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Abstract: The convergence of closed quantum systems in the degenerate cases to the arbitrary desired 
target state by using the quantum Lyapunov control based on the average value of an imaginary 
mechanical quantity is studied in this paper. On the basis of the existing methods which can only ensure 
the pure states and single-control Hamiltonian systems converge toward a set, we propose a control laws 
design to make the multi-control Hamiltonian systems, which can also converge from the arbitrary initial 
state to the arbitrary target state of the quantum systems whose internal Hamiltonian are not strongly 
regular or/and control Hamiltonians are not full connected. The degenerate cases’ problems solved in this 
paper widely exist in the practical quantum systems, so it has the great significance in quantum systems 
control. People can make use of those conditions obtained to design a convergent controller for the 
quantum control system, which can instruct the experimental scientists to obtain high successful 
probability to the actual quantum systems control. This research work establishes a completed quantum 
Lyapunov control theory in closed quantum systems. The convergence of the control system is proved. 
How to make the convergence conditions to be satisfied is proved or analyzed. Finally, numerical 
simulations for a three level system in the degenrate case transfering from an initial eigenstate to a target 
superposition state are studied. 
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1. INTRODUCTION 

In the last 30 years, the control theory of quantum systems 
has developed rapidly. Many quantum control methods have 
been developed such as quantum optimal control (Schmidt, et 
al. 2011), adiabatic control (Boscain, et al. 2012), quantum 
control method based on the Lyapunov stability theorem 
(Grivopoulos and Bamieh, 2003; Mirrahimi, et al. 2005, 
Kuang, and Cong, 2008), optimal Lyapunov-based quantum 
control (Hou, et al. 2012). Like quantum optimal control 
theory, the quantum Lyapunov control is also a very powerful 
control method which uses the Lyapunov indirect stability 
theorem to design a stable controller. Unlike it used in the 
macroscopic engineering field, quantum Lyapunov controller 
should be designed as a convergent one in order to guarantee 
the control system to achieve the target goal in 100% 
probability. To do so, the selection of the Lyapunov function 
is the key point. Up to now, there are mainly three Lyapunov 
functions to be selected: the Lyapunov function based on the 
state distance, the state error and the average value of an 
imaginary mechanical quantity. The former two Lyapunov 
functions are only suitable for the Schrödinger equation 
which can only control the pure states, while the Lyapunov 
function based on the average value of an imaginary 
mechanical quantity can be used in not only the Schrödinger 
equation but also quantum Liouville equation which has 
wider application ranges, and because there is one more 
tunable coefficient: an imaginary mechanical quantity in the 
control laws, the control performances become more 
accuracy or faster convergent rate. The so-called “imaginary 

mechanical quantity” means that it is a linear Hermitian 
operator to be designed and maybe not a physically 
meaningful observable such as position or energy. In recent 
years, the research results on the convergence of the control 
system by using the Lyapunov control method based on the 
average value of an imaginary mechanical quantity are as 
follows: The control system is asymptotically stable at the 
target state, if i) The internal Hamiltonian is strongly regular, 
i.e., the transition energies between two different levels are 
clearly identified; ii) The control Hamiltonians are full 
connected, i.e., any two levels are directly coupled (Wang, 
and Schirmer, 2010). The systems satisfied above mentioned 
conditions are called ideal quantum systems or in the non-
degenerate cases. However, many practical systems do not 
satisfy these conditions which are called in the degenerate 
cases. For these cases, Zhao et al. utilized an implicit 
Lyapunov control to solve the problem of convergence for 
the single control Hamiltonian systems governed by the 
Schrödinger equation (Zhao, 2012). However, their proposed 
methods only proved that the single control Hamiltonian 
systems will converge toward a set, but can not ensure be 
asymptotically stable at the desired target state.  

The aim of this paper is to make the multi-control 
Hamiltonian systems in the degenerate cases converge to an 
arbitrary target state from an arbitrary initial state. The 
“arbitrary” here means eigenstate, superposition state or 
mixed state. The main contributions of this paper are as 
follows: i) The problems of convergence to any target 
eigenstate for the Schrödinger equation and to any target state 
which commutes with the internal Hamiltonian for the 
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quantum Liouville equation are resolved. ii) The problems of 
convergence to the target superposition state and to the target 
state which does not commute with the internal Hamiltonian 
are resolved. iii) How to make the convergence conditions to 
be satisfied are analyzed or proved. We gave a survey of 
completed quantum Lyapunov control theory in closed 
quantum systems in 2010,  and 2013, and in this paper we’ll 
give the implicit Lyapunov control convergence conditions 
proofs in detail, which are suitable for the all kinds of initial 
and target states in both non-degenerate and degenerate cases. 

The paper is arranged as follows: Section 2 is about the 
convergent control problem solution in the bilinear 
Schrödinger equation case, in which the existence of the 
perturbations ( )k tγ  as a part of control law will be 
established by Lemma 1. The convergence of the control 
system is obtained by Theorem 1 based on LaSalle’s 
invariance principle, in detail, the convergence to the 
eigenstate and superposition state are separately studied. 
Section 3 is about the quantum Liouville equation case. 
Section 4 is the numerical simulation of a three-level 
quantum system in degenerate cases. Section 5 is conclusion. 

2. BILINEAR SCHRÖDINGER EQUATION CASE 

Consider the N-level closed quantum system governed by 
the following bilinear Schrödinger equation: 

0 1( ) ( ( )) ( )r
k kki t H H v t tψ ψ== + ∑ ,                                 (1) 

where ( )tψ  is the quantum state vector, 0H  is the internal 
Hamiltonian, , ( 1, , )kH k r=  are control Hamiltonians, and 

( ), ( 1, , )kv t k r=  are control laws.  

Two convergence conditions for Hamiltonians have been 
obtained by Mirrahimi, et al. in 2005, Kuang, and Cong in 
2008, and  Schmidt, et al. in 2011 are  
i) The internal Hamiltonian is strongly regular, i.e.,  

{ }, ( , ) ( , ), , , , 1, 2, ,i j lm i j l m i j l m Nω ω′ ′ ′ ′ ′ ′≠ ≠ ∈ , where 

lm l mω λ λ= − , lλ  is the l-th eigenvalue of 0H  
corresponding to the eigenstate lφ ;  

ii) For any i jφ φ≠ , there exists at least a k such that 
0i k jHφ φ ≠ .  

The conditions mentioned above are called ideal quantum 
systems or in the non-degenerate cases because those 
conditions basically request in fact the Hamiltonians of 
system are full-connected which is an ideal situation and 
seldom appear in the actual quantum system. 

 In order to solve the convergence problem of the control 
system in the degenerate cases, a series of (control) 
perturbations ( )k tγ , which are implicit functions of  state 

( )tψ  and  time t,  are introduced into the control laws, then 
the controlled system (1) becomes 

0 1( ) ( ( ( ) ( ))) ( )r
k k kki t H H t v t tψ γ ψ== + +∑ ,                   (2) 

where ( ) ( ) ( ), ( 1, , )k k kt v t u t k rγ + = =  are the total control 
laws.  

Our control task is to make the control system governed by 
(2) transfer from an arbitrary initial pure state 0ψ  to an 
arbitrary target pure state fψ  by designing appropriate 
combination control laws ( ) ( ) ( ), ( 1, , )k k ku t t v t k rγ= + = . 
In order to so, we need to complete three control tasks: firstly, 
the control perturbations ( )k tγ  and control law ( )kv t  are 
designed separately. Secondly, the convergence of the control 
system is proved. Thirdly, how to make convergence 
conditions to be satisfied is analyzed.   

 At first, let us design the control perturbations 
( ), ( 1, , )k t k rγ = . After introducing this control 

perturbations ( )k tγ , the combination term 

0 1 ( )r
k kkH H tγ=+ ∑  can be regarded as the new internal 

Hamiltonian of the control system. In order to facilitate 
understanding the basic idea of this method, we describe the 
system in the eigenbasis of 0 1 ( )r

k kkH H tγ=+ ∑  as:  

0 1 1
ˆ ˆ ˆˆ ˆ( ) (( ( )) ( )) ( )r r

k k k kk ki t H H t H v t tψ γ ψ
= =

= + +∑ ∑ ,    (3) 

where †
1ˆ Uψ ψ= , † †

0 1 0 1 1 1
ˆ ˆ, k kH U H U H U H U= = , 

( )1 11 1, , , , , ,, ,
r rNU γ γ γ γφ φ= , 

1, , , ,1
rn n Nγ γφ ≤ ≤  are  

eigenstates of 0 1 ( )r
k kkH H tγ=+ ∑  corresponding to the 

eigenvalues 
1, , , rn γ γλ . Accordingly, fψ  will become 

†
1ˆ =f fUψ ψ  which is also a functional of ( )k tγ .  

The aims of designing ( )k tγ  are two aspects: one to make 
the control system with ( )k tγ  become a system in the non-
degenerate cases; another is to have the control system with 

( )k tγ  can converge to the arbitrary target state. The first aim 
requests the ( )k tγ  must be designed to satisfied the 
following three conditions: 1) ( )k tγ  are designed to satisfy i) 

{ }1 1, , , , , , , ( , ) ( , ), , , , 1, 2, ,
r rl m i j l m i j i j l m Nγ γ γ γω ω≠ ≠ ∈  

holds, 
1 1 1, , , , , , , , , ,r r rl m l mγ γ γ γ γ γω λ λ= − ; ii) j l∀ ≠ , for 

1, ,k r= , there exists at least a ˆ( ) 0k jlH ≠ , where ˆ( )k jlH  

is the (j,l)-th element of ˆ
kH , thus  the control system can 

converge toward ˆ fψ  by designing appropriate control laws 

( ) ( ) ( ), ( 1, , )k k ku t t v t k rγ= + = , thus the control system can 

converge toward ˆ fψ  by designing appropriate control laws 

( ) ( ) ( ), ( 1, , )k k ku t t v t k rγ= + = ; 2) at the same time, 
( ), ( 1, , )k t k rγ =  themselves need converge to zero, and 

their convergent speed must be slower than that of the control 
system to ˆ fψ  to make ( )k tγ  take effect; 3) ( )=0k fγ ψ  
must hold to make the control system be asymptotically 
stable at the target state.  

For the second design aim, Mirrahimi, et al. in 2005, Cong 
and Meng in 2013 proposed the restriction 

( ) ( ) ( )0f otherV V Vψ ψ ψ< <  to make the system in the 
non-degenerate cases converge to the target state fψ  from 
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the initial state 0ψ , where otherψ  represents any other 
state in the invariant set in  { }( )=0E Vψ ψ=  except the 
target state. However, in fact it is difficult to design the 
imaginary mechanical quantity to make this restriction on the 
Lyapunov function be satisfied for any initial state and any 
target state.  

For the degenerate cases quantum systems, to make the 
system converge to the target state, here we choose a simpler 
restriction: ( ) ( )f otherV Vψ ψ<   which can be satisfied 
for any initial state and any target state by designing the 
imaginary mechanical quantity P. In order to ensure the 
system converge to the target state by adding this restriction, 
we design all the control perturbations ( ) 0k tγ =  holds for 

1, ,k r= only at fψ , i.e., 1) ( )=0,( 1, , )k f k rγ ψ = , and 
2) for fψ ψ≠ , there exists at least one k such that 

( ) 0kγ ψ ≠ .  
According to the idea analysis mentioned above, let us 

design the specific ( ), ( 1, , )k t k rγ = in detail. Since the 
evolution of the system’s state relies on the continuous 
decrease of the Lyapunov function ( )V t  in the Lyapunov 
control, we design ( )k tγ  be a monotonically increasing 
functional of ( )V t  as: 

  ( ) ( ( ) ( ))k k k fC V Vγ ψ θ ψ ψ= ⋅ − ,                         (4) 

where 0kC ≥ , and for 1, ,k r= , there exists at least a 
0kC > . And ( )kθ ⋅  satisfies (0) 0kθ = , ( ) 0k sθ > and 

' ( ) 0k sθ >  for every 0s > .  
In this paper the specific Lyapunov function based on the 

average value of an imaginary mechanical quantity P is 
selected as： 

1, ,( )
r

V Pγ γψ ψ ψ= , (5) 

where 
1, , 1( ( ), , ( ))

r rP f t tγ γ γ γ=  is a functional of ( )k tγ  
and positive definite.  

The existence of ( )k tγ  can be established by Lemma 1. 
Lemma 1: If 0kC = , ( ) 0kγ ψ = . Else if 0kC > , 

( ;[0, ]), 1, ,k kC R k rθ γ∞ + ∗∈ =  ( kγ ∗  is a positive constant) 
satisfy (0) 0kθ = , ( ) 0k sθ >  and ' ( ) 0k sθ >  for every 0s > , 

and ' 1 (2 )k kC Cθ ∗< , =1C C∗ + , 

{ }1, ,max , [0, ]
r k k kC Pγ γ γ γ γ ∗

∞
= ∂ ∂ ∈ , then for every 

2 1NSψ −∈ , there is a unique ( [0, ])k k kCγ γ γ∞ ∗∈ ∈   
satisfying 
 

1 1, , , ,( ) ( )
r rk k k f fC P Pγ γ γ γγ ψ θ ψ ψ ψ ψ= ⋅ −      (6) 

Proof:  
Assume 

1, , r
Pγ γ  are analytic functions of the parameters 

( ) 0, , ( 1, , )k k k rγ ψ γ ∗⎡ ⎤∈ =⎣ ⎦ . 
1 , , r kPγ γ γ∂ ∂  are bounded on 

0, kγ ∗⎡ ⎤⎣ ⎦ , thus C < ∞ . Define 

1 11 , , , ,( , , , ) ( )
r rk r k k k f fF C P Pγ γ γ γγ γ ψ γ θ ψ ψ ψ ψ= − ⋅ −

 
where 1( , , , )k rF γ γ ψ  are regular. For a fixed ψ , 

1( ( ), , ( ), ) 0k rF γ ψ γ ψ ψ =  holds. Some deductions 

show that 1( , , , ) 0k r kF γ γ ψ γ∂ ∂ ≠  holds. Thus according 
to the implicit function Theorem [11], Lemma 1 is proved. □ 
Remark 1: For the sake of simplicity, set ( )=0k tγ  for some 
k, and other ( )k tγ   are equal, denoted by ( )tγ , i.e., set 

1

1 1

( )= (t)= ( ), , , ;

( ) 0, , , (1 , , ),
k f f m

k m m

t P P k k k

t k k k k k r
γ γγ γ θ ψ ψ ψ ψ

γ

− =

= ≠ ≤ ≤
      (7) 

where ( ) ( ) ( )1 mk kθ θ θ⋅ = ⋅ = = ⋅ and Pγ  are functions of 

( )tγ .  

Then let us design another control law ( )kv t  to make 
( ) 0V t ≤  holds. Setting 

1
0[ , ( )] 0mk

nn kP H H tγ γ=+ =∑ , one 
can obtain the time derivative of the selected Lyapunov 
function as: 

( )( )
( ) ( )

1 ( ) [ , ] (1+ )

/(1 ( )).

r
k k f fk

f f

V iv t H P P

P P

γ γ

γ γ

ψ ψ θ ψ γ ψ

θ ψ γ ψ ψ γ ψ

=
′= ⋅ ∂ ∂

′− ∂ ∂ − ∂ ∂

∑

      (8) 
According to Lemma 1, one can obtain 

( )( ) ( ) ( )(1+ ) /(1 ( )) 0f f f fP P Pγ γ γθ ψ γ ψ θ ψ γ ψ ψ γ ψ′ ′∂ ∂ − ∂ ∂ − ∂ ∂ >

 holds . In order to ensure ( ) 0V t ≤ , ( ), ( 1, , )kv t k r=  are 
designed as: 

( )( ) , ] , ( 1, , )k k k kv t K f i H P k rγψ ψ⎡ ⎤= − =⎣ ⎦           (9) 

where kK  is a constant and 0kK > , and 
( ), ( 1,2, , )k k ky f x k r= =  are monotonic increasing 

functions through the coordinate origin of the plane k kx y− . 
Based on LaSalle’s invariance principle (LaSalle and 

Lefschetz, 1961), the convergence of the control system 
governed by (2) can be obtained as follows: 
Theorem 1: Consider the control system governed by (2) 
with the combination control fields 

( ) ( ) ( ), ( 1, , )k k ku t t v t k rγ= + = , where ( )k tγ  defined by 
Lemma 1 and (7), and ( )kv t  defined by (9). If the control 
system satisfies:  
i) 

, , , ,
, ( , ) ( , )

l m i j
l m i j

γ γ
ω ω≠ ≠ , { }, , , 1, 2, ,i j l m N∈ , 

, , , ,l m l mγ γ γω λ λ= − , where ,l γλ  is the l-th eigenvalue of 

1
0 ( )mk

nn kH H tγ=+ ∑  corresponding to the eigenstate ,l γφ ;  

ii) For any i j≠ , { }, 1, 2, ,i j N∈ , there exits at least one k  

such that ( )ˆ 0k lm
H ≠ , where ( )ˆ

k lm
H  is the (l,m)-th 

element of †
11

ˆ
k kH U H U= , ( )1 1, ,, , NU γ γφ φ= ;  

iii) 
10[ , ( )] 0mk

nn kP H H tγ γ=+ =∑ ;  
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iv) ( ) ( )ˆ ˆ ,
ll mm

P P l mγ γ≠ ≠ , where ( )ˆ
ll

Pγ  is the (l,l)-th 

element of †
11U P Uγ . 

then any trajectory will converge toward 

{ }0 0
1 , ( ) ; , 1, ,l

t

i
t llE e R l Nθ

γ ψ
ψ φ θ⎧ ⎫

= ∈ ∈⎨ ⎬
⎩ ⎭

.  

Proof:  
Without loss of generality, assume that for 0 0, ( )t t t R≥ ∈ , 

0V =  is satisfied. By (8) and (9), one obtains 
0 [ , ] 0 ( ) 0k kV H P v tγψ ψ= ⇔ = ⇔ =            (10) 

As 0V = , γ  is a constant, denoted by γ . The state 0( )tψ  

can be written as 0 0 ,1( ) ( )N
l llt c t γψ φ== ∑ . Then 0ˆ ( )tψ  

can be written as 0 0 1 ,1
ˆ ( ) ( )N H

l llt c t U γψ φ== ∑ . 

Substituting the solution of (3) with γ γ=   and ( ) 0kv t =  

into ˆ ˆˆ ˆ[ , ] [ , ] 0k kH P H Pγ γψ ψ ψ ψ= = , gives 

( ) ( )( ) ( )0, , ( )
0 0, 1

ˆ ˆ ˆ( ) ( ) 0l mi t tN
l m kl m mm ll lm

e P P c t c t Hγω
γ γ

− ∗
= − =∑  (11) 

By conditions i)-ii) and iv), one can have 
{ }0 0( ) ( ) 0, ( , 1, , )l mc t c t l m N∗ = ∈                (12) 

which implies that there is at most one { }0( )( 1, , )lc t l N∈  
which is nonzero. Theorem 1 is proved.□ 
Remark 2: Theorem 1 guarantees the control system to 
converge to the set E1, however, it can not guarantee the 
control system converges to the target state. So the following 
we’ll study how to make the control system convergen to the 
target state contained in E1, which needs to be discussed in 
the cases of target state being an eigenstate or a superposition 
state separately. 

2.1 In the case of target state being an eigenstate 
From Theorem 1, one can see that if the target state fψ  

is an eigenstate, fψ  is contained in E1 because of 
( ) 0fγ ψ = .  In order to make the system converge to the 

target state, on the one hand, as 0V ≤ , we design Pγ  to 
make  

( ) ( )f otherV Vψ ψ<  (13) 

hold, where otherψ  represents any other state in the set E1 
except the target state. On the other hand, because 

/ 0, 0, 0V Vγ γ∂ ∂ > ≤ ≥  holds, we set 
, (0 )γ γ α α γ= − < <<  when  ( ) 0, ( ) 0kv t tγ γ= = ≠  holds 

for some time to make the state trajectory evolve but not stay 
in E1 until li

f e θψ  , which is the equivalent state of target 
state fψ ,  is reached.  
    From the above analysis, we can see that if the control 
system satisfies the conditions i)-iv) in Theorem 1 and 
Eq.(13), and at the same time set , (0 )γ γ α α γ= − < <<  
when  ( ) 0, ( ) 0kv t tγ γ= = ≠  holds for some time, the control 
system (2) can converge to the target eigenstate from an 
arbitrary initial pure state. 

Next we’ll analyze how to make these conditions be 
satisfied in detail. Conditions i) and ii) in Theorem 1 are 
associated with 0H , , ( 1, , )kH k r=  and ( )k tγ . By 
designing appropriate ( )k tγ , these two conditions can be 
satisfied in most cases. Condition iii) means that Pγ  and 

1
0 ( )mk

nn kH H tγ=+ ∑  have the same eigenstates. We design 
the eigenvalues of Pγ  be constant, denoted by 1 2, , , NP P P , 
and design Pγ  as 

, ,1
N

j j jjP Pγ γ γφ φ== ∑  (14) 

then condition iii) can be satisfied. If design 
( ;1 , )l jP P l j l j N≠ ∀ ≠ ≤ ≤  to make condition iv) hold. Then 

let us analyze how to make (13) hold. The research result is 
given by the following Theorem 2. 
Theorem 2: If one designs ( ), 1, , ,i f i fP P i N P P> = ≠ , 

then ( ) ( )f otherV Vψ ψ<  holds, where fP  is the 

eigenvalue of ( )f
Pγ ψ  corresponding to fψ . 

Proof: Set ( ),
0

li
s le θ

γ
γ

ψ φ
=

= . According to Proposition 
1 in Zhao in 2012, if one designs 

( ), 1, , ,i f i fP P i N P P> = ≠ , then ( ) ( )f sV Vψ ψ<  
holds. Because of / 0, 0, 0V Vγ γ∂ ∂ > ≤ > , 

( ) ( )s otherV Vψ ψ<  holds. Thus ( ) ( )f otherV Vψ ψ<  
holds. Thereom 2 is proved. □ 
Remark 3: According to the above analysis and Theorem 2, 
the design principle of the imaginary mechanical quantity is 

( ), 1, , ,i f i fP P i N P P> = ≠  and ( )l jP P l j≠ ∀ ≠ . 

2.2 In the case of target state being a superposition state 

In order to solve the problem of convergence to the target 
state being a superposition state, a series of another control 
disturbances kη  whose values are constant are introduced 
into the control laws. Thus the equation (2) will become 

0 1( ) ( ( ( ) ( ))) ( )r
k k k kki t H H t v t tψ η γ ψ== + + +∑ .        (15) 

Our basic idea is to design kη  to make the target state 

fψ  be an eigenstate of '
0 0 1

r
k kkH H H η== + ∑ . '

0H  can 
be viewed as the new internal Hamiltonian of the control 
system. If the number of the control Haimltonians r is large 
enough, by designing appropriate kη , 

'
0 1( )r

k k f f fkH H η ψ λ ψ=+ =∑  can be satisfied in most 

cases, where '
fλ  is the eigenvalue of '

0H  corresponding to 

fψ . Then the design of control laws and the convergence 
proof can follow the target eigenstate cases. One can prove 
that the designed control laws are also valid and Theorem 1 
and Theorem 2 also holds with changing H0 into '

0H .  
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3. QUANTUM LIOUVILLE EQUATION CASE 

Consider the N-level closed quantum system governed by 
the following quantum Liouville equation: 

0 1
( ) [ ( ( ) ( ) ), ( )]r

k k k kk
i t H H t v t tρ γ η ρ

=
= + + +∑ ,               (16) 

where ( ) ( ) ( ), ( 1, , )k k k kt v t u t k rγ η+ + = =  are the total 
control laws.  

The design ideas are similar to that of Section 2. The 
specific Lyapunov function is selected as： 

1 , ,( ) ( )
r

V tr Pγ γρ ρ=  ,                                                       (17) 

where 
1, , 1( ( ), , ( ))

r rP f t tγ γ γ γ=  is a functional of ( )k tγ  
and positive definite.  

For the sake of simplicity, design ( )k tγ  as 

1

1 1

( )= (t)= ( ( ) ( )), , , ;

( ) 0, , , (1 , , ),
k f m

k m m

t V V k k k

t k k k k k r

γ γ θ ρ ρ

γ

− =

= ≠ ≤ ≤
                     (18) 

where ( )θ ⋅  satisfies (0) 0θ = , ( ) 0sθ >  and ( ) 0sθ ′ >  for 
every 0s > . Accordingly, 

1, , r
Pγ γ  becomes Pγ . The 

existence of ( )tγ  can be depicted by Lemma 2. 
Lemma 2: If ( ;[0, ]), 1, ,C R k rθ γ∞ + ∗∈ =  ( γ ∗  is a positive 
constant) satisfy (0) 0θ = , ( ) 0sθ >  and ( ) 0sθ ′ >  for every 

0s > , and 1 (2 )Cθ ∗′ < , =1C C∗ + , 

{ }
1

max , [0, ]
m

C Pγ γ γ γ ∗= ∂ ∂ ∈ , then for every ρ , there is 

a unique ( [0, ])Cγ γ γ∞ ∗∈ ∈  satisfying 
( ) ( ( ) ( ))ftr P tr Pγ γγ ρ θ ρ ρ= − . 
The idea of proof is similar to that of Lemma 1 in Section 

2. 
Then let us design ( )kv t  such that ( ) 0V t ≤  holds. Setting 

1
0 1[ , ( )] 0mr k

k k nk n kP H H H tγ η γ= =+ + =∑ ∑ , one can obtain  

( ) ( ) 1(1+ ( )) (1- ( ( ))) ([ , ] ) ( )r
f f k kkV tr P tr P itr P H v tγ γ γθ γ ρ θ γ ρ ρ ρ=

′ ′= − ∂ ∂ ∂ ∂ − ⋅∑    (19) 

By 1 (2 )Cθ ∗′ < in Lemma 2, 

( ) ( )(1+ ( )) (1- ( ( ))) 0f ftr P tr Pγ γθ γ ρ θ γ ρ ρ′ ′∂ ∂ ∂ ∂ − >  

holds . In order to ensure ( ) 0V t ≤ , ( ), ( 1, , )kv t k r=  are 
designed as: 

( )( ) ([ , ] ) , ( 1, , )k k k kv t K f itr P H k rγ ρ= = ,                      (20) 

where kK  is a constant and 0kK > , and 
( ), ( 1,2, , )k k ky f x k r= =  are monotonic increasing 

functions which are through the coordinate origin of the 
plane k kx y− . 

Based on LaSalle’s invariance principle, the convergence 
of the control system can be obtained as follows.  
Theorem 3: Consider the control system depicted by (16) 
with control laws ( )k tγ  defined by Lemma 2 and Eq. (18), 
and ( )kv t  defined by (20). If the control system satisfies:  
i) { }, , , , , ( , ) ( , ), , , , 1, 2, ,l m i j l m i j i j l m Nγ γω ω≠ ≠ ∈ , 

, , , ,l m l mγ γ γω λ λ= − , where ,l γλ  is the l-th eigenvalue of 

1
0 1 ( )mr k

k k nk n kH H H tη γ= =+ +∑ ∑  corresponding to the 

eigenstate ,l γφ ;  

ii) j l∀ ≠ , for 1, ,k r= , there exists at least a ˆ( ) 0k jlH ≠ , 

where ˆ( )k jlH  is the (j,l)-th element of  †
2 2

ˆ
k kH U H U=  

with ( )2 1, ,, , NU γ γφ φ= ;  

iii) 
1

0 11[ , ( )] 0,1 , ,mr k
k k n mk n kP H H H t k k rγ η γ= =+ + = ≤ ≤∑ ∑ ;  

iii) For any , (1 , )l j l j N≠ ≤ ≤ , ( ) ( )ˆ ˆ
ll jj

P Pγ γ≠  holds, 

where ( )ˆ
ll

Pγ  is the (l,l)-th element of  †
2 2P̂ U P Uγ γ= . 

 then the control system will converge toward 

( ){ }0 0 0
†

2 2 2 00, ( ),t t tij
E U U t Rρ ρ γ γ ρ= = = ∈ . 

Proof:  
Without loss of generality, assume that for 0 0, ( )t t t R≥ ∈ , 

0V =  is satisfied. By (19) and (20), one can get 
0 ([ , ] )=0 ( ) 0k kV tr P H v tγ ρ= ⇔ ⇔ =              (21) 

As 0V = , γ  are constants, denoted by γ . The control 
system in the eigenbasis of 

1
0 1 ( )mr k

k k nk n kH H H tη γ= =+ +∑ ∑  is 

0 1 1
ˆ ˆ ˆˆ ˆ( ) [( ( ( ) )) ( ), ( )]r r

k k k k kk ki t H H t H v t tρ γ η ρ= == + + +∑ ∑ (22) 

where † † †
2 2 0 2 0 2 2 2

ˆ ˆˆ , , k kU U H U H U H U H Uρ ρ= = = . Set 

0 0ˆ ˆ ( )t tρ ρ= . Substituting the solution of Eq. (22) with ( )k tγ  

defined by Eq. (18), γ γ= , and ( ) 0kv t =  into 
ˆ ˆ ˆ([ , ] ) ([ , ] )=0k ktr P H tr P Hγ γρ ρ= , gives 

0 0 0 0
1 11 1

0

ˆ ˆ ˆ ˆ( )( ) ( )( )
ˆ ˆˆ( [ , ]) 0

k kr rm m
k k n k k n

k n k k n k
i H H H t t i H H H t t

t ktr e e P H
η γ η γ

γρ= = = =
− + + − + + −∑ ∑ ∑ ∑

=

  (23) 
where †

2 2P̂ U P Uγ γ= . By condition iii), one can obtain 

( ) ( ) 0, ,, 1
ˆ ˆ ˆ ˆ( ) ( )( ) 0N n

j l k jl t ljj l ll jj
H P Pγ γ γω ρ= − =∑ .              (24) 

Set 

( ) ( ) ( )

( ) ( ) ( )

0

0

2112 22 11

( 1)( 1) ( 1)( 1)

ˆ ˆ ˆ ˆ( )( )

,
ˆ ˆ ˆ ˆ( )( )

k t

k

k t N NN N NN N N

H P P

H P P

γ γ

γ γ

ρ

ξ

ρ −− − −

⎡ ⎤−
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

 

                                                                                           (25a)
  

1,2, 1, ,( , , ),N Ndiag γ γω ω −Λ =                                     (25b) 

2 2 2
1,2, 1,3, , 1,

( 1) 2 ( 1) 2 ( 1) 2
1,2, 1,3, , 1,

1 1 1

N N

N N N N N N
N N

M
γ γ γ

γ γ γ

ω ω ω

ω ω ω

−

− − − − − −
−

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.     (25c) 

For 0,2,4,n = , (24) reads ( ) 0kM ξℑ = . For 1,3,5,n = , 
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(24) reads ( ) 0kM ξΛℜ = . By condition i), and M  and Λ  
are nonsingular real matrices, one can obtain 0kξ = . By 
condition ii) and iv), one have 

0
ˆ( ) 0t ljρ =  holds. Theorem 3 

is proved. □ 
If r is large enough, by designing appropriate kη , 

0 1 , 0r
k k fkH H η ρ=

⎡ ⎤+ =⎢ ⎥⎣ ⎦∑  can be satisfied in most cases. 

Then the target state fρ  is contained in E2. For the special 
case that the target state commutes with the internal 
Hamiltonian, i.e., 0, 0f Hρ⎡ ⎤ =⎣ ⎦ , set 0kη = . Some analyses 
show that E2 has at most !N  elements. In order to make the 
system converge to the target state fρ , on the one hand, we 

design Pγ  to make  

( ) ( )f otherV Vρ ρ<  (26) 

hold, where otherρ  represents any other state in the set 2E  
except the target state. On the other hand, we design 

, (0 )γ γ α α γ= − < <<  when  ( ) 0, ( ) 0kv t tγ γ= = ≠  holds 
for some time to make the state trajectory evolve but not stay 
in 2E  until fρ  is reached.  

Next we’ll analyze how to make these conditions be 
satisfied. For satisfaction of conditions i) - iv), one can follow 
that of Section 2. Then let us analyze how to make (26) hold. 
Denoting the eigenstates of 0 1

r
k kkH H η=+ ∑  as 

, , ( {1, , })i i Nηφ ∈ , †
3 3f fU Uρ ρ=  can be expressed by a 

diagonal matrix, where 3 1, ,( , , )NU η ηφ φ= . The research 
result is as follows: 
Theorem 4: If ( ) ( ) ,1 ,f fii jj

i j Nρ ρ< ≤ ≤ , design i jP P> ; 

if ( ) ( ) ,1 ,f fii jj
i j Nρ ρ= ≤ ≤ , design i jP P≠ ; else if 

( ) ( ) ,1 ,f fii jj
i j Nρ ρ> ≤ ≤ , design i jP P< , then  

( ) ( )f otherV Vρ ρ<  holds, where ( )f ii
ρ  is the (i,i)-th element 

of fρ . 
Proof:  

At first, propositions 1 and 2 are proposed, then Theorem 4 
are proved according to these two propositions. 
Proposition 1: If ( ) ( ) ( ){ }11 22

, , ,f f f NN
ρ ρ ρ  arranged in 

a decreasing order, design { }1 2, , , NP P P  arranged in an 

increasing order, then ( ) ( )f otherV Vρ ρ<  holds. 

Proof:   
Denote ( ) ( ) ( )†

3 3 11( ) 22( ) ( )
( , , , )s s f f f NN

U U diag
τ τ τ

ρ ρ ρ ρ ρ= = , 

where { }11( ),22( ), , ( )NNτ τ τ  is a permutation of 

{ }11,22, , NN . At first, we prove ( ) ( )f sV Vρ ρ< . The 

Lyapunov function ( ) ( )V tr Pγρ ρ=  for 0γ =  can be written 
as  

0 1( ) N
j jjjV Pγρ ρ= == ∑ , (27) 

where jjρ  is the (j,j)-th element of †
33U Uρ ρ= . Assume 

( ) ( )
11

0f f NN
ρ ρ> ≥ , and 10 NP P< < < .  For N = 2,  

( ) ( )2 2 1 2 11 22
( ) ( ) ( )( ) 0f s f fV V P Pρ ρ ρ ρ− = − − < ,   (28) 

where the subscript “2” in 2( )fV ρ  and 2( )sV ρ  means N = 2. 
Proposition 1 is true.  

Assume Proposition 1 is true for N-1. Then 
( ) ( ) ( )1 1

1 1 ( )1 1( ) ( )
( ) ( ) ( )= ( ) 0N N

f N s N j f f j j fj jjj jj jj
V V P P Pττ τ

ρ ρ ρ ρ ρ− −
− − = =

− = − − <∑ ∑
 (29) 
where ( )( ) 0 ( )

j
jj

P Pτ γ γ τ=
= .  For N,  

( ) ( )1
( ) ( )1 ( ) ( )

( ) ( ) ( ) ( )N
f N s N j j f N N fj jj NN

V V P P P Pτ ττ τ
ρ ρ ρ ρ−

=− = − + −∑ (30) 

By (29) and 1 20 NP P P< < < < , one can get 
( ) ( ) 0f N s NV Vρ ρ− <  (31) 

Because of / 0, 0, 0V Vγ γ∂ ∂ > ≤ > , ( ) ( )s otherV Vρ ρ<  
holds. Thus Proposition 1 is proved. □ 
Proposition 2: If the diagonal elements of the diagonal target 
state ( ) ( ) ( ){ }11 22

, , ,f f f NN
ρ ρ ρ  are arranged in a non-

decreasing order with 
( ) ( ) ( ) ( )

( ) ( )
11 11 1 1 21 21 2L 2L1 1 2 2

1 1

11

,

1 , 1,

L L

Q Q QL QLQ Q

Q

f f f fk k k k k k k k

f fk k k k

ij QLk N k k N

ρ ρ ρ ρ

ρ ρ

= = < = =

< < = =

≤ ≤ = =

, 

where 1, 2, ,i Q= , and 11, 2, ,j L=  for 1i =  ; 21, 2, ,j L=  for 
2i = ; …; 1, 2, , Qj L=  for i Q= . Design { }1 2, , , NP P P  as 

follows: 
11 1 11

, , , , 0
L Q QLQk k k kP P P P> > > , then 

( ) ( )f otherV Vρ ρ<  holds. 
Proof:  

Obviously, ( ) ( )f sV Vρ ρ<  holds for N=2. Assume that 

for N-1, ( ) ( )f sV Vρ ρ<  is true. Then Eq. (29) holds.  For N, 

if ( ) ( )
( 1)( 1)f fN N NN

ρ ρ
− −

< , design 
11 1 1

, ,
Lk k NP P P> > , then 

(31) holds. If ( ) ( ) ( )
1 1 2 2Q Q Q Q

f f fk k k k NN
ρ ρ ρ= = = , then 

1 1 ( 1) ( 1)( )
Q QQ Q Q L Q LNN k k k kτ − −≠ ≠ ≠  in (30). Design 

11 1 11
, , , ,

L Q QLQk k k kP P P P> > , then (31) holds. Proposition 

2 is proved. □ 
Obviously, according to Proposition 1 and Proposition 2, 

we can obtain Theorem 4. □ 

4. NUMERICAL SIMULATION 
In order to verify the effectiveness of the proposed method, 

consider a three-level system with H0 and H1 as: 

0 1 2

0.3 0 0 0 1 0 0 0 1
0 0.5 0 , 1 0 0 , 0 0 0
0 0 0.9 0 0 0 1 0 0

H H H
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (32) 

According to 0H  and 1H , the system is in the degenerate 
case. Assume that the initial state is an eigenstate as 
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( )0 0 0 1 Tψ = ,  and the target state is  a superposition 

state as ( )2 3 1 3 0
T

fψ = − .  

According to the design ideas in Section 2, the control law 
is designed as ( )( ) ( ) ( ) , 1,2k k k ku t t v t kγ η= + + = . Design 

1 2-0.3771, 0η η= = to make the target state fψ  be an 

eigenstate of 2'
0 0 1 k kkH H H η== + ∑ . '

0H And design 

1 2 0.01 ( )f fP Pγ γγ γ γ ψ ψ ψ ψ= = = ⋅ − , 

( )1 1( ) 0.2 , ]v t i H Pγψ ψ⎡ ⎤= − ⋅ ⎣ ⎦ , 

( )2 2( ) 0.2 , ]v t i H Pγψ ψ⎡ ⎤= − ⋅ ⎣ ⎦ , 

where 3
,1 j jj

P Pγ γφ
=

= ∑ .     

 According to Theorem 2 in Section 2, set  0.1fP =  and 
other two eigenvalues of Pγ  are 0.4 and 0.6.  

In the simulations, the time step size is set as 0.01 a.u., and 
the control duration is 300 a.u.. The results of numerical 
simulations are shown in Fig.1 and Fig.2. Fig.1 is the 
population evolution curves of the control system, 

2 , ( 1, 2,3)ic i =  is the population of level i . Fig.2 shows 
the designed control fields. According to numerical results, 
we can see that the proposed method is effective. 
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Fig. 1. Population of the control system 
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               Fig. 2. Control fields 

5. CONCLUSION 
In this paper, the Lyapunov control based on the average 

value of an imaginary mechanical quantity has been proposed 
and proved. By using the proposed method, the quantum 

Lyapunov control can complete the state transfer task from an 
arbitrary pure state to an arbitrary pure state for the 
Schrödinger equation, and from an arbitrary initial state to an 
arbitrary target state unitarily equivalent to the initial state for 
the quantum Liouville equation in most cases. The solutions 
of the convergence problems of quantum lyapunov control 
based on the average value of an imaginary mechanical 
quantity establishes a completed quantum Lyapunov control 
theory in closed quantum systems, which has the significance 
of the instructing how to achieve a high successful 
probability in the actual quantum experimental applications. 
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