be analyzed using this technique. Future
work includes to develop a general framework to deal with
the intersections on a street or on a streets network.

REFERENCES

R. B. Allsop. Sigcap: A computer program for assessing
the tra c capacity of signal-controlled road junctions.
Traffic Eng. Control, 17:338–341, 1976.

R. B. Allsop. Sigset: A computer program for calculat-
ing traffic capacity of signal-controlled road junctions.
Traffic Eng. Control, 12:58–60, 1971.

A. S. Antipin. An extraproximal method for solving
equilibrium programming problems and games. Com-
putational Mathematics and Mathematical Physics, 45
(11):1983–1914, 2005a.

A. S. Antipin. An extraproximal method for solving
equilibrium programming problems and games with
coupled variables. Computational Mathematics and
Mathematical Physics, 45(12):2020–2029, 2005b.

M. G. H. Bel. Game theory approach to measuring
t he per-formance reliability of transport networks.
Transportation Research , Part B. Methodological, 34 (
6):533–545, 2000.

F. Boillot, J. M. Blosseville, J. B. Lesort, M. Papageorgiou,
and N. Sellam. Optimal signal control of urban traffic
networks. Proc. 6th IEEE International Conference
Road Traffic Monitoring and Control, pages 75–79, 1992.

Ben-Akiva M. E. Chen O. J. Game-theoretic formula-
tions of interaction between dynamic traffic control and
dynamic traffic assignment. Transportation Research
Record, 1617:179–188, 1998.

Organo del Gobierno del Distrito Federal. Programa in-
tegral de transporte y vialidad 2001-2006. In GACETA
OFICIAL DEL DISTRITO FEDERAL, volume XII
Epoca, pages 3–94. Administración Pública del Distrito
Federal, Mexico City, 2002.

M. Godoy, A. Poznyak, and E Gomez. Generalization of
the mangasarian-stone theorem for markov chain finite
n-person games: Lpm-approach. Dynamic System and
Applications, 12:489–508, 2003.
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