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Abstract: This paper presents observer-based fuzzy control for nonlinear fractional-order
systems with the fractional order α satisfying 1 < α < 2 via fuzzy T-S models. Using the
properties of the Kronecker product and LMI approach, the feedback and observer gain matrices
are designed. By this method, the state of nonlinear system described as the fuzzy T-S model is
convergent to the equilibrium and the observer error is convergent to zero. Finally, the simulation
result of a numerical example is given to illustrate the effectiveness of this method.

1. INTRODUCTION

In recent years, fractional-order systems have attracted
much attention (Machado et al. [2011]). Compared with
integer-order systems, fractional-order systems can de-
scribe the dynamics of real-world systems better such
as heat conduction, viscoelastic systems, electromagnetic
wave, etc.(Hilfer [2000]). Some approximation methods of
fractional-order operators have been proposed to imple-
ment the fractional-order controllers for fractional-order
systems (Maione [2008], Oustaloup et al. [2000]). Many
design methods for fractional-order PID controllers are
studied since PID control is applied widely in the industry
fields (Podlubny [1999]). Fractional-order PID controllers
have been applied in many practical control systems (Za-
mani et al. [2009], Vinagre et al. [2007]). Other types of
fractional-order controllers came into study recently such
as the fractional-order optimal controller (Biswas & Sen
[2011]), the fractional-order iterative learning controller
(Li et al. [2011]) and the fractional-order sliding mode
controller (Pisano et al. [2010],Yin et al. [2012]).

However, the aforementioned controllers are designed for
linear fractional-order systems, or the fractional-order con-
trollers are linear. Based on the LMI approach, the robust
stability and stabilization for linear fractional-order sys-
tems were investigated by Lu & Chen [2010], Lu & Cao
[2009] using state-space models. Lan & Zhou [2011] pro-
posed the robust output control for linear fractional-order
systems with the observers. If the fractional order α is
between 1 and 2, the stability criterion of linear fractional-
order systems is similar to the robust D-stability. The
left half-plane contains the stable and unstable regions.
But if the fractional order is between 0 and 1, the LMI
conditions will be very complicated, presented by Lu &
? This work was supported by the National Natural Science Foun-
dation of China (Grant No. 61304094)

Chen [2010]. At least, we ensure that all eigenvalues of
the system matrix are set in the left half-plane by the
controller, the fractional-order system with 0 < α < 1 is
stable, though this control method is conservative.

Although the requirements of Lyapunov functions for
fractional-order systems have been proposed by Ahn &
Chen [2008], Li & Chen [2010], an appropriate Lya-
punov function is hard to be constructed for a nonlinear
fractional-order system. Fuzzy T-S model was proposed
by Takagi and Sugeno in 1985 (Takagi & Sugeno [1985]).
Using the fuzzy sector nonlinearity concept, a nonlinear
system can be described exactly as a set of local linear
subsystems connected by fuzzy membership functions in
the form of fuzzy T-S model (Ohtake et al. [2003]).
The stability of fuzzy T-S systems and fuzzy control de-
sign have been investigated in many papers (Tseng et al.
[2001], Liu & Zhang [2003], Fang [2006] and Rajesh &
Kaimal [2007]). In a real-world system, not all the states
of control systems are measurable, hence it is necessary to
design an observer to estimate the states. Assuming that
the premise variables are measurable, the output feedback
controllers based on fuzzy observers via the fuzzy T-S
model were proposed by Lin et al. [2005], Tong & Li [2002]
and Chen et al. [2000]. Fuzzy control based on the fuzzy
T-S models has been widely used in nonlinear integer-order
systems. For nonlinear fractional-order systems, the fuzzy
T-S method is still effective, but few papers on the control
for nonlinear fractional-order systems have been reported.

Therefore, we introduce the fuzzy T-S model method
into the nonlinear fractional-order systems in this paper.
Assuming that the premise variables are measurable, the
the observer-based fuzzy output control has been designed.
By defining the augmented state vector consisting of the
state and observer error, the feedback and observer gain
matrices are obtained by solving a set of LMI conditions
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Fig. 1. Stable regions of fractional-order systems for 1 <
α < 2

which are got by the properties of the Kronecker product.
For 1 < α < 2, the stable region is in a sector area of the
left half-plane. The stable region is smaller than integer-
order systems which can be regarded as α = 1 hence the
LMIs are more complex than the integer-order systems.

2. PRELIMINARIES

There are many definitions of the fractional-order integral
and differential operators such as the Grünwald-Letnikov,
Riemann-Liouville and Caputo definitions. Because Ca-
puto definition allows utilization of the initial values of
classical integer-order derivatives with clear physical inter-
pretation, the Caputo definition of fractional-order deriva-
tive for the function f(t) is adopted in this paper as:

Dαf(t) =
1

Γ(m− α)

∫ t

0

f (m)(τ)dτ

(t− τ)α+1−m
, (1)

where α is a positive real number, m is an integer satisfying
m− 1 ≤ α < m and Γ(·) is the Gamma function.

As defined above, a linear fractional-order system with the
order α satisfying 1 < α < 2 is modeled in the form of the
state space equation as:

Dαx(t) = Ãx(t), (2)
where x(t) ∈ Rn is the pseudo-state vector, α ∈ (1, 2) is
the fractional order and Ã ∈ Rn×n is the system matrix.

For the fractional-order system (2) for 1 < α < 2, we have
the following Lemma to verify the stability.

Lemma 1: (Tavazoei & Haeri [2009]) For 0 < α < 2, let λi,
i = 1, 2, . . . , n be the ith eigenvalue of Ã. The fractional-
order system (2) is stable if and only if | arg(λi)| > (απ)/2
holds. The stable region of fractional-order systems for
1 < α < 2 is shown in Fig. 1.

It is seen in Fig. 1, some regions of the left half-plane are
not stable, and it is not convenient to calculate all the
eigenvalues to verity the stability by Lemma 1, hence the
following lemma gives a stable criterion for 1 < α < 2.

Lemma 2: (Lu & Cao [2009]) For 1 < α < 2, the
fractional-order system (2) is asymptotically stable if and
only if there exists a positive definite matrix P̃ ∈ Rn×n

such that

Sym{Θ⊗ (ÃP̃ )} < 0, (3)
where Sym{X} = XT +X, “⊗” is the Kronecker product,

Θ =




sin(
πα

2
) − cos(

πα

2
)

cos(
πα

2
) sin(

πα

2
)


 .

Some properties of the Kronecker product will be used
later to design the fuzzy T-S controller as follows:

(A⊗B)T = AT ⊗BT,

(A + B)⊗ C = A⊗ C + B ⊗ C,

where A, B and C are matrices with appropriate dimen-
sions.

3. MAIN RESULTS

By the sector nonlinearity concept, nonlinear systems can
be represented as T-S fuzzy systems described by a series
of “IF-Then” rules. Each subsystem in T-S models is a
linear system, hence, the linear control approaches can be
applied for nonlinear systems by T-S models. We apply
the T-S technique to control nonlinear fractional-order
systems in this section.

Consider the following affine nonlinear fractional-order
system as

Dαx(t) = f(x(t)) + g(x(t))u(t),
y(t) =d(x(t)),

(4)

where α is the fractional order satisfying 1 < α < 2,
x(t) ∈ Rn is the state vector, u(t) ∈ Rs is the input vector,
y(t) ∈ Rt is the output vector, f(·) ∈ Rn, g(·) ∈ Rn×s and
d(·) ∈ Rt are nonlinear functions.

Using the sector nonlinearity concept, we get the following
T-S fuzzy system of (4) for the ith rule as:

Rule i: If z1(t) is Mi1 and . . . and zp(t) is Mip

Then
{

Dαx = Aix(t) + Biu(t)
y(t) = Cix(t) , i = 1, 2, . . . , r, (5)

where r is the number of the fuzzy rules, zj(t) is the
premise variable assumed to be measurable, which is
related with the control input, some of states or output,
Mij denotes the fuzzy set, j = 1, 2, . . . , p, Ai ∈ Rn×n,
Bi ∈ Rn×s and Ci ∈ Rt×n are the system matrix, control
matrix and output matrix of the ith subsystem.

Using the fuzzy inference with a singleton fuzzifier, prod-
uct inference and a center-average defuzzifer, the global
model is represented as:

Dαx(t) =
∑r

i=1 wi(z(t))(Aix(t) + Biu(t))∑r
i=1 wi(z(t))

,

y(t) =
∑r

i=1 wi(z(t))Cix(t)∑r
i=1 wi(z(t))

,

(6)

where z(t) = [z1(t), z2(t), . . . , zp(t)]T, wi(z(t)) =
∏p

j=1

Mij(zj(t)), Mij(zj(t)) is the membership function of zj(t)
in Mij and wi(z(t)) > 0,

∑r
i=1 wi(z(t)) > 0. Denote
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Fig. 2. Structure of the fuzzy T-S control system with the
fuzzy T-S observer

hi(z) = wi(z(t))/
∑r

i=1 wi(z(t)), then (6) can be rewritten
as:

Dαx(t) =
r∑

i=1

hi(z(t))(Aix(t) + Biu(t)),

y(t) =
r∑

i=1

hi(z(t))Cix(t),

(7)

and hi(z(t)) ≥ 0,
∑r

i=1 hi(z(t)) = 1.

By supposing the premise variables are measurable, the
observer of the fractional-order system (7) is designed as:

Dαx̂(t) =
r∑

i=1

hi(z(t))[Aix̂(t) + Biu(t) + Gi(y(t)− ŷ(t))],

(8)
where x̂(t) and ŷ(t) are the estimations of x(t) and y(t)
respectively. ŷ(t) =

∑r
j=1 hj(z(t))Cj x̂(t), Gi ∈ Rn×t is the

observer gain matrix.

Therefore, the fuzzy control adopting x̂(t) is given by

u(t) =
r∑

j=1

hj(z(t))Kj x̂(t), (9)

where Kj ∈ Rs×n is the feedback gain matrix. The
structure of the fuzzy T-S control system with the fuzzy
T-S observer for the nonlinear system for 1 < α < 2 is
shown in Fig. 2.

Denote e(t) = x(t)− x̂(t), we have

Dαx(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))[(Ai + BiKj)x(t)

−BiKje(t)],

(10)

and

Dαe(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))[(Ai −GiCj)e(t)], (11)

Let x̃(t) = [xT(t), eT(t)]T, then the fractional-order T-S
fuzzy model for x̃(t) is given by

Dαx̃(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))
[
Ai + BiKj −BiKj

0 Ai −GiCj

]
x̃(t),

(12)

According to Lemma 2, we obtain the following theorem
to design the feedback and observer gain matrices.

Theorem 1. For 1 < α < 2, the fractional-order T-S
fuzzy system (5) with the fractional order α under the
control u =

∑r
j=1 hj(z(t))Kj x̂(t) and the observer (8) is

asymptotically stable, if there exist two positive definite
matrices X ∈ Rn×n and Y ∈ Rn×n and the matrices Sj

and Ni satisfying

Ξij =




sin(
πα

2
)Ω1ij sin(

πα

2
)Ω3ij

sin(
πα

2
)Ω4ij sin(

πα

2
)Ω5ij

cos(
πα

2
)Ω2ij cos(

πα

2
)Ω3ij

− cos(
πα

2
)Ω4ij cos(

πα

2
)Ω6ij

− cos(
πα

2
)Ω2ij − cos(

πα

2
)Ω3ij

cos(
πα

2
)Ω4ij − cos(

πα

2
)Ω6ij

sin(
πα

2
)Ω1ij sin(

πα

2
)Ω3ij

sin(
πα

2
)Ω4ij sin(

πα

2
)Ω5ij




< 0,

i = 1, 2, . . . , r, j = 1, 2, . . . , r,

(13)

where

Ω1ij = AiX + BiSj + XAT
i + ST

j BT
i ,

Ω2ij = AiX + BiSj −XAT
i − ST

j BT
i ,

Ω3ij = Ai,

Ω4ij = AT
i ,

Ω5ij = Y Ai −NiCj + AT
i Y − CT

j NT
i ,

Ω6ij = Y Ai −NiCj −AT
i Y + CT

j NT
i .

Moreover, the feedback and observer gain matrices are
designed as Kj = SjX

−1 and Gi = Y −1Ni, respectively.

Proof. Let P1 ∈ Rn×n and P2 ∈ Rn×n be two positive
definite matrices.

Define the positive definite matrix P =
[
P1 P2

0 P2

]
∈

R2n×2n, Φij =
[
Ai + BiKj −BiKj

0 Ai −GiCj

]
. Replace Ã and P̃

defined in Lemma 2 with
∑r

i=1

∑r
j=1 hi(z(t))hj(z(t))Φij

and P respectively. If the following LMI (14) holds, then
x(t) and e(t) converge to the equilibrium.

Q = Sym{Θ⊗ (
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))ΦijP )} < 0. (14)

Using the properties of the Kronecker product, we have
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Q =Sym{
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))[Θ⊗ (ΦijP )]}

=
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))Sym{[Θ⊗ (ΦijP )]}

=
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))×

Sym{[Θ⊗
[
AiP1 + BiKjP1 AiP2

0 AiP2 −GiCjP2

]
]}.
(15)

Let Sj = KjP1, then we have

Q =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))Sym{Θ⊗ (ΦijP )}

=
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))




sin(
πα

2
)Λ1ij sin(

πα

2
)Λ3ij

sin(
πα

2
)Λ4ij sin(

πα

2
)Λ5ij

cos(
πα

2
)Λ2ij cos(

πα

2
)Λ3ij

− cos(
πα

2
)Λ4ij cos(

πα

2
)Λ6ij

− cos(
πα

2
)Λ2ij − cos(

πα

2
)Λ3ij

cos(
πα

2
)Λ4ij − cos(

πα

2
)Λ6ij

sin(
πα

2
)Λ1ij sin(

πα

2
)Λ3ij

sin(
πα

2
)Λ4ij sin(

πα

2
)Λ5ij




.

(16)

where Λ1ij = AiP1 +BiSj +P1A
T
i +ST

j BT
i , Λ2ij = AiP1 +

BiSj − P1A
T
i − ST

j BT
i , Λ3ij = AiP2, Λ4ij = P2A

T
i ,

Λ5ij = AiP2−GiCjP2 +P2A
T
i −P2C

T
j GT

i , Λ6ij = AiP2−
GiCjP2 − P2A

T
i + P2C

T
j GT

i .

Define U =




In 0 0 0
0 P−1

2 0 0
0 0 In 0
0 0 0 P−1

2


 and let X = P1, Y = P−1

2

and Ni = Y Gi, where In is an identity matrix with n-
dimension. Multiply the left and right sides of Q by U ,
yields

Υ =UQU

=
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))




sin(
πα

2
)Ω1ij sin(

πα

2
)Ω3ij

sin(
πα

2
)Ω4ij sin(

πα

2
)Ω5ij

cos(
πα

2
)Ω2ij cos(

πα

2
)Ω3ij

− cos(
πα

2
)Ω4ij cos(

πα

2
)Ω6ij

− cos(
πα

2
)Ω2ij − cos(

πα

2
)Ω3ij

cos(
πα

2
)Ω4ij − cos(

πα

2
)Ω6ij

sin(
πα

2
)Ω1ij sin(

πα

2
)Ω3ij

sin(
πα

2
)Ω4ij sin(

πα

2
)Ω5ij




,

(17)

where Ω1ij = AiX + BiSj + XAT
i + ST

j BT
i , Ω2ij = AiX +

BiSj−XAT
i −ST

j BT
i , Ω3ij = Ai, Ω4ij = AT

i , Ω5ij = Y Ai−
NiCj +AT

i Y −CT
j NT

i , Ω6ij = Y Ai−NiCj−AT
i Y +CT

j NT
i .

Note that U > 0, hence the condition Υ < 0 is equivalent
to Q < 0.

Define

Ξij =




sin(
πα

2
)Ω1ij sin(

πα

2
)Ω3ij

sin(
πα

2
)Ω4ij sin(

πα

2
)Ω5ij

cos(
πα

2
)Ω2ij cos(

πα

2
)Ω3ij

− cos(
πα

2
)Ω4ij cos(

πα

2
)Ω6ij

− cos(
πα

2
)Ω2ij − cos(

πα

2
)Ω3ij

cos(
πα

2
)Ω4ij − cos(

πα

2
)Ω6ij

sin(
πα

2
)Ω1ij sin(

πα

2
)Ω3ij

sin(
πα

2
)Ω4ij sin(

πα

2
)Ω5ij




.

From (17), if the LMI condition Ξij < 0 holds for i =
1, 2, . . . , r, j = 1, 2, . . . , r, then Υ < 0 holds, it means
that Q < 0. According to Lemma 2, the fractional-order
system on x̃(t) is asymptotically stable, namely x(t) → 0
and e(t) → 0 as t → +∞.

4. ILLUSTRATIVE EXAMPLE

In this section, a fuzzy controller with the fuzzy observer
is designed to stabilize the following nonlinear fractional-
order system as
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D1.2x1(t) =− 2x1(t) + x2
2(t)

D1.2x2(t) =x1(t)− 3x2(t) + x2
2(t) + (1 + x2(t))u(t)

y(t) =x2(t)
(18)

Assuming that x2(t) ∈ [a, b] is measurable and x1(t) is
unknown, then let z(t) = x2(t), hence the fuzzy T-S model
for (18) is exactly represented as follows.

Rule 1: If x2(t) is a

Then
{

D1.2x = A1x(t) + B1u(t)
y(t) = C1x(t) ,

Rule 2: If x2(t) is b

Then
{

D1.2x = A2x(t) + B2u(t)
y(t) = C2x(t) ,

where x(t) = [x1(t), x2(t)]T, y(t) = x2(t). The premise
membership functions and the consequent matrices in each
subsystem are given as:

M1(x2(t)) =
b− x2(t)

b− a
, M2(x2(t)) =

x2(t)− a

b− a
,

A1 =
[−2 a

1 −3 + a

]
, A2 =

[−2 b
1 −3 + b

]
, B1 =

[
0

1 + a

]
,

B2 =
[

0
1 + b

]
, C1 = [0 1] , C2 = [0 1] .

The initial values of x(t) are set as x(0) = [2,−3]T. The
maximum and minimum values of x2(t) are set as a = −5
and b = 5. We solve the LMIs in Theorem 1 by the
LMI Toolbox in MATLAB, the feedback and observer gain
matrices are calculated as:

K1 = [−0.3748,−1.0044], K2 = [−0.3433,−1.0186],

G1 =
[−5.4000
−7.1812

]
, G2 =

[
4.6003
2.8197

]
.

Supposing x1(t) is unmeasurable and x2(t) is measurable
which exists in the membership functions, the controller
and observer for the nonlinear fractional-order system (18)
are designed as:

the controller:

u(t) =
2∑

j=1

hjKj x̂(t), (19)

the observer:

D1.2x̂(t) =
2∑

i=1

hi[Aix̂(t)+Biu(t)+Gi(y(t)− ŷ(t))], (20)

where ŷ(t) =
∑2

j=1 hjCj x̂(t), x̂(t) = [x̂1(t), x̂2(t)]T and

h1 =
b− x2(t)

b− a
, h2 =

x2(t)− a

b− a
.

Assuming the initial values of the fuzzy observer are set as
0, the responses of x(t) and e(t) are shown in Fig. 3 and
Fig. 4. Fig. 5 illustrates the control input.

The simulation results show that the state x(t) converges
to the equilibrium. The nonlinear fractional-order system
with the order α = 1.2 is stable under the fuzzy observer

0 5 10 15 20 25 30
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 x
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x
2

Fig. 3. Responses of the state x(t) for α = 1.2
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Fig. 4. Responses of the observer error e(t) for α = 1.2
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Fig. 5. Control input for α = 1.2
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Fig. 6. Responses of the state x(t) for α = 1.5
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Fig. 7. Responses of the observer error e(t) for α = 1.5

designed by Theorem 1 and the observer error e(t) con-
verges to zero.

We increase the fractional order as α = 1.5 and other
parameters and the initial values are not changed. The
feedback and observer gain matrices are calculated as:

K1 = [−0.15, − 0.9149], K2 = [0.0211, − 0.9248],

G1 =
[−5.8504
−6.7416

]
, G2 =

[
4.1772
3.2576

]
.

The controller and observer are also adopted (19) and (20),
then the responses of the state and observer are shown in
Fig. 6 and Fig. 7. Fig. 8 illustrates the control input.
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Fig. 8. Control input for α = 1.5

As shown in Fig. 6 and Fig. 7, the fractional-order system
with α = 1.5 is also stable by Theorem 1 and the observer
error converges to zero. But if we set α = 1.6, the feasible
solution of the common matrices X and Y can not be got
by the LMI conditions in Theorem 1, because the stable
region becomes smaller.

5. CONCLUSION

In this paper, an output control for nonlinear fractional-
order systems based on the fuzzy observer via fuzzy T-S
models has been proposed. The fuzzy control for integer-
order control based on the fuzzy T-S model is widely
studied, but few researches for fractional-order systems
have been studied so far. By supposing that the premise
variables are measurable, we designed fuzzy observers
and controllers for nonlinear fractional-order systems for
1 < α < 2 by the LMI approach. Using the properties of
the Kronecker product and Lemma 2, the LMI conditions
are presented to calculate the feedback and observer gain
matrices. The stable region is decided by the fractional
order as illustrated in Fig 1. With the increase of the
number of the fuzzy rules and the fractional-order, the
common positive definite matrices X and Y are hard
to obtain, hence the future work is to relax the LMI
conditions for fractional-order systems.
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