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Abstract: The paper addresses the problem on sensor location regarding the solvability of the
disturbance decoupling problem by dynamic measurement feedback. Three methods are given
to find a measured output, which guarantees the solution to the problem. It is also shown that
the results for linear structured systems on sensor location when applied to infinitesimal linear
representation of nonlinear system, do not yield, in general, correct results for nonlinear system.

1. INTRODUCTION

When all state variables are not available for measurement,
the solution of the disturbance decoupling problem (DDP)
is looked for in the class of measurement feedback. This
is much more complex problem than the DDP by state
feedback and for nonlinear control systems the full solution
is still missing. The DDP via dynamic measurement feed-
back (DDDPM) has been addressed in Battilotti [1997],
Andiarti and Moog [1996], Isidori et al. [1981], Xia and
Moog [1999] for continuous-time nonlinear systems and
in Kaldmäe et al. [2013], Kaldmäe and Kotta [2012] for
discrete-time systems.

However, in this paper, we will focus on the related prob-
lem on the location of sensors regarding the solvability
of the DDDPM. The sensor location problem aspect has
been widely studied in the literature related with different
problems like observability Boukhobza and Hamelin [2011]
and fault detection Commault and Dion [2007]. In general,
it answers the questions how many sensors do we need and
where should they be placed so that the problem under
consideration is solvable. Sensor location problem is also
known as the (measured) output selection problem. How-
ever, there are not many papers addressing this problem
for nonlinear systems Serpas et al. [2013].

The results of this paper rely on necessary and sufficient
solvability conditions for DDDPM for discrete-time non-
linear systems Kaldmäe et al. [2013]. Based on the results
of Kaldmäe et al. [2013] we suggest the methodology for
choosing the sensor location and will show that though the
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choice is not always unique, measuring the state variables
outside the given subsets is of no additional use.

It is often claimed in the literature, including Commault
et al. [2011] that a structured linear system may (often)
represent all the linearized models for a non-linear system,
pointing that way the possibility to use the linear solution
to address the nonlinear problem. Though the claim is
correct regarding the representation, it does not necessar-
ily mean that this description is helpful for addressing
the nonlinear problem. This approach works in case of
some problems, for example in case of accessibility Halas
et al. [2009], but not for the other problems like state
space realization Belikov et al. [2014]. The bottelneck is in
integrability issues. Note that the globally linearized model
is given in terms of differential one-forms and though the
linear theory yields the solution in terms of one-forms, the
solution found that way cannot be always integrated to
get back to the equations level. Another goal of this paper
is to check whether the results of Commault et al. [2011]
for parameter-dependent structural linear systems when
applied for linearized system description yield a solution
of nonlinear DDDPM or not. Since we address the discrete-
time systems, the results of Commault et al. [2011] have
to be first adopted for discrete-time case.

2. PRELIMINARIES

2.1 Problem statement

Consider a discrete-time nonlinear control system

x(k + 1) = f(x(k), u(k), w(k)),
y(k) = h(x(k)), y∗(k) = h∗(x(k)),

(1)

where x(k) ∈ X ⊆ Rn is the state, u(k) ∈ U ⊆ Rm

is the control, w(k) ∈ W ⊆ Rρ is the unmeasurable
disturbance, y(k) ∈ Y ⊆ Rp is the measured output
and y∗(k) ∈ Y∗ ⊆ RL is the output-to-be-controlled.
The disturbance decoupling problem under a dynamic
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measurement feedback (DDDPM) can be stated as follows:
find a vector function z(k) = α(x(k)), z(k) ∈ Rq and a
dynamic measurement feedback of the form

z(k + 1) = F (z(k), y(k), v(k)), z(0) = α(x(0)),
u(k) = G(z(k), y(k), v(k)),

(2)

where v(k) ∈ V ⊆ Rm and rank[∂G/∂v] = m, such
that the values of the outputs-to-be-controlled y∗(k), for
k ≥ 0, of the closed-loop system are independent of the
disturbances w(k). Note that we call the compensator,
described by (2) regular, since it generically defines the
(y, z)-dependent one-to-one correspondence between the
variables v(k) and u(k). One says that the disturbance
decoupling problem is solvable via static output feedback
if u(k) = G(y(k), v(k)).

Note that the solution to the DDDPM depends on the
measured output y(k). In this paper, our goal is to find
for a given system

x(k + 1) = f(x(k), u(k), w(k))
y∗(k) = h∗(x(k))

(3)

a measured output y(k) = H(x(k)), such that the
DDDPM is solvable for (3).

2.2 The algebra of functions

Mathematical approach called the algebra of functions
Zhirabok and Shumsky [2008] will be used to address the
problem. We recall briefly the definitions and concepts to
be used in this paper, see also Kotta et al. [2013]. Denote
by SX the set of vector functions with the domain the state
space X. The elements of algebra of functions are vector
functions on SX and its main ingredients are: (1) relation
of partial preorder, denoted by ≤, (2) binary operations,
denoted by × and ⊕, (3) binary relation, denoted by ∆,
(4) operators m and M.

Definition 1. (i) Given α, β ∈ SX , one says that α ≤ β
iff there exists a function γ such that β(x) = γ(α(x))
for x ∈ X.

(ii) If α ≤ β and β ≤ α, then α and β are called strictly
equivalent, denoted by α ∼= β.

Note that the relation ∼= is reflexive, symmetric and
transitive. The equivalence relation divides the set SX into
the equivalence classes containing the equivalent functions.
If SX\∼= is the set of all these equivalence classes, then the
relation ≤ is partial order on this set. Recall that a lattice
is a set with a partial order where every two elements α and
β have a unique supremum (least upper bound) sup(α, β)
and an infimum (greatest lower bound) inf(α, β). The
equivalent definition of the lattice as an algebraic structure
with two binary operations × and ⊕ may be given if for
every two elements both operations are commutative and
associative and moreover, α×(α⊕β) = α, α⊕(α×β) = α.
The equivalence follows from the definition the binary
operations × and ⊕ as

α× β = inf(α, β), α⊕ β = sup(α, β). (4)

Therefore, the triple (SX\∼=,×,⊕) is a lattice. In lattice
theory it is customary not to operate with inf(α, β) and
sup(α, β) but with binary operations × and ⊕, respec-
tively. In the simple cases, (4) may be used to compute
α ⊕ β. The rule for operation × is simple: (α × β)(x) =
[α(x), β(x)]T . However, the product may contain function-
ally dependent components that have to be found and

removed. Note that there exist two special vector functions
0 and 1, such that for every vector function α ∈ SX ,
0 ≤ α ≤ 1.

Example 2. (Computation of the functions α× β and α⊕
β). Let α(x) = [x1 + x2, x3]

T , β(x) = [x1x3, x2x3]
T . To

compute α × β, remove the functionally dependent com-
ponent x2x3 in [α(x), β(x)]T = [x1+x2, x3, x1x3, x2x3]

T to
get (α×β)(x) ∼= [x1+x2, x3, x1x3]

T . Clearly, by Definition
1, α×β ≤ α and α×β ≤ β since α1 = (α×β)1, α2 = (α×
β)2, β1 = (α× β)3, β2 = (α× β)1(α× β)2 − (α× β)3, and
therefore both α and β can be expressed via components
of α × β. Moreover, by Definition 1, α ≤ x3(x1 + x2) and
β ≤ x3(x1 + x2) and therefore, (α⊕ β)(x) ∼= x3(x1 + x2).

Definition 3. (Binary relation ∆) Given α, β ∈ SX , there
exists a function f∗ such that for all (x(k), u(k), w(k)) ∈
X × U × W , (α, β) ∈ ∆ ⇐⇒ β(f(x(k), u(k), w(k))) =
f∗(α(x(k)), u(k), w(k)). When (α, β) ∈ ∆, it is said that α
and β form an ordered pair.

Binary relation ∆ is used for definition of the operators m
and M.

Definition 4. Operator m(α) is a function in SX that
satisfies the following conditions (i) (α,m(α)) ∈ ∆, (ii)
if (α, β) ∈ ∆, then m(α) ≤ β.

Definition 5. Operator M(β) is a function in SX that
satisfies the following conditions (i) (M(β), β) ∈ ∆, (ii)
if (α, β) ∈ ∆, then α ≤ M(β).

From Definitions 4 and 5 it is obvious that given α, m(α)
is the minimal function, forming a pair with α, and given
β, M(β) is the maximal function, forming a pair with β.

Computation of the operator m. It has proven in Zhirabok
and Shumsky [2008] that the function γ exists that satisfies
the condition (α× u(k))⊕ f ∼= γ(f). Define m(α) ∼= γ.

Computation of the operator M. In the special case
when β(f(x(k), u(k))) can be represented in the form

β(f(x(k), u(k))) =
∑d

i=1 ai(x(k))bi(u(k)) where a1(x(k)),
a2(x(k)), . . ., ad(x(k)) are arbitrary functions and b1(u(k)),
b2(u(k)), . . ., bd(u(k)) are linearly independent, then
M(β) := a1 × a2 × · · · × ad.

2.3 The solution of DDDPM

Find first a minimal (containing the maximal number
of functionally independent components) vector function
α0(x) such that its forward shift α0(f(x, u, w)) does not
depend on the unmeasurable disturbance w. The function
α0(x) plays a key role in Algorithm 1 below, and though it
is not unique, all possible choices are equivalent functions.
Moreover, applying the operators m and M to equivalent
functions will yield again equivalent functions. Therefore,
the result of Algorithm 1 will be the same for different
choices of α0(x), up to the function equivalence.

Definition 6. The vector function α(x) is said to be (h, f)-
invariant if (α× h, α) ∈ ∆. In case h = 1, function α(x) is
said to be f -invariant.

For checking if some function α is (h, f)-invariant (f -
invariant), we use the following Lemma.

Lemma 7. (Zhirabok and Shumsky [2008]) Function α is
(h, f)-invariant (f -invariant) iff α × h ≤ M(α) (α ≤
M(α)).
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Definition 8. The vector function α(x) is said to be a
controlled invariant if there exists a regular static state
feedback u(k) = G(x(k), v(k)) such that function α(x) is
f -invariant for the closed-loop system.

Definitions 6 and 8 are generalizations for the systems of
the form (1) the concept of conditioned invariant distri-
bution and controlled invariant distribution, respectively;
see for example Isidori et al. [1981] and Grizzle [1985].

Theorem 9. Kaldmäe et al. [2013] System (1) is distur-
bance decoupled iff there exists a f -invariant function ξ
such that α0 ≤ ξ ≤ h∗.

Theorem 10. Kaldmäe et al. [2013] System (1) can be
disturbance decoupled by feedback (2) iff there exist a con-
trolled invariant function ξ and a (h, f)-invariant function
α such that

α0 ≤ α ≤ ξ ≤ h∗. (5)

The algorithm below can be used to compute the mini-
mal (h, f)-invariant vector function α, that satisfies the
condition α0 ≤ α.

Algorithm 1. Kotta et al. [2013] Given α0, compute recur-
sively for i ≥ 1, using the formula αi+1 = αi ⊕m(αi × h),
the sequence of non-decreasing functions α0 ≤ α1 ≤ α2 ≤
. . . ≤ αi ≤ . . .. There exists a finite j such that αj ̸∼= αj−1

but αj+l ∼= αj , for all l ≥ 1. Define α := αj .

3. MAIN RESULTS

Let h∗ = [h∗1, . . . , h∗L]
T and denote by ri and di the

relative degrees of the function h∗i(x) with respect to the
control input u and disturbance w, respectively. Moreover,
we use the notations y∗i(k) = h∗i(x(k)) =: h∗i,1(x(k)),. . . ,
y∗i(k + ri − 1) =: h∗i,ri(x(k)). We make the following
assumption:

Assumption 1. di > ri.

From the definition of ri and Assumption 1, y∗i(k + ri) =

f̂i(x(k), u(k)) for some f̂i.

Definition 11. (Vector relative degree) 1 Vector (r1, . . . , rL)
is called a vector relative degree of output y∗(k) if

rank
[∂(f̂1(x(k), u(k)), . . . , f̂L(x(k), u(k)))T

∂u(k)

]
= L

generically, i.e. everywhere except on the set of zero
measure.

Assumption 2. Output y∗(k) has a vector relative degree.

Note that Assumption 1 is a standard assumption made
in the solution of the disturbance decoupling problem
even when the solution is looked for in the form of state
feedback. Assumption 2 may be, in principle, replaced by
the assumption of right invertibility (regarding the output
y∗). However, this type of assumption is often made for
simplification reasons; in particular here it allows to find
the explicit formula to compute function ξ in Theorem 10.
This formula is also an important improvement compared
to the results in Kaldmäe et al. [2013], that allows to make
the result of Theorem 10 constructive.

1 This definition is in accordance with Remark 5.1.3. of Isidori
[1995].

Consider the set of equations

f̂i(x(k), u(k)) = vi(k) i = 1, . . . , L (6)

Under the Assumptions 1 and 2, the set of equations (6)
is generically solvable for u(k).

Denote by f̃ the function f in (1) for the closed-loop
system. Note that the definition of operator M depends

on the system equations, i.e. the function f . By M̃ we

denote the operator M defined by function f̃ .

Theorem 12. Under the Assumptions 1 and 2, the max-
imal controlled invariant function ξ that satisfies the in-
equality ξ ≤ h∗, may be computed by the formula

ξ :=
L∏

i=1

(h∗i,1 × · · · × h∗i,ri). (7)

Proof. Since the equations (6) are solvable for u(k), one
can find a static state feedback by solving these equations.
We show that the function ξ in (7) is f̃ -invariant. Since

M̃(α × β) ∼= M̃(α) × M̃(β) for some α, β, see Zhirabok
and Shumsky [2008], one obtains

M̃(ξ) ∼=
L∏

i=1

(M̃(h∗i,1)× · · · × M̃(h∗i,ri)),

and by the rule of the computation of the operator M̃,

one has M̃(h∗i,j) = h∗i,j+1, j = 1, . . . , ri− 1. Since by (6),

h∗i,ri(x(k + 1)) = vi(k), M̃(h∗i,ri) = 1. Therefore,

M̃(ξ)∼=
L∏

i=1

(h∗i,2 × h∗i,3 × · · · × h∗i,ri × 1)

≥
L∏

i=1

(h∗i,1 × h∗i,2 × · · · × h∗i,ri × 1) ∼= ξ,

i.e. ξ ≤ M̃(ξ). By Lemma 7 the function ξ is f̃ -invariant,
or controlled invariant function for the original system.

Next, let β be another controlled invariant function such

that β ≤ h∗ =
∏L

i=1 h∗i,1. Since β is controlled invariant,

then β ≤ M̃(β). Then, since α ≤ β ⇒ M(α) ≤ M(β), see
Kotta et al. [2013], one obtains

β ≤ M̃(β) ≤ M̃(h∗)

= M̃(

L∏
i=1

h∗i,1) ∼=
L∏

i=1

M̃(h∗i,1) =

L∏
i=1

h∗i,2.

By analogy, β ≤
∏L

i=1 h∗i,j for j = 3, . . . , ri. Then, by the

definition of operation ×, β ≤
∏L

i=1(h∗i,1 × h∗i,2 × · · · ×
h∗i,ri) = ξ, meaning that ξ is the maximal f̃ -invariant
function satisfying the condition ξ ≤ h∗. 2

Next we describe two methods for finding the unknown
measured output function H(x) which makes the DDDPM
solvable. By Theorem 10, function H must guarantee
the existence of a (H, f)-invariant function α, satisfying
α0 ≤ α ≤ ξ. In Case 1 below, function H is computed
based on the function α0 and in Case 2, function H is
computed based on the function ξ.

Case 1. Note that by Algorithm 1, we have α1 = α0 ⊕
m(α0 × H). If the choice H guarantees that m(α0 ×
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H) ≤ α0, then α1 ∼= α0 and α = α0. Therefore α ≤ ξ
and the problem is solvable for given H. The condition
m(α0 ×H) ≤ α0 is equivalent to another condition α0 ×
H ≤ M(α0), that is easier to use to find the maximal H,
satisfying the last inequality.

Case 2. The function α has to satisfy the conditions α ≤ ξ
and m(α×H) ≤ α (or equivalently α×H ≤ M(α)). There
exist at least two options to find the function H from the
function ξ.

(a) Find the maximal function H such that ξ×H ≤ M(ξ)
is valid. Because of the last inequality, the function ξ
is (H, f)-invariant. Since the condition α0 ≤ ξ holds,
function ξ can be used as α. Therefore, the condition
α0 ≤ α = ξ ≤ h∗ is valid. The choice α = ξ has the
following advantage: the compensator constructed based
on this function is of minimal dimension.

(b) Find the function α such that α ≤ ξ and α ̸∼= ξ, by
choosing the function ξ′ ≥ α0 such that α ∼= ξ × ξ′. Then
find the maximal H such that α × H ≤ M(α) is valid.
It is recommended to choose ξ′ such that M(ξ′) ≥ M(ξ).
In this case M(α) is equivalent to M(α) ×M(ξ) and the
solution exists (further analysis is not needed). Otherwise,
one has to check if M(α) ≥ α×H.

In all the cases, described above, one needs to find the
vector function H that satisfies the condition λ ×H ≤ µ
for given λ and µ. One may follow the procedure below.
Take H such that its elements are

(i) all the functions µi that are components of the vector
function µ and satisfy the condition λ � µi

and

(ii) all the variables xi(k), the vector function µ depends
on, but vector function λ does not.

This H is, in general, not maximal, but can be simplified
as follows:

(iii) one can replace H by the equivalent, but ’simpler’
vector function H ′;

(iv) some of the elements of H ′, which can be written
in terms of λ and the other elements of H ′, can be
removed.

For example, let λ(x) = [x1+x2, x2+x3]
T and µ(x) = [x1+

x3, x2 + x4]
T . Then by the procedure above, one gets

H(x) = [x1 + x3, x2 + x4, x4]
T . It is easy to see that this

vector function is equivalent to H ′(x) = [x1 +x3, x2, x4]
T .

Now, either x1 + x3 or x2 can be removed, since they can
be written in terms of λ and the other elements of H ′.
Thus one gets two choices: H1 = [x2, x4]

T and H2 = [x1 +
x3, x4]

T .

In some cases, there is another heuristic way to improve
the solution. Consider the variables xj such that λ depends
on xj , but µ does not and add these variables to H. For
example, let λ = [x1+x2, x2+x3]

T and µ = [x1+x3, x4]
T .

Then one getsH = [x1+x3, x4]
T according to (i) and (ii) of

the procedure above. This function can not be simplified.
However, if one adds x2 to H, then we get H ′ = [x2, x4]

T

as a solution.

4. COMPARISON AND EXAMPLES

In this section, we show that one can not use the method,
described in Commault et al. [2011] for linear systems,
to solve the DDDPM for nonlinear systems. We first recall
the main definitions from Commault et al. [2011]. For sim-
plicity, we consider only the case with single disturbance.
A linear structured system Σλ with parameterized entries
is described by

x(k + 1) =Aλx(k) +Bλu(k) + Eλw(k)

y(k) =Cλx(k), y∗(k) = C∗λx(k), (8)

where Aλ, Bλ, Eλ, Cλ and C∗λ are the matrices of
appropriate dimensions, depending on a finite number of
independent parameters λi ∈ R.

With system (8), one can associate a directed graph
G(Σλ) = (Vv, Va), which consists of the vertex set
Vv = X ∪ U ∪ W ∪ Y ∪ Y∗ = {x1(k), . . . , xn(k)} ∪
{u1(k), . . . , um(k)} ∪ · · · ∪ {y∗1(k), . . . , y∗L(k)} and the
arc set Va, which consists of pairs (xi(k), xj(k)) such
that (xi(k), xj(k)) ∈ Va ⇔ (Aλ)i,j ̸= 0 and simi-
larly the pairs (ui(k), xj(k)), (wi(k), xj(k)), (xi(k), yj(k)),
(xi(k), y∗j(k)).

A path from vertex i0 to vertex iµ is a sequence of arcs
(it, it +1) ∈ Va, t = 0, . . . , µ− 1. The path is called simple
if every vertex on the path occurs only once. The length
of a path is the number of arcs it consists. Let V1, V2 be
two nonempty subsets of the set Vv. A simple path P is
called a V1−V2 path if its initial vertex belongs to V1 and
its final vertex belongs to V2. V1 − V2 paths are said to be
disjoint if they have no common vertex.

A set of d disjoint and simple V1 − V2 paths is called a
linking from V1 to V2 (V1 − V2 linking) of size d. The
maximal number of disjoint V1 − V2 paths is denoted by
ρ(V1, V2). A set of ρ(V1, V2) disjoint V1−V2 paths is called
a maximal V1−V2 linking. The length of a V1−V2 linking
is the sum of the lengths of all its paths, and l(V1, V2)
denotes the minimum length of a maximal V1−V2 linking.

The vertex set l∗ is defined as follows:

l∗ = {xi(k) ∈ X|ρ(U
∪

{xi(k)}, Y ) = ρ(U, Y ),

l(U
∪

{xi(k)}, Y ) = l(U, Y )}.

The frontier Fl∗ is defined as the set of vertices Fl∗ =
{xi(k) ∈ l∗|∃(xi(k), xj(k)) ∈ Va, xj(k) ̸∈ l∗}.
For a disturbance w(k) such that there exists xj(k) ∈ l∗

and (w(k), xj(k)) ∈ Va, denote by dw the length of a
shortest {w(k)} − Fl∗ path. Define D, the set of vertices
D = {xi(k) ∈ l∗|0 < l(w(k), xi(k)) ≤ dw}.
Example 1. Consider the system

x(k + 1) =

 w(k)x3(k) + x1(k)
w(k)
x2(k)

x1(k) + x3(k) + u(k)


y∗(k) = x4(k).

(9)

Then the globally linearized system equations are
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dx(k + 1) =Aλdx(k) +Bλdu(k) + Eλdw(k), (10)

dy∗(k) =C∗λdx(k)

where

Aλ =

 λ1 0 λ2 0
0 0 0 0
0 λ3 0 0
λ4 0 λ5 0

 , Bλ =

 0
0
0
λ6

 , Eλ =

 λ7

λ8

0
0


C∗λ = ( 0 0 0 λ9 ) ,

λ2 = w(k), λ7 = x3(k) and the rest of coefficients λi are
nonzero real numbers. We first try to solve the DDDPM
for globally linearized system (10), adopting the method
described in Commault et al. [2011] for discrete-time case.
The graph, associated with system (10) is given in Figure
1 below.

- -

-

?

?

J
J
JĴ
J
J
JĴ

�
?

r r

r r r
r ri

dw

du

dx1

dx2

dx3

dx4 dy∗

Figure 1. Graph of Example 1

It is easy to see that l∗ = {dx1,dx2, dx3}, Fl∗ =
{dx1, dx3}, dw = 1, D = {dx1,dx2}. One can check
that for all (dw, dxi) ∈ Va one has dxi ∈ l∗. There-
fore, according to Theorem 11 in Commault et al. [2011],
the measurement of dx1 or dx2 is sufficient to solve the
DDDPM for the linearized system.

Now, let dy = λ10dx2 and try to find the feedback that
solves the DDDPM. Note that the transfer matrix of (10)
is Halas and Kotta [2007](

dy∗
dy

)
= λ15

z

λ14(λ4wz
2 + λ13z + λ12w

++ − λ11)

z3(z − λ1)

0
λ16

z

(
du
dw

)
,

where z is the forward shift operator and λ11 = λ1λ3λ5,
λ12 = λ3λ4, λ13 = λ3λ5, λ14 = λ9λ8, λ15 = λ9λ6,
λ16 = λ10λ8. The feedback, that solves the DDDPM is,
by (4) in Commault et al. [2011], du = F (z)dy, where

F (z) =
λ4wz

3 + λ13z
2 + (λ12w

++ − λ11)z

λ6λ10z2(z − λ1)

or, given in terms of one-forms,

λ6λ10(du(k + 3)− du(k + 2)) =

λ4w(k)dy(k + 3) + λ13dy(k + 2)

+(λ12w(k + 2)− λ11)dy(k + 1).

Note that this one-form is not integrable. Therefore, the
solution for the linearized system description does not
yield the compensator equations.

Consider now the nonlinear system (9). The method de-
scribed in Commault et al. [2011] suggested that mea-
suring dx1 or dx2 is sufficient to solve the DDDPM for

the linearized system. Next we show that taking y = x1

or y = x2 is not sufficient to solve the DDDPM for
nonlinear system (9). Suppose y = x1, then the function
α0(x) = [x3, x4]

T , α1(x) = x4, α
2(x) = 1 and the DDDPM

is not solvable. Suppose next that y = x2, then α1(x) = x3,
α2(x) = 1 and the DDDPM is again not solvable.

According to Case 1, M(α0)(x) = [x2, x1 + x3]
T . Clearly,

one has to set either H(x) = [x1, x2]
T or H(x) = [x1 +

x3, x2]
T to satisfy the condition α0 ×H ≤ M(α0).

Since y∗ = x4, then ξ = x4. According to Case 2 (a),
compute of the function M(ξ)(x) = x1 + x3. Setting
y = x1 + x3, one can solve the DDDPM.

Example 2. Consider the control system

x(k + 1) =


x3(k)x5(k) + w(k)

x1(k)
x2(k)x5(k)
x3(k) + u(k)
x3(k)x4(k)

x5(k)


y∗(k) = x6(k).

(11)

For this system the matrices of linearized description are

Aλ =


0 0 λ1 0 λ2 0
λ3 0 0 0 0 0
0 λ1 0 0 λ4 0
0 0 λ5 0 0 0
0 0 λ6 λ2 0 0
0 0 0 0 λ7 0

 , Bλ =


0
0
0
λ8

0
0

 , Eλ =


λ9

0
0
0
0
0


C∗λ = ( 0 0 0 0 0 λ10 ) ,

where λ1 = x5(k), λ2 = x3(k), λ4 = x2(k), λ6 = x4(k)
and the rest of λi-s are nonzero elements of R.

-

--
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-
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Figure 2. Graph of Example 2

It is easy to see that l∗ = {dx1, dx2}, Fl∗ = {dx2}, dw = 2,
D = {dx1,dx2}. One can check that for all (dw, dxi) ∈ Va

one has dxi ∈ l∗. Therefore according to Theorem 11 of
Commault et al. [2011] the measurement of dx1 or dx2 is
sufficient to solve the DDDPM for the linearized system.

Suppose now that the measurement output is absent, and
one has to find it to solve the DDDPM for system (11).

Compute the vector functions α0(x) = [x2, x3, x4, x5, x6]
T ,

ξ(x) = [x3x4, x6, x5]
T and M(ξ)(x) = [x5, x4x3, x2x5,

x2x3x5]
T . The inequality ξ × H ≤ M(ξ) is valid, for

example, if H(x) = [x2, x3]
T . To find a better choice (that

needs less sensors) for H(x), set ξ′(x) = x3 ≥ α0(x) since
M(x3) = x2x5 ≥ M(ξ)(x), then α(x) = (ξ × ξ′)(x) =
[x3, x4, x6, x5]

T . One can check that the inequality α ×
H ≤ M(α) is valid for H(x) = x2.

Note that in the first case α(x) = ξ(x) = [x3x4, x5, x6]
T

and the dimension of the compensator is 3. The second
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case with α(x) = [x3, x4, x5, x6]
T demands the compen-

sator of dimension 4.

Example 3. Consider the control system

x1(k + 1) = ϑ1x1(k)
2sign(x1(k)) + ϑ2x2(k)

+ x1(k) + ϑ6u1(k) + ϑ6u2(k)

x2(k + 1) = ϑ3x1(k)x2(k) + x2(k) +
ϑ7

x1(k)
u1(k)

− ϑ7

x1(k)
u2(k) +

ϑ8

x1(k)
u3(k) + w(k)

x3(k + 1) = ϑ4x4(k) + ϑ5x3(k)sign(x1(k)) (12)

+ x3(k) + ϑ9u3(k)

x4(k + 1) = ϑ10x3(k) + x4(k)

x5(k + 1) = ϑ11x1(k)x2(k) + x5(k)

y∗(k) = x4(k).

The equations (12) constitute a simplified sampled-data
model of the underwater vehicle moving on a vertical
plane, and developed under the assumptions of small x1

and x2 values, see Shumsky [2006]. Model variables have
the following meaning: x1 is the velocity, x2 is the angle
of the trajectory, x4 and x3 are the trim and its time
derivative, respectively, x5 is the depth. Model coefficients
ϑ1÷ϑ11 characterize the masses, inertia and the structural
features of the vehicle. The inputs u1, u2, and u3 are the
forces of the upper and bottom stern thrusters and the
vertical bow thruster, respectively.

Our goal is to find the measurement output in such a
manner that allows to solve the DDDPM.

Compute, according to (7), the vector function ξ(x) =
[x4, ϑ10x3 + x4]

T , and then M(ξ)(x) = [ϑ10x3 + x4, x3 +
ϑ4x4 + ϑ5x3sign(x1)]

T . It is obvious that the inequality
ξ ×H ≤ M(ξ) is valid for H(x) = x1.

5. CONCLUSION

In this paper, the DDDPM was addressed. A formula was
given to find a controlled invariant function ξ, which plays
an important role in the solution of the DDDPM. Then,
the methods for finding a measured output H(x), which
guarantee the solvability of the DDDPM, were suggested.
All the given methods require finding H such that λ ×
H ≤ µ for some λ and µ. Finally, it was shown that one
can not solve the DDDPM for nonlinear systems by using
the methods from linear theory, and applied to the globally
linearized system description.
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