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Abstract: Since a linear dynamic system parameter uncertainties and un-modeled dynamics in Air-
breathing hypersonic vehicle (ABHV), extended it to a nonlinear dynamics system including the linear 
parameter uncertain term in control matrix. An adaptive tuning function is used to compensate uncertainty 
impact for system and the robust term is designed to solve the issue of approximation error. The projection 
operator function is introduced to avoid possible controller singularity problem. In adaptive inverse design 
progress, a dynamic surface method is used and the first order filter is introduced. The Lyapunov stability 
theorem guaranteed error is uniformly bounded. The simulation shows the effectiveness of the algorithm. 
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1. INTRODUCTION 

Air-breathing hypersonic vehicle (ABHV) generally refers to 
aircraft which scramjet powered and flight within the 
atmosphere with greater than five times the speed of sound. 
ABHV are intended to be a reliable and cost-effective 
technology for access to space(Wu Hongxin 2009, Fidan B 
2003). In addition, the ABHV can also effectively improve 
survival ability because it can make the air defence system 
difficult to intercept.(Chavez, F 1994). Because ABHV 
adopts a scramjet engine, airframe/propulsion integration 
design technology, so that there is coupling interference 
between the propulsion system and the aerodynamic 
surfaces(Bilimoria, K 1995). And external disturbances and 
unknown factors in the process of its flight is very significant, 
which caused the ABHV has a complex and variable 
aerodynamic characteristics(Chavez, F 1999). ABHV are 
more sensitive to angle of attack, flight attitude and dynamic 
pressure, and all these factors had to bring great challenges to 
design its control system.  

These classes of uncertain nonlinear systems are suitable for 
using backstepping method for the design of the controller. 
Through the design of the virtual control, the non matching 
uncertainties of system can be good compensated, to ensure 
the stability and reliability of the control system(Taeyoung L 
2001). The backstepping design method can deal with non 
matched uncertainties. The Backstepping method has been 
widely applied in various engineering fields, and it is also a 
common method for aircraft control system design. Literature 

(Kojic 1999)using backstepping solves the time-scale 
separation hypothesis problem which usually faced in 
feedback linearization theory applied in aircraft control 
system, which can reflect more real aircraft dynamic. 
Literature (Krstic M 1992)designed adaptive backstepping 
flight control system for fighter aircraft, which used neural 
network to compensate system error caused by some 
uncertainty factors such as aerodynamic parameter error, to 
keep the plane flight steadily. Literature(Li Y H 2004)used 
adaptive backstepping method to design control system for 
re-entry hypersonic vehicle. In view of the “term expansion” 
problem in backstepping design progress, the literature 
(Swaroop D 1997) roposed dynamic surface control (DSC) 
method firstly.  

This article adopts the dynamic surface method to design the 
controller of ABHV. The numerical simulation proved that 
through the used of regulating function, projection operator 
and continuous robust function, the dynamic surface adaptive 
inverse control could compensate various uncertainties 
including linear parametric part and un-modeled dynamics 
which could meet during the flight progress effectively. 

2. VEHICLE MODELLING 

The NASA Langley Research Center developed hypersonic 
vehicle Winged-Cone is the main object of hypersonic 
vehicle research at present, and the full set of aerodynamic 
parameters have been published. 
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When ABHV Winged-Cone flight in near space in cruise 
status, its uncertain model is expressed as follows: 

         1 10 1 1 1 1 1 2 1 1 1 1,x f x x g x x w x u x t          (1) 

                       
   

     
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x f x x x x

g x x u x x t

 

 

  

    


               (2) 

                                              1y x                                   (3) 

Where  1
Tx     are angle of attack, sideslip angle 

and bank angle, respectively;  2
Tx p q r  are roll rate, 

pitch rate and yaw rate, respectively;  Te a ru     are 

control input;  1
Ty x      are control output. 

Assume that the state of the system variables and the output 
can be measured.  10 1f x ,  20 1 2,f x x ,  20 1g x  are nominal part 
of nonlinear function  1 1f x ,  2 1 2,f x x ,and  2 1g x ; 

 1 1x  ,  2 1 2,x x   and  1x   are parametric linear part 
of nonlinear function  1 1f x ,  2 1 2,f x x ,and  2 1g x ,which as 
the main representative of matched uncertainties caused by 
the impact of changes in aerodynamic parameters; ,   is the 
unknown parameter vector; The mismatched uncertainties 
which is caused by the body elastic deformation in 
hypersonic flight condition is represented by  1 1,x t  and 

 2 1 2, ,x x t .The remaining parameters refer to 
references(Shaughnessy J 1990) and(Shahriar K 2005), and 
function expressions refer to reference(Shahriar K 2005). 

Put forward the following hypothesis: 

Assumption1: Ignore the influence caused by rudder 
deflection to the aerodynamic force, that is  1 1 0w x  . 
Assumption2:  20 1g x  is bounded and invertible;   
Assumption3(Zhou Li 2008):  1 1g x  is non-singular and norm 
bounded, that is exists a positive constant 1hg  and 1lg , 

 1 1 1 1l hg g x g  .                                                  
Assumption 4(Khalil H K 1996): There is an unknown 
positive constant ip and known non-negative smooth 
function  ,i x t ,    , , , 1,2i i ix t p x t i   .Where   
represents Euclid norm for a vector or 2-norm for a matrix. 

3 ADAPTIVE BACKSTEPPING DYNAMIC SURFACE 
CONTROL SYSTM DESIGN AND STABILITY 

ANALYSIS 

Define the error surface: 1 1 1dz x x  , 2 2 2dz x x  , where 

 1
T

d d d dx    is desired command of system. 

Differentiating 1z  with respect to time, we can get: 

                   1 10 1 1 1 1 1 2 1 1 1, dz f x x g x x x t x           (4) 

Defined ̂ , ̂ , ˆ ip  are the estimated value of parameters 
 , , ip , respectively. So, we can define the parameter error 

as follows: ˆ    , ˆ    , ˆi i ip p p  . 

Designing the virtual controller 2dx  as follows: 

 
     2 10 1 1 1 1 1 1 1 1

1 1

1 ˆ , 0d dx f x x k z v x k
g x

            (5) 

Where 1v  is robust item. Substituting equation (5) into the 
equation (4) yield: 

      1 1 1 1 1 1 1 2 2 1 1 1,dz k z x g x x x x t v           (6) 

Let us consider the following Lyapunov candidate function: 

2
1 1 1 1

1

1 1 1
2 2 2

T TV z z p
r                   (7) 

Where 1  is positive definite symmetric matrix, and 

1 0r  which should be designed. 

Differentiating 1V  with respect to time, we can get: 

    

 

2
1 1 1 1 1 1 1 1 1 2 2

1 1 1 1 1 1 1
1

1ˆ ˆ,

T T
d

T T

V k z z x z g x x x

z x t v p p
r

 

 

    

       

 

  
      (8) 

If the control can not guarantee that ̂ , ̂  maintained at a 
given bounded closed set, the parameter drift and control 
singularity problem will occur. In order to avoid this kind of 
phenomenon, here we use the projection operator developed 
in literature(Khalil H K 1996). Let the parameter vector 
constraint region as follows: 

                            
 
 

0

2

2

ˆ ˆ ˆ

ˆ ˆ ˆ

T

T
n

 

  

   

    

 

  




                (9) 
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 
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ˆ ˆ ˆ

ˆ ˆ ˆ

T

T
n

 

  

   

    

 

  




                  (10) 

In above equation, 0  , 0  , 0  , 0  .Using the 
following parameters adaptive law as: 

                                     ˆ ˆ ,proj                             (11) 

 ˆ ˆ,proj                               (12) 

Projection operator is defined as: 

 
 2

2

2

ˆ ,

ˆ ˆ
ˆ

ˆ

ˆ ˆ, 0

,

M

T
M M

M

M

T
M M

M

proj M

M M
M

M

f M and also M

others



 




 





 




  






             (13) 

Where, ,M   , 1 , 1,2T
i iz i     , 1

2
T
iz u    .From 

literature (Khalil H K 1996), we can get : 

 
0

0
ˆ ˆ, 0, 0

T T T
i iz

t


 

   

 

  

  

  
                    (14) 

 
0

2 0
ˆ ˆ, 0, 0

T T T
iz

t


 

   

 

  

  

  
                       (15) 

Let  1 1 1 1
T x z  , select adaptive law is: 

 
  

1
1 1

1
1 1 1 1

ˆ ˆ ,

ˆ , T

proj

proj x z

   

 





    

  


                     (16) 

2 2
1 1 1 1 1p̂ r z  , where 1 0   is constant which should be 

designed and 2 2
1 1 1 1ˆv z p   is robust item. Substituting equation 

(14)-(16) into the equation (8) yield as: 

  
 

2
1 1 1 1 1 1 2 2

2 2
1 1 1 1 1 1 1 1,

T
d

T

V k z z g x x x

z x t v p z 

   

     




             (17) 

Application of Cauchy-Schwarz inequality, we can get: 

2 2
1 1 1 1 1

1

1
4

z z  


                      (18) 

So, equation (17) will be change as follows: 

  
 

  

  

  

2
1 1 1 1 1 1 2 2

2 2
1 1 1 1 1 1 1 1

2
1 1 1 1 1 2 2

2 2
1 1 1 1 1 1 1 1 1

2
1 1 1 1 1 2 2

2
22 1 1

1 1 1
1

2 1
1 1 1 1 1 2 2

1

,

ˆ
2 4

4

T
d

T

T
d

T

T
d

T
d

V k z z g x x x

z x t v p z

k z z g x x x

z p z v p z

k z z g x x x

pz p

pk z z g x x x

 

  






   

     

    

 

    

   
 

    





       (19) 

Differentiating 2z  with respect to time, we can get: 

   
   
 

2 2 2

20 1 2 2 1 2

2 1 1

2 1 2 2

, ,

, ,

d

d

z x x
f x x x x

g x x u

x x t x

 

 

 

  

   
 

 



              (20) 

If we calculate the 2dx  as follows: 

       

 

2
2 10 1 1 1 1 1 2 1 1

1

12 2 2
1 1 1 1

+ ,

ˆ

d
d

Td d d
r r

r r

xx f x x g x x x t
x

x x xy y x z
y y

 







     

  
   
  



 


     (21) 

It is easy to see, the calculation progress of 2dx  is very 
complicated. In this paper, we use dynamic surface 
technology to calculate 2dx . 

   2 2 2 2 2, 0 0d d d d dx x x x x               (22) 

0  is parameter should be design. Defend filtering error 
variable as follows: 
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1 2 2d dy x x                         (23) 

The Lyapunov candidate function changed as follows: 

2
1 1 1 1 1 1 1

1

1 1 1 1
2 2 2 2

T T TV z z p y y
r

         

So the equation (6) and (19) will be change as follows: 

       
      
     
   

1 10 1 1 1 1 1 2 1 1 1

10 1 1 1 1 1 2 1 2

1 1 1 1 1 1 1 1 1 2

1 1 1 1 1 1

,

,

,

d

d

d

z f x x g x x x t x

f x x g x z y x

x t x k z x g x z

g x y v x t

 

 

 

     

    

     

   




  (24) 

   
 

   

   

2
1 1 1 1 1 1 2 1 1 1 1

2 2
1 1 1 1 1 1 1 1 1 1

2
1 1 1 1 1 2 1 1 1 1

2 2
1 1 1 1 1 1 1 1 1 1 1

2
1 1 1 1 1 2 1 1 1 1

2
2 22 1 1

1 1 1 1 1 1 1
1

1 1

,

ˆ
2 4

T T

T T

T T

T T

T T

T

T

V k z z g x z z g x y

z x t v p z y y

k z z g x z z g x y

z p z v p z y y

k z z g x z z g x y

pz p y y k z

z g x

 

  




   

      

    

  

    

       
 



 

 



    1
1 2 1 1 1 1 1 1

14
T Tpz z g x y y y


   

      (25) 

Differentiating 1y  with respect to time, we can get: 

1 2 2dy y x    , and propose the following hypothesis: 
Assumption 5: Assuming that the desired trajectory tracking 

1dx  sufficiently smooth and that 1dx  and 1dx  for bounded 
function, which belongs to the compact set 3

r D R .In 
addition, assuming the error vector 1z , 2z , 1y ,  ,  , ip  
belongs to a compact set 6

s Ω R . 

By assuming 5 that there exist a bounded continuous function 
 ,  

 2 1 2 1 1 1 1, , , , , ,d d d dx z z y x x x                         (26) 

So we can get : 

 1 1 1 1 2

2
1 1 2

2
1 1

T T
d

T
d

T

y y y y x

y y x

y y





 

   

  

  



                   (27) 

From assuming 3 and Young inequation 2 22 2ab a b  , we 
can get that: 

  2 2
1 1 1 1 1 1 1 1 4T

h hz g x y g z g y              (28) 

2 2
1 1 2 2Ty y                           (29) 

Therefore, equation (25) changed as follows: 

   

 

2 1
1 1 1 1 1 1 2 1 1 1 1 1 1

1

2 2 21
1 1 1 1 1 2 1 1 1 1

1
22 2

1 1

4

4
4

2 2

T T T

T
h h

pV k z z g x z z g x y y y

pk z z g x z g z g y

y y





 

     

      

  

 

 (30) 

Defined the Lyapunov candidate function as follows: 

2
2 1 1 1 1 1

1

2
2 2 2

2

1 1 1 1
2 2 2 2

1 1 1
2 2 2

T T T

T T

V z z p y y
r

z z p
r





 

 

     

  

  

  
         (31) 

Differentiating 2V  with respect to time, we can get: 

       
        

  

2 1 1 2 2

1 1 2 2 1 1
1 2

1 1 1 1 1 1 1 2 1 1 1 1 1 1

2 20 1 2 2 1 2 2 1 1

2 1 2 2 1 1
1

2 2
2

+
1 1

( , )

, ,

1, , +

1

T T T T

T

T

T

T T
d

V z z z z

p p p p y y
r r
z k z x g x z g x y x t v

z f x x x x g x x u

x x t x p p
r

p p y
r

 

 

   

 

   

   

    

  

       

      

      

 

     

     



      

  1 1
T y

 

 (32) 

Design parameters for the adaptive law as follows: 

   1 1
1 1 1 2 1 2 2ˆ= = proj ,T Tx z x x z         

 Γ Γ      (33) 

2 2
2 2 2 2 2p̂ r z                        (34) 

Where 2 0   is parameter which should be designed. 
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Designed controller u as followed: 

   
 

  

1 1 1
2 1 1

20 1 2 2 2 2 2 2

1
ˆ

ˆ,

T

d

u g x z
g x x

f x x k z v x

 

 

  

    
       (35) 

 
   

 

  
    

1
1 2

1 1 1
2 1 1

20 1 2 2 2 2 2 2

1
1 2

ˆ ˆproj , ˆ

ˆ,

ˆproj ,

T
T

d

T T

x z
g x z

g x x

f x x k z v x

x z u






 

 

 

 





    
   

 





Γ

Γ

   (36) 

And 2 2
2 2 2 2ˆv z p   is robust item . 

Substituting equation (27)-(29), (34)-(36) into the equation 
(32) yield as: 

   
   

2 2
2 2 2 1 1 1

2 1 1 2 2 1 1

2 2
21 2

1 1 1 1 1 1 1 1

2 2
2 2 1 2 2 2 2 2 2

4

,
2 2

, ,

h
h

T

T

g y y
V k z k z g z

y
z x t v p z

z x x t v p z



  

 

     

     

   







      (37) 

Application of Cauchy-Schwarz inequality, we can get: 

2 2
2 2 2 2 2

2

1
4

z z  


                         (38) 

 Similar to equation (19) discussed above, we can get  

followed result as : 

   2 2

2
22

,

ˆ
2 4

T
i i i i i i i i

i i
i i i

i

z x t v p z

pz p

 






  

      


               (39) 

In addition, from the assumption 5, continuous function can 
  be set to a maximum value 0M . So The equation (37) was 
changed as followed: 

   
   

2 2
2 2 2 1 1 1

2 1 1 2 2 1 1

2 2
21 2

1 1 1 1 1 1 1 1

2 2
2 2 1 2 2 2 2 2 2

2 2
2 2 2 1 1 1

1 1 2 2 1 1

2 2 22
2 21 2 21 1 2

1 1 1 2 2 2
1

2
1

2

4

,
2 2

, ,

4

ˆ ˆ
2 2 2 4 2

4

h
h

T

T

h
h

g y y
V k z k z g z

y
z x t v p z

z x x t v p z

g y y
k z k z g z

y pz p z p

p k g



  

 



   




     

     

   

     

            
   

   







 

 

2 2
2 2 1 1 1

1 1 2 2

2 2
2 21 1 2

1 1 1 2 2
1 2

2 2 2 2
1 1 1 1 0 1 2

1 2

4

2 2 4 4

4 2 2 4 4

h
h

h

h

g y y
z k z

y p p k g z k z

g y y y M p p




 

  

  

       

     

 

 (40) 

When 1k , 2k , 1 , 1  are large enough and   is to achieve an 
appropriate small value, it can achieve result as followed: 

2 2V kV c                                 (41) 

Where     1 1 2 1min 2 ,2 ,2 1 4 1 2h hk k g k g    , 

2 1 2
0

1 2

2
4 4
p pc M
 

    are bounded constants. 

From equation (41), we can get : 

   2 2 00 , 0kt cV t V e c t
k

                (42) 

 0 2 0 cc V
k

  ,from equation (30),we can easily get : 

   
22 0 0

minmin

2 2 2
2 0 1 0 0

2 2, ,

2 , 2 , 2 , 1,2i i

c c

p r c y c z c i



 


 

   





ΓΓ       (43) 

Equation (42)-(43) shows that all signals of closed-loop 
system are bounded. 

In summary, we have the following conclusions: consider a 
multi-input multi-output system (1)-(3), assuming all the 
condition is satisfied, the use of the design method mentioned 
above , the virtual control signal and the control signal is in 
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the form of equation (5) and (35), respectively, the adaptive 
parameter adjustment law is in the form of equation (33) 
and(36), respectively, the system state tracking error and 
parameter estimation errors are bounded, and the index 
number to the system received a neighbourhood of the origin:  

  

  

2
2 2 0

1 0
1 min

2 20
1 0

min

2, , 2 , ,

2 , 2 , 1,2

i i i i
i

cz z c

c y c i





  







  

  

 



Ω
Γ

Γ

      (44) 

4 NUMERICAL SIMULATION  

The initial conditions for the simulation is: =8V Ma , 
20000h m , 13000M kg , 0op q r   ,the engine thrust is 
200T KN .The desired track guidance commands: 
2 , 0 , 0.3o o o

d d d      and through a low-pass filter 
 3 4s  .Set the controller parameter as follows: 

 2.5,2.5,2.5diag Γ ,  1.8,1.8,1.8diag Γ , 1 14k  , 2 22k 

, 0.25  , 1 1  , 2 1.5  . 

Simulation results are shown below. Figure 1 to Figure 6 that 
demonstrated the contrast curve for the system real state and 
the expected value. In those figures, the dotted line is results 
of the expected value, the solid line corresponding to the state 
of the system real output. 
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As can be seen from the simulation result, the backstepping-
based control design method for ABHV dynamics model has 
good dynamic quality and tracking performance and also 
proved the effectiveness of the proposed design method. 

5 CONCLUSIONS 

Since backstepping technology can not only deal with 
mismatched uncertainties, but also to deal with nonlinear 
systems with unknown parameters, therefore the method 
makes nonlinear control law design becomes systematic and 
structured.  

In this paper, we had considered the linear parameter 
uncertainties for ABHV and proposed a dynamic surface 
based technique to design backstepping adaptive control 
system, and use adaptive function complement, which could 
use adaptive adjustment function to compensate impact of 
system uncertainty. By introducing the projection operator, 
the controller singularity problem that may occur could be 
avoided. The simulation shows the effectiveness of the 
algorithm. 
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