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Abstract: In this paper, a general method for identifying common disturbances in the supply
of utilities to a process industrial site is presented, with focus on the chemical process industry.
The method aims at finding typical utility disturbance trajectories and define them by simple
measures, such as duration and time between failures. Statistical models are suggested for each
of the measures. The estimated disturbance trajectories may be used as inputs to optimization
problems for determining the optimal supply of utilities to each area of a site during a
disturbance. Use of such optimization procedures can improve both proactive and reactive
disturbance management for utility disturbances. Industrial data for some utilities, among others
steam and cooling water, have been used to retrieve disturbance models for utilities at a specific
site. These models may also give some information on the general characteristics of utility
disturbances.

Keywords: Chemical industry, Process control, Models, Disturbance rejection, Statistical
analysis, Utility functions

1. INTRODUCTION

Utilities such as steam and cooling water are commonly
used at process industrial sites, and the utility costs often
represent a large part of the total operating cost (Iyer and
Grossmann (1998)). Disturbances in the supply of utilities
may also cause the production to slow down or stop, which
implies great loss of revenue. Since utilities are often shared
between production areas, the problem becomes even more
intricate. At the occurrence of a disturbance, critical
information about the disturbance is often unknown (Lee
and Weekman (1976)). The survey of utility disturbances
that is presented in this paper aims to find common
disturbance characteristics for each utility, which may give
operators at a site some insight in what could be likely
scenarios when a disturbance occurs. The objective is to
present a general method for finding typical disturbances
for each utility, given historical measurement data. The
method is by no means the single approach to obtain these
typical disturbance trajectories, and each of the steps of
the method could be developed and augmented in order
to ensure more accurate results for all cases. However,
we do believe that there is a need for such a method,
since little work seems to have been done on statistical
modeling of utility disturbance characteristics within the
chemical process industry. A related study for the pulp
and paper industry has been performed in Khanbaghi
et al. (1997), where statistical analysis of paper break
data from a typical paper mill is used to form a Markov
chain model for the paper-break process. Modeling the
process as a continuous Markov chain implies that the
failure rate is constant, due to the memoryless character of
the exponential distribution. In Ogawa (2003), the nature
of the input disturbances to a broke storage tank at a

pulp and paper production site are investigated, and it is
found that break and normal durations can be modeled
by exponential distributions. However, the exponential
distribution with its constant failure rate does not seem to
fit as well for utility disturbances. This is further discussed
in section 2.3 of this paper.

The method proposed in this paper is applied to industrial
data from Perstorp, a world leading company within
several sectors of the specialty chemicals market (Perstorp
(2013)). The disturbance characteristics for the utilities
at Perstorp may be useful also for other companies, since
the utilities used at the Perstorp site are very common
also at other industrial sites. The estimated disturbance
trajectories can be used as input to optimization problems
for finding the optimal supply of a utility to different
production areas at the occurrence of a disturbance. A
method for formulating such optimization problems is
presented in Lindholm and Giselsson (2013). The results
from the optimization may be used by process operators to
improve disturbance management for utility disturbances.

The objective of the method presented in this paper is
to find statistical models for common disturbances in
utilities. As a consequence, unlikely but possibly serious
disturbances are disregarded. For that topic, we refer to
literature on risk management, e.g. Greenberg (1991).

2. A GENERAL METHOD FOR FINDING
EMPIRICAL UTILITY DISTURBANCE MODELS

A utility disturbance is according to Lindholm and Johns-
son (2013) defined as when the measurement of a utility
parameter, such as temperature or pressure of the utility,
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goes outside the limits for normal operation 1 . This def-
inition enables to detect disturbances directly from mea-
surement data, which gives the possibility to estimate typ-
ical utility disturbance trajectories for each utility. These
trajectories may be used to evaluate how such distur-
bances should be handled, e.g. by the approach introduced
in Lindholm and Giselsson (2013). A method to find these
typical disturbance trajectories from measurement data is
presented here. The method consists of three steps:

(1) Prefilter the utility measurement data
(2) Identify type(s) of disturbances for the utility
(3) Find one or more typical disturbance(s) for the utility

Step 3 is divided into different cases based on which type(s)
of disturbances that were identified in step 2.

2.1 Step 1: Prefilter the Utility Measurement Data

The utility measurement data could be measurements of
e.g. pressure, flow, or temperature of the utility. Since
the definition of utility disturbances in Lindholm and
Johnsson (2013) is used, the detection of a disturbance
is entirely defined by the disturbance limit that is set for
the utility. Special care should be taken to two cases:

Very short disturbances To avoid the detection of many
short disturbances when a measurement oscillates around
the disturbance limit, the data may have to be prefiltered
before continuing to the second and third step of the
method. The situation is illustrated in Fig. 1, where mea-
surements of a utility parameter are given for approxi-
mately two hours of operation, during which one major
utility disturbance occurred. As seen in the figure, many
consecutive disturbance limit crossings give very short dis-
turbance durations and time between failures. The distur-
bance limit is marked with a red dashed line in the figure.
A simple filtering strategy is to simply merge disturbances
where the time between failures is shorter than some limit,
e.g., 10 minutes. For the example in Fig. 1, this gives the
result shown in Fig. 2. Another option is to use a spike-pass
filter, which is a nonlinear filter using change detection
to identify abrupt changes. Between abrupt changes, it
is a simple low-pass filter. In this way, high frequency
noise is reduced, while capturing sudden changes in the
signal. The principle is described in Gustafsson (2000).
Spike-pass filtering gives a filtered signal that is similar to
the resulting signal when the simple approach described
above is used. Simple low-pass filtering can also be an
alternative for the data prefiltering. The parameters of the
filter should, independently of the choice of filter, be tuned
in such a way that the result of the filtering agrees with
the intuitive notion of what is high frequency noise, and
what is actual disturbances. There is obviously no general
choice of filtering parameters that works for any type of
data, from any plant.

Very long disturbances Another filtering of the data
that may have to be performed before continuing to steps
2 and 3 is to remove disturbances of very long durations,
since these disturbances typically correspond to unlikely
situations. One way to identify if these disturbances are
very unlikely to occur is to look at the percentage of the

1 Hereafter denoted disturbance limits.
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Fig. 1. Measurement data and disturbance detection.
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Fig. 2. Measurement data and disturbance detection after
filtering.

number of disturbances that are of shorter duration than
a threshold. This is visualized in Fig. 3. The suggestion
is to identify a threshold for the duration, for which most
disturbances are of shorter durations. This may be done
by studying figures like Fig. 3 and see if a ’knee’ can
be identified. If no knee can be identified, include all
disturbance data. For the example in Fig. 3, one possible
threshold seems to be at approximately 10 hours, which is
marked by a red dashed line in the figure. The data used in
the figure are real industrial data for the middle-pressure
steam utility from a site operated by Perstorp. This data
will be used as an example for nonperiodic disturbances
throughout remainder of the section.
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Fig. 3. Percentage of disturbances of duration shorter than
a threshold.

2.2 Step 2: Identify Type(s) of Disturbances for the Utility

To begin with, the characteristics of the disturbances have
to be evaluated. Two main types of utility disturbances
may be identified: periodic and nonperiodic.

Periodic disturbances Periodic disturbances can be char-
acterized by a shape (e.g. a sinusoid or a square wave) and
a period time/frequency. A sinusoidal disturbance may be
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described as A sin(ωt), where A is the amplitude and ω
the angular frequency. A utility that could typically suffer
from periodic disturbances is the cooling water utility,
because of daily and yearly variations of the outdoor
temperature.

Nonperiodic disturbances The idea is to characterize
nonperiodic disturbances by three parameters: duration,
severity, and time between failures. The severity is evalu-
ated as the depth of the drop or the height of the peak in
the measurements, and the time between failures is defined
as the duration from the end of one disturbance until
the beginning of the next disturbance. The disturbance
measures are visualized in Fig. 4.
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Fig. 4. Disturbance measures for nonperiodic disturbances.

2.3 Step 3: Find One or More Typical Disturbance(s) for
the Utility

This step is divided into two parts: One for periodic
disturbances and one for nonperiodic disturbances. There
could be several typical both periodic and nonperiodic
disturbances for a utility. If the results at one of the
substeps seems to be inconsistent, two or more typical
disturbances can be identified, with different amplitude
and/or period time for periodic disturbances, or with dif-
ferent disturbance duration and/or severity for nonperi-
odic disturbances.

Periodic disturbances The existence of periodic distur-
bances may be seen by studying the measurement data,
to see if a shape could be identified. There could also
be physical indications that there should exist periodic
disturbances, such as daily or yearly variations of the
outdoor temperature. When the shape has been identified,
identify the amplitude and period time of the variations.

An example is taken from a site operated by Perstorp.
Fig. 5 shows the cooling water temperature together with
the identified disturbance limit of 27◦C, and the outdoor
temperature during almost three years. The measurement
data imply that there are both daily and yearly variations
of the temperature, and the variations seem to be approxi-
mately sinusoidal-shaped. The temperature T (t) may thus
be described as

T (t) = Tnorm+Ad sin

(

2π

24 · 60 t
)

+Ay sin

(

2π

24 · 60 · 365 t
)

(1)
where Tnorm = 24◦C is the normal cooling water temper-
ature, Ad the daily temperature variations, and Ay the
yearly temperature variations. The daily and yearly varia-
tions could be studied separately to find the amplitudes Ad

andAy. Given the data in Fig. 5, amplitudes ofAd = 1.5◦C
and Ay = 4◦C seem appropriate. The resulting distur-
bance trajectories for the daily and yearly temperature
variations are shown together with the measurement data
in Fig. 6.
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Fig. 5. Temperature of cooling water and outdoor temper-
ature at an industrial site.
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Fig. 6. Model for daily and yearly variations of cooling
water temperature.

Nonperiodic disturbances For nonperiodic disturbances,
the procedure is to find the duration, severity, and time be-
tween failures for one or more typical utility disturbances.
How to find these measures by forming statistical models
is discussed below.

I. Estimate most probable disturbance duration: Some dif-
ferent probability distributions were evaluated as candi-
dates for the distribution of the disturbance durations,
among others the normal distribution, lognormal distri-
bution, exponential distribution, and the Weibull distri-
bution. Probability plots (see e.g. Rice (2007)) where used
to assess the fit of data to the distributions. The lognormal
distribution showed to give the best fit for the utility
data from Perstorp, why this is our suggestion for the
statistical model of the disturbance durations for utilities.
The duration of a disturbance is related to the concept
of repair time for applications with repairable units. Time
to repair is according to e.g. Hamada et al. (2008) and
Schroeder and Gibson (2010) also well characterized by a
lognormal distribution, which further motivates the choice
of this distribution for the disturbance durations.

The suggestion is thus to fit a lognormal distribution to
the disturbance duration data. The lognormal distribution
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has two parameters, µ and σ and the probability density
function (pdf) is given by

f(x|µ, σ) = 1√
2πσ

x−1e−(lnx−µ)2/(2σ2) (2)

where 0 < x < ∞. Further information about the
lognormal distribution and its applications is given e.g.
in Crow and Shimizu (1988).

In the upper subfigure of Fig. 7, a histogram of the dis-
turbance durations for the middle-pressure steam utility
at the Perstorp site is given together with the lognormal
probability density function that gives the best fit (red
line). The median disturbance duration is marked with a
green dashed line in the figure, and the average disturbance
duration with a blue dash-dotted line. As seen in the figure,
the average duration is significantly longer than the me-
dian, because of some long and uncommon disturbances.
The parameters of the distribution that gives the best
fit are µ = 3.22 and σ = 1.44. The median disturbance
duration is eµ = 25 minutes and the average duration

eµ+σ2/2 = 70 minutes. The cumulative probability density
function (cdf, red line) is plotted in the bottom subfigure
of Fig. 7 together with the measured disturbance durations
(blue dots). According to this plot, the lognormal distribu-
tion seems to be a good fit for the disturbance durations.
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Fig. 7. Statistical model for disturbance durations for
middle-pressure steam.

II. Estimate most probable severity of disturbance: The
maximum deviation in the measurements from the normal
operating point is correlated to the duration, but the
correlation is not very strong. In fact, the probability
distribution of the deviation is not at all lognormal in
the cases studied here. It does not fit any of the ”stan-
dard” distributions (normal, lognormal, exponential, Beta,
Weibull, or Gamma) to a statistically significant level. The
suggestion is therefore to use a normalized histogram with
an appropriate number of bins to produce an empirical
probability density function for the severity of the distur-
bance. A normalized histogram of the maximum deviation
from the nominal pressure at disturbances in the middle-
pressure steam utility at the Perstorp site is shown in
Fig. 8. In the histogram, the median and average deviation
are marked with a green dashed line and a blue dash-
dotted line, respectively. For the example, the median is
approximately 5 bar, whereas the average is around 6 bar.
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Fig. 8. Normalized histogram of maximum deviation from
nominal pressure for middle-pressure steam.

III. Estimate most probable time between failures: The
Weibull distribution is often used to model the time to
failure or life span of a component (Pal et al. (2005)).
Some application areas include computing systems, for
which among others Schroeder and Gibson (2010) and
Zhang et al. (2005) model the time between failures using
the Weibull distribution. By evaluating the probability
plots for some common distributions (as in step I), it was
found that the Weibull distribution also seems to fit the
time between utility failures well, based on the data from
Perstorp. The distribution has two parameters, one scale
parameter, a, and one shape parameter, b. The probability
density function is given by

f(x|a, b) = b

ab
xb−1e−(x/a)b (3)

where 0 < x < ∞, and a, b > 0. More information about
the Weibull distribution can be found in, e.g., Pal et al.
(2005).

In the upper subfigure of Fig. 9, the Weibull probability
density function (red line) that gives the best fit for
the middle-pressure steam utility at the Perstorp site is
plotted together with a normalized histogram of the time
between failures for the utility. The median and average
time between failures are marked by a green dashed line
and a blue dash-dotted line, respectively. The cumulative
distribution function (red line) is plotted together with the
measurements (blue dots) in the lower subfigure of Fig. 9.
These plots show that the Weibull distribution seems
to be a good fit for the example data. The parameters
of the Weibull distribution that gives the best fit are
a = 2500 and b = 0.46, for disturbance data in minutes.
The median time between failures for the distribution is
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Fig. 9. Statistical model for time between failures for
middle-pressure steam.
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a(ln 2)1/b = 19 hours, whereas the mean time between
failures is aΓ(1 + 1/b) = 4 days for this data set, where
Γ is the gamma function. Mean time between failures
(MTBF) is a measure that is often used for different kinds
of repairable systems.

2.4 Results

The typical disturbance trajectories are obtained after
performing the three steps described in this section. For
nonperiodic disturbances, distributions for the duration,
severity, and time between failures of the disturbance were
identified in substeps I-III of step 3 of the method. A typi-
cal disturbance trajectory is obtained as a realization using
the statistical models of these measures. An alternative
is to use the median or average for the distributions to
generate a typical disturbance trajectory.

3. A CASE STUDY

In this section, the general method described in section 2
is used to identify typical disturbances for selected utilities
at a site operated by Perstorp. The utilities that have been
studied are

• Middle-pressure (MP) steam
• High-pressure (HP) steam
• Cooling water
• Nitrogen
• Combustion device

Nitrogen is used at the site to maintain pressure in vessels
and the combustion device for combustion of tail gas.
Other utilities are also used at the site, but for these
utilities, the disturbances have been so few during the
considered time period that the data set is not sufficiently
large to produce reliable disturbance models. The data
that are available span approximately three years of oper-
ation.

3.1 Step 1: Prefilter the Utility Measurement Data

The approach that was selected for prefiltering of the data
was to merge all disturbances where the time between
failures were shorter than 10 minutes. To remove very
unlikely disturbances of long durations from the data sets,
Fig. 10 was studied. The figure shows the percentage of
all disturbances for the utilities that are shorter than
a threshold. MP steam was omitted in the figure, since
this utility has already been treated in Fig. 7. The red
dashed lines in Fig. 10 mark the thresholds that where
set for the considered utilities: approximately 10 hours, 5
hours, 100 hours, 2 hours, and 21 hours for MP steam, HP
steam, cooling water, nitrogen, and the combustion device,
respectively.

3.2 Step 2: Identify Type(s) of Disturbances for the
Utilities

In this step, it was concluded that the cooling water utility
was the only utility that indicated a periodical behavior.
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Fig. 10. Percentage of disturbances of duration shorter
than a threshold.

3.3 Step 3: Find One or More Typical Disturbance(s) for
the Utilities

One typical disturbance for each utility was identified; a
periodic disturbance for cooling water, and nonperiodic
disturbances for the MP steam, HP steam, nitrogen, and
combustion device utilities. The procedure is described in
more detail below. Here, MP steam and cooling water have
been left out, since these utilities were used as examples
in section 2, and the details can be found there.

Periodic disturbances The identification of the charac-
teristics of the periodic cooling water disturbance was
handled as an example in section 2, with the resulting
disturbance trajectory structure (1) for the temperature.

Nonperiodic disturbances The three steps to identify
typical nonperiodic utility disturbances are here carried
out for high-pressure steam, nitrogen, and the combustion
device simultaneously.

I. Estimate most probable disturbance duration: The esti-
mated lognormal probability distributions for the distur-
bance durations are shown together with the normalized
histograms in Fig. 11 for the three utilities. The median
disturbance durations are marked with green dashed lines
and the average durations with blue dash-dotted lines. The
parameters µ and σ of the best fit lognormal distributions
are given in table 1, for disturbance data in minutes.

Table 1. Parameters of lognormal distribution
for disturbance duration.

Utility µ σ

HP steam 3.34 1.16
Nitrogen 1.87 1.34
Combustion device 4.25 1.51

II. Estimate most probable severity of disturbance: Nor-
malized histograms of the maximum deviation from the
normal operating point at disturbances in the three util-
ities are shown in Fig. 12. For HP steam and nitrogen,
the measurement unit is pressure in bar, and for the
combustion device it is flow in kg/h. For all three utilities,
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Fig. 11. Statistical models for disturbance durations.
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Fig. 12. Normalized histograms of maximum deviation
from normal operating point.

a disturbance is a drop in the pressure or flow. The median
depths of the drops are marked with dashed green lines and
the average with dotted blue lines.

III. Estimate most probable time between failures: Fig. 13
shows histograms of the time between failures for the three
utilities together with the suggested Weibull distributions.
The median time between failures is marked with dashed
green lines and the average with blue dotted lines. The
scale and shape parameters a and b of the best fit Weibull
distributions are given in table 2, for disturbance data in
minutes.

Table 2. Parameters of Weibull distribution for
time between failures.

Utility a b

HP steam 2676 0.45
Nitrogen 3875 0.32
Combustion device 2630 0.40
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Fig. 13. Statistical models for time between failures.

3.4 Results

The typical periodic disturbance for the cooling water
utility is given by the temperature trajectory in ◦C:

T (t) = 24+1.5 sin

(

2π

24 · 60 t
)

+4 sin

(

2π

24 · 60 · 365 t
)

(4)

The other utilities suffer from nonperiodic disturbances.
The distributions of the duration, severity, and time be-
tween failures for the nonperiodic disturbances were es-
timated in step 2 of the method. To get a feeling for
what the typical disturbance looks like, the median of
the disturbance duration (l), the median of the severity
parameter (d), and the mean time between failures (tbf)
are presented in table 3.

Table 3. Typical utility disturbances at the
Perstorp site.

Utility l d tbf

MP steam 25 min 5 bar 4 days
HP steam 28 min 13 bar 5 days
Nitrogen 6 min 5 bar 19 days
Combustion device 70 min 9513 kg/h 6 days

3.5 Discussion

For the periodic cooling water disturbance, the suggested
sinusoidal disturbance seems to capture the disturbance
characteristics quite well, even though it can be seen in
Fig. 5 that the periodicity of the measurements of the
outdoor temperature is more distinct than those of the
cooling water temperature. This might be due to the
feedback effect: if the plant is (for other reasons than
cooling water problems) run at reduced speed, less cooling
effect is needed and the cooling water temperature will be
lower. This might explain the drops in the measurements
of the cooling water temperature that can be seen in the
figure.

For the nonperiodic disturbances, most figures seem to
show similar results for the four utilities, with some ex-
ceptions. In step I, the probability distributions in Fig. 11
seem to fit better for utilities where the data contain
a larger number of failures, in this case for the steam
utilities. This is also seen in step III of the distributions for
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the time between failures, but not as clearly. The weakest
result is the estimation of the severity of the disturbances
in step II. The histograms do not clearly show a peak or
a tendency of the data to fit any of the standard distri-
butions. For the nitrogen and combustion device utilities,
it seems like there might be two types of disturbances;
one smaller disturbance, and one with a greater deviation
from the normal operating point. An attempt to improve
the modeling could be to divide these into two separate
cases and redo substeps I-III for each of the cases.

4. CONCLUSIONS

A general method for finding typical utility disturbance
trajectories were presented and used to analyze distur-
bances in the supply of utilities at a site at Perstorp. The
disturbances were categorized into periodic and nonperi-
odic disturbances, and characterized by simple measures:
period time and amplitude for periodic disturbances, and
duration, severity and time between failures for nonpe-
riodic disturbances. The duration of a disturbance was
modeled using the lognormal distribution, and the time be-
tween failures using the Weibull distribution. The resulting
disturbance trajectories may be useful for both proactive
and reactive disturbance management.

An interesting future work direction would be to combine
the identified statistical disturbance models with an opti-
mization framework for reactive utility disturbance man-
agement. It would also be valuable to further investigate
the nature of periodic utility disturbances, to obtain a gen-
eral method for identifying the period time and amplitude
of such disturbances.
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