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Abstract: Reversal of the time direction in stochastic systems driven by white noise has been
of central importance throughout the development of stochastic realization theory, filtering
and smoothing. Similarly, in connection with certain problems in the theory of moments, the
duality induced by time reversal was the key to deriving a compact parametrization and an
interpretation of solutions. By combining ideas from these two lines of development we present
herein a general view and a simplified account of time-reversal in stochastic models.
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1. INTRODUCTION

Time reversal of stochastic systems is central in
stochastic realization theory (see, e.g., Lindquist and Picci
(1979, 1985a,b, 1991), Pavon (1980), Lindquist and Pavon
(1984), Michaletzky et al. (1998), Michaletzky and Fer-
rante (1995)), filtering (see Lindquist (1974)), smoothing
(see Badawi et al. (1979a,c), Ferrante and Picci (2000))
and system identification. The principal construction is to
model a stochastic process as the output of a linear system
driven by a noise process which is assumed to be white
in discrete time, and orthogonal-increment in continuous
time. In studying the dependence between past and future
of the process, it is natural to decompose the interface
between past and future in a time-symmetric manner. This
gives rise to systems representations of the process running
in either time direction, forward or backward in time.

In a different context (see Georgiou (2007)) a dual-
ity between time-reversed stochastic models was indepen-
dently introduced in order to characterize and interpret so-
lutions to moment problems. General moment constraints
correspond to state-statistics of a linear system, while the
driving inputs to two time-reversed models with the same
state-statistics was shown to relate via suitable all-pass
dynamics. The family of power spectra for input processes
that are consistent with the given statistics/moments cor-
responds to a matrix-ball with left and right radii related
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to the prediction error variance in the two opposing time-
directions, respectively.

In the present note, we combine ideas from these
two lines of development into a simplified and general
approach for deriving and explaining the “mechanism”
behind such time-reversed dual pair of stochastic systems.
In particular, we recover certain results of stochastic
realization theory (Lindquist and Picci (1979), Pavon
(1980), Badawi et al. (1979a)) from the 1970’s using a
novel procedure. For additional historical pointers see
(Badawi et al., 1979b, page 506, 2nd column).

In Section 2 we explain how lifting the state-dynamics
into an all-pass system allows direct correspondence be-
tween sample-paths of driving generating processes, in
opposite time-directions, via causal and anti-causal map-
pings, respectively. In Section 3 we explain this mechanism
in the context of output processes and, similarly, introduce
a pair of time-opposite models. This first part of the paper
focuses on time-invariant models. In Section 4 we briefly
outline the corresponding results in the time-varying case.
For technical details and proofs we refer to Georgiou and
Lindquist (2014).

2. STATE DYNAMICS AND ALL-PASS EXTENSION

We first consider the stationary case. We treat both
discrete-time as well as continuous-time stochastic linear
state-dynamics. As usual, in discrete-time these take the
form of a set of difference equations
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x(t+ 1) = Ax(t) +Bu(t) (1)

where t ∈ Z, A ∈ Rn×n, B ∈ Rn×p, A has all eigenvalues
in the open unit disc D = {z | |z| < 1}, and u(t), x(t) are
(centered) stationary vector-valued stochastic processes
with u(t) normalized white noise; i.e.,

E{u(t)u(s)′} = Ipδts. (2)

The system of equations is assumed to be reachable, i.e.,

rank
[
B, AB, . . . An−1B

]
= n. (3)

In continuous-time, state-dynamics take the form of a
system of stochastic differential equations

dx(t) = Ax(t)dt+Bdu(t) (4)

where, here, x(t) is a stationary continuous-time vector-
valued stochastic process and u(t) is a vector-valued pro-
cess with orthogonal increments with the property

E{dudu′} = Ipdt. (5)

Reachability (which in this case, is equivalent to control-
lability) of the pair (A,B) is also assumed throughout and
the condition for this is identical to the one for discrete-
time given above (as is well known). In continuous time,
stability of the system of equations is equivalent to A
having only eigenvalues with negative real part.

In either case, discrete-time or continuous-time, it is
possible to define an output equation so that the overall
system is all-pass. This is done next.

2.1 All-pass extension in discrete-time

Consider the discrete-time Lyapunov equation

P = APA′ +BB′. (6)

Since A has all eigenvalues inside the unit disc of the
complex plane and (3) holds, (6) has as solution a matrix
P which is positive definite. The state transformation

ξ = P−
1
2x, (7)

and

F = P−
1
2AP

1
2 , G = P−

1
2B, (8)

brings (1) into

ξ(t+ 1) = Fξ(t) +Gu(t). (9)

For this new system, the corresponding Lyapunov
equation X = FXF ′ + GG′ has In as solution, where
In denotes the (n× n) identity matrix. This fact, namely,
that

In = FF ′ +GG′ (10)

implies that this [F,G] can be embedded as part of an
orthogonal matrix

U =
[
F G
H J

]
, (11)

i.e., a matrix such that UU ′ = U ′U = In+p.

Define the transfer function

U(z) := H(zIn − F )−1G+ J (12)

corresponding to
ξ(t+ 1) = Fξ(t) +Gu(t) (13a)

ū(t) = Hξ(t) + Ju(t). (13b)
This is also the transfer function of

x(t+ 1) = Ax(t) +Bu(t) (14a)
ū(t) = B̄′x(t) + Ju(t), (14b)

where B̄ := P−
1
2H ′, since the two systems are related by

a similarity transformation. Hence,
U(z) = B̄′(zIn −A)−1B + J. (15)

We claim that U(z) is a stable all-pass transfer function
(with respect to the unit disc), i.e., that U(z) is a transfer
function of a stable system and that

U(z)U(z−1)′ = U(z−1)′U(z) = Ip. (16)

The latter claim is immediate after we observe that,
since U ′U = In+p,

U ′
[
ξ(t+ 1)
ū(t)

]
=
[
ξ(t)
u(t)

]
,

and hence,
ξ(t) = F ′ξ(t+ 1) +H ′ū(t) (17a)
u(t) = G′ξ(t+ 1) + J ′ū(t) (17b)

or, equivalently,
x(t) = PA′P−1x(t+ 1) + P

1
2H ′u(t) (18a)

u(t) = B′P−1x(t+ 1) + J ′ū(t). (18b)
Setting

x̄(t) := P−1x(t+ 1), (19)
(18) can be written

x̄(t− 1) = A′x̄(t) + B̄ū(t) (20a)
u(t) = B′x̄(t) + J ′ū(t) (20b)

with transfer function
U(z−1)′ = B′(z−1In −A′)−1B̄ + J ′. (21)

Either of the above systems (17) or (20) inverts the
dynamical relation u → ū in (14) or (13) by reversing
time.

2.2 All-pass extension in continuous-time

Consider the continuous-time Lyapunov equation
AP + PA′ +BB′ = 0. (22)

SinceA has all its eigenvalues in the left half of the complex
plane and since (3) holds, (22) has as solution a positive
definite matrix P . Once again, applying (7-8), the system
in (4) becomes

dξ(t) = Fξ(t)dt+Gdu(t). (23a)
We now seek a completion by adding an output equation

dū(t) = Hξ(t)dt+ Jdu(t) (23b)
so that the transfer function

U(s) := H(sIn − F )−1G+ J (24)
is all-pass (with respect to the imaginary axis), i.e.,

U(s)U(−s)′ = U(−s)′U(s) = Ip. (25)
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For this new system, the corresponding Lyapunov
equation has as solution the identity matrix and hence,

F + F ′ +GG′ = 0. (26)

It can be shown that (25) holds provided JJ ′ = Ip and
H = −JG′. Thus, we take

J = Ip

H = −G′,
and obtain the forward dynamics

dξ(t) = Fξ(t)dt+Gdu(t) (27a)
dū(t) = −G′ξ(t)dt+ du(t). (27b)

Substituting F = −F ′ − GG′ from (26) into (27a) we
obtain the reverse-time dynamics

dξ(t) = −F ′ξ(t)dt+Gdū(t) (28a)
du(t) = G′ξ(t)dt+ dū(t). (28b)

Now defining
x̄(t) := P−1x(t) (29)

and using (7) and (8), (28) becomes

dx̄(t) = −A′x̄(t)dt+ B̄dū(t) (30a)
du(t) = B′x̄(t)dt+ dū(t), (30b)

with transfer function

U(−s)′ = Ip +B′(sIn +A′)−1B̄, (31)

where
B̄ := P−1B. (32)

Furthermore, the forward dynamics (27) can be expressed
in the form

dx(t) = Ax(t)dt+Bdu(t) (33a)
dū(t) = −B̄′x(t)dt+ du(t) (33b)

with transfer function

U(s) = Ip − B̄′(sIn −A)−1B. (34)

3. TIME-REVERSAL OF STATIONARY LINEAR
STOCHASTIC SYSTEMS

The development so far allows us to draw a connec-
tion between two linear stochastic systems having the
same output and driven by a pair of arbitrary, but dual,
stationary processes u(t) and ū(t), one evolving forward
in time and one evolving backward in time. When one
of these two processes is white noise (or an orthogonal
increment process in continuous-time), then so is the other.
For this special case we recover results of Lindquist and
Picci (1979) and Pavon (1980) in stochastic realization
theory.

3.1 Time-reversal of discrete-time stochastic systems

Consider a stochastic linear system

x(t+ 1) = Ax(t) +Bu(t) (35a)
y(t) = Cx(t) +Du(t) (35b)

with an m-dimensional output process y, and x, u,A,B
are defined as in Section 2.1. All processes are stationary

and the system can be thought of as evolving forward in
time from the remote past (t = −∞). In particular,(

x(t+ 1)
y(t)

)
is Fu

t -measurable

for all t ∈ Z, where Fu
t is the σ-algebra generated by

{u(s) | s ≤ t}. Next we construct a stochastic system

x̄(t− 1) = A′x̄(t) + B̄ū(t) (36a)
y(t) = C̄x̄(t) + D̄ū(t), (36b)

which evolves backward in time from the remote future
(t =∞), and for which(

x̄(t− 1)
y(t)

)
is F̄ ū

t -measurable

for all t ∈ Z, where F̄ ū
t is the σ-algebra generated by

{ū(s) | s ≥ t}. The processes x̄, x, ū, u relate as in the
previous section. More specifically, it can be shown that

ū(t) is Fu
t -measurable

while
u(t) is F̄ ū

t -measurable
for all t, ū is a white noise process and E{x̄(t)ū(s)′} = 0
for all s ≤ t.

In fact, the all-pass extension (14) of (35a) yields

ū(t) = B̄′x(t) + Ju(t) (37)

It follows from (20b) that (37) can be inverted to yield

u(t) = B′x̄(t) + J ′ū(t), (38)

where x̄(t) = P−1x(t + 1), and that we have the reverse-
time recursion

x̄(t− 1) = A′x̄(t) + B̄ū(t). (39a)

Then inserting (38) and

x(t) = Px̄(t− 1) = PA′x̄(t) + PB̄ū(t)

into (35b), we obtain

y(t) = C̄x̄(t) + D̄ū(t), (39b)

where D̄ := CPB̄ +DJ ′ and

C̄ := CPA′ +DB′. (40)

Then, (39) is precisely what we wanted to establish.

Moreover, the transfer functions

W(z) = C(zIn −A)−1B +D (41)

of (35) and

W̄(z) = C̄(z−1In −A′)−1B̄ + D̄ (42)

of (36) satisfy

W(z) = W̄(z)U(z). (43)

In the context of stochastic realization theory, discussed
next, U(z) is called structural function (Lindquist and
Picci (1985b, 1991); Lindquist and Pavon (1984)).

3.2 Time-reversal of continuous-time stochastic systems

We now turn to the continuous-time case. Let

dx = Axdt+Bdu (44a)
dy = Cxdt+Ddu (44b)
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be a stochastic system with x, u,A,B as in Section 2.2,
evolving forward in time from the remote past (t = −∞).
All processes have stationary increments and(

x(t)
y(t)

)
is Fu

t -measurable

for all t ∈ R, where Fu
t is the σ-algebra generated by

{u(s) | s ≤ t}.

The all-pass extension of Section 2.2 yields
dū = du− B̄′xdt (45)

as well as the reverse-time relation
dx̄ = −A′x̄dt+ B̄dū (46a)
du = B′x̄dt+ dū, (46b)

where x̄(t) = P−1x(t). Inserting (46b) into
dy = CPx̄dt+Ddu

yields
dy = C̄x̄dt+Ddū,

where
C̄ = CP +DB′. (47)

Thus, the reverse-time system is
dx̄ = −A′x̄dt+ B̄dū (48a)
dy = C̄x̄dt+Ddū. (48b)

From this, we deduce that(
x̄(t)
y(t)

)
is F̄ ū

t -measurable

for all t ∈ R. We also note that the transfer function
W(s) = C(sIn −A)−1B +D

of (44) and the transfer function
W̄(s) = C̄(sIn +A′)−1B̄ +D

of (48) also satisfy
W(s) = W̄(s)U(s)

as in discrete-time.

4. THE NON-STATIONARY CASE

We briefly outline an extension of the above results
to the case of linear time-varying systems. A detailed
exposition and proofs are given in Georgiou and Lindquist
(2014).

4.1 The discrete-time case

Consider the non-stationary state dynamics
x(t+ 1) = A(t)x(t) +B(t)u(t) (49)

on a finite time-window [0, T ]. The state covariance matrix
P (t) := E{x(t)x(t)′} satisfies the Lyapunov difference
equation

P (t+ 1) = A(t)P (t)A(t)′ +B(t)B(t)′. (50)
The state transformation

ξ(t) = P (t)−
1
2x(t) (51)

brings the system (49) into
ξ(t+ 1) = F (t)ξ(t) +G(t)u(t), (52)

where now E{ξ(t)ξ(t)′} = In for all t,

F (t) = P (t+ 1)−
1
2A(t)P (t)

1
2 , (53a)

G(t) = P (t+ 1)−
1
2B, (53b)

and
F (t)F (t)′ +G(t)G(t)′ = In. (54)

This allows us to embed [F,G] into a time-varying orthog-
onal matrix

U(t) =
[
F (t) G(t)
H(t) J(t)

]
(55)

which extends (52) to
ξ(t+ 1) = F (t)ξ(t) +G(t)u(t) (56a)

ū(t) = H(t)ξ(t) + J(t)u(t). (56b)
Now, premultiplying (56) by U(t)′, we obtain the dual
stochastic system

ξ(t) = F (t)′ξ(t+ 1) +H(t)′ū(t) (57a)
u(t) = G(t)′ξ(t+ 1) + J(t)′ū(t), (57b)

which runs backwards in time.

Using the transformation (51), (56) yields the forward
representation

x(t+ 1) = A(t)x(t) +B(t)u(t) (58a)
ū(t) = B̄(t)′x(t) + J(t)u(t), (58b)

where B̄(t) := P (t)−
1
2H(t)′. Likewise (57) and

x̄(t) = P (t+ 1)−1x(t+ 1), (59)
yield the backward representation

x̄(t− 1) = A(t)′x̄(t) + B̄(t)ū(t) (60a)
u(t) = B(t)′x̄(t) + J(t)′ū(t). (60b)

We are now in a position to derive a backward version
of a non-stationary stochastic system

x(t+ 1) = A(t)x(t) +B(t)u(t) (61a)
y(t) = C(t)x(t) +D(t)u(t). (61b)

In fact, inserting (59) and (60a) into (61b) yields
y(t) = C̄x̄(t) + D̄ū(t),

where
C̄ = C(t)P (t)A(t)′ +D(t)B(t)′ (62)
D̄ = C(t)P (t)B̄(t) +D(t)J(t)′. (63)

Finally, this gives the backward system
x̄(t− 1) = A(t)′x̄(t) + B̄(t)ū(t) (64a)

y(t) = C̄(t)x̄(t) + D̄(t)ū(t). (64b)
Remark 1. When considered on the doubly infinite time
axis, equation (56) defines an isometry. Indeed, assuming
that the input is square-summable, the fact that U(t) is
unitary for all t directly implies that

N∑
−∞
‖ū‖2 + ‖ξ(t+ 1)‖2 =

N∑
−∞
‖u(t)‖2.

Then, ξ(t) → 0 as t → ∞, provided the transition matrix
Φ(t, s) of (56) tends to 0 as s→ −∞. It follows that

∞∑
t=−∞

‖ū(t)‖2 =
∞∑

t=−∞
‖u(t)‖2.
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4.2 The continuous-time case

The covariance matrix function P (t) := E{x(t)x(t)′}
of the time-varying state representation

dx = A(t)x(t)dt+B(t)du (65)
satisfies the matrix-valued differential equation

Ṗ = A(t)P (t) + P (t)A(t)′ +B(t)B(t)′. (66)
A unitary extension of (65) is somewhat more complicated
than in the discrete time case. Differentiating

ξ(t) = P (t)−
1
2x(t) (67)

we obtain
dξ = F (t)ξ(t)dt+G(t)du, (68)

where F,G now depend on the derivative of P (see Geor-
giou and Lindquist (2014) for precise expressions) and once
again satisfy

F (t) + F (t)′ +G(t)G(t)′ = 0. (69)
Using (69) to eliminate F in (68), we obtain

dξ = −F (t)′ξ(t)dt+G(t)dū, (70)
where

dū = du−G(t)′ξ(t)dt. (71)

Equations (68) and (71) correspond to the forward in
time stochastic system

dx = A(t)x(t)dt+B(t)du (72a)
dū = −B̄(t)′x(t)dt+ du, (72b)

where B̄(t) := P (t)−1B(t). Moreover, setting x̄(t) =
P (t)

1
2 ξ(t), we obtain

dx̄ = −A(t)′x̄(t)dt+ B̄(t)dū (73a)
du = B(t)′x̄(t)dt+ dū, (73b)

which constitutes the corresponding backward stochastic
system.

Next we derive the backward stochastic realization
corresponding to

dx = A(t)x(t)dt+B(t)du (74a)
dy = C(t)x(t)dt+D(t)du (74b)

defined on the finite interval [0, T ]. To this end, apply the
transformation x̄(t) = P (t)−1x(t) together with (73b) to
(74b) to obtain

dy = C̄(t)x̄(t) +D(t)dū,
where

C̄(t) = C(t)P (t) +D(t)B(t). (75)
This together with (73a) yields the backward system
corresponding to (74), namely

dx̄ = −A(t)′x̄(t)dt+ B̄(t)dū (76a)
dy = C̄(t)x̄(t)dt+D(t)dū. (76b)

Technical details and proofs are given in Georgiou
and Lindquist (2014). The backward realization (76) was
derived in Badawi et al. (1979c), but in a cumbersome
way, requiring the proof that ū(t) is a normalized process
with orthogonal increments to be suppressed. What is new
here is the unitary map between u and ū, which makes the
analysis much simpler and more transparent (see Georgiou
and Lindquist (2014)).

5. CONCLUDING REMARKS

Dual time-reversed stochastic systems have been em-
ployed to model, in different time-directions, Brownian or
Schrödinger bridges (see Pavon and Wakolbinger (1991),
Dai Pra and Pavon (1990)), a subject which is related
to reciprocal processes (Jamison (1974), Krener (1986),
Levy et al. (1990), Dai Pra (1991)). The topic of time
reversibility has also been central to thermodynamics, and
in recent years studies have sought to elucidate its relation
to systems theory (see Haddad et al. (2008, 2009)).

The thesis of the present work is that under mild
assumptions on a stochastic process, any model that
consists of a linear stable dynamical system driven by an
appropriate input process can be reversed in time. In fact,
a reverse-time dual system along with the corresponding
input process can be obtained via an all-pass extension of
the state equation. The correspondence between the two
input processes can be expressed in terms of each other by
a causal and an anti-causal map, respectively. The novel
element in our approach is the unitary imbedding.
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