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Abstract: In this paper, the problem of adaptive tracking control is addressed for a class of
nonlinear systems with parametric uncertainty, unknown actuator nonlinearity and disturbance.
Two type of actuator nonlinearities, that is, backlash-like hysteresis and symmetric dead-
zone, are considered simultaneously. Without constructing the inverse function of actuator
nonlinearity, unified control framework is established. An adaptive control scheme, capable of
guaranteeing the exponential tracking with zero tracking error, is proposed. Two simulation
examples are provided to clarify and verify the proposed approach.
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1. INTRODUCTION

Generally speaking, there are two design methods to elim-
inate the effects of actuator nonlinearities. One is to con-
struct the inverse function of actuator nonlinearity (see,
e.g. Tao and Kokotovic (1994, 1995); Zhou et al. (2006,
2007, 2012)), and the other is to directly design robust
adaptive controller without the inverse problem (see, e.g.
Chen et al. (2008, 2010); Su et al. (2000); Zhou et al.
(2004); Su et al. (2003); Wen and Zhou (2007); Su et
al. (2005); Wang and Su (2006); Wang et al. (2004); Ibrir
et al. (2007); Hua et al. (2008); Hua and Ding (2011)). In
the above two research directions, considerable efforts have
been made to mitigate the influences of actuator nonlin-
earity. For example, in order to compensating for actuator
nonlinearity, pioneering work was done in Tao and Koko-
tovic (1994, 1995, 1996), where adaptive inverse methods
were developed. In Zhou et al. (2006, 2007, 2012), smooth
inverse functions of dead-zone, backlash nonlinearity and
Bouc-Wen hysteresis were respectively introduced and the
adaptive backstepping output-feedback control schemes
were proposed. In order to avoid the direct inversion of
the hysteresis model, in Chen et al. (2008, 2010), the con-
cept of implicit inversion was introduced. For discrete and
continuous linear systems with Prandtl-Ishlinskii hystere-
sis, the approximate and perfect implicit inversions were
respectively incorporated into adaptive control designs.
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In Su et al. (2000), Zhou et al. (2004), Su et al. (2003)
and Wen and Zhou (2007), the backlash nonlinearity
was approximated by a continuous differential equation
model, which was called as backlash-like hysteresis. In-
stead of constructing a hysteresis inverse, robust adaptive
controllers were directly designed to minimize the effects of
the hysteresis nonlinearity. Motivated by Su et al. (2000)
and Zhou et al. (2004), robust adaptive control techniques
were applied to deal with Prandtl-Ishlinskii type hysteresis
(Su et al., 2005; Wang and Su , 2006). In Wang et al.
(2004), Ibrir et al. (2007), Hua et al. (2008) and Hua and
Ding (2011), symmetric and non-symmetric dead-zones
were investigated, respectively. New descriptions on the
dead-zone models, that is, the combination of linear input
function with constant or time-varying coefficients and a
bounded time-varying function, were introduced, and new
control strategies were proposed.

Despite the great process in the control of dynamical
systems with actuator nonlinearity, some challenging prob-
lems still remain. One of the main drawbacks in the current
literature is that most of the proposed robust adaptive
tracking controllers do not produce asymptotic tracking.
Instead, the so-called bounded-error trajectory tracking is
achieved (see, e.g. Tao and Kokotovic (1994, 1995); Zhou
et al. (2006, 2007); Chen et al. (2008); Su et al. (2000);
Wen and Zhou (2007); Su et al. (2005); Wang and Su
(2006); Wang et al. (2004); Ibrir et al. (2007); Hua et al.
(2008); Hua and Ding (2011)) . It is noted that asymptotic
tracking was obtained in Zhou et al. (2012) and Zhou et
al. (2004) (see Scheme 1 in Zhou et al. (2004)). However,
it is worth pointing out that additional cost had to be
paid. In Zhou et al. (2012), by constructing a new inverse
function of the hysteresis, the tracking error was proved to
converge to zero asymptotically. However, the parameters
in the hysteresis model were required to be known. In
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Fig. 1. Backlash-like hysteresis

Zhou et al. (2004), two adaptive control schemes were
proposed by employing the backstepping approach. In the
first scheme, asymptotic tracking was achieved. However, a
discontinuous sign function was introduced and the chat-
tering phenomenon may occur. In the second scheme, a
smooth control scheme was presented by defining a novel
differentiable function. However, perfect tracking could not
be ensured. It is well known that exacting output track-
ing has considerable theoretical and practical significance.
Therefore, it is highly desirable to design new adaptive
compensation control scheme with zero tracking error and
without the aforementioned cost.

2. PROBLEM FORMULATION

2.1 System model

Consider a class of uncertain nonlinear systems with
actuator nonlinearity

x(n)(t) +
r∑

i=1

aiYi(x(t), ẋ(t), . . . , x(n−1)(t)) = bu(t) + d(t),

u(t) = N(v(t)), (1)
where plant parameters ai are unknown constants, Yi

are known smooth functions, control gain b is unknown
constant, d(t) denotes bounded external disturbance, N(·)
represents an actuator uncertainty, v(t) is the applied
control, and u(t) is not available for measurement. In this
paper, two type of actuator nonlinearity characteristics are
considered.

Backlash-like hysteresis (Su et al., 2000):

u̇ = α|v̇|(cv − u) + B1v̇, (2)
where α, c and B1 are constants, and c > B1. Fig. 1
illustrates the backlash-like hysteresis dynamics described
by (2), where α = 1, c = 3.1635, B1 = 0.345, v(t) =
6.5 sin(2.3t), u(0) = 0.

Symmetric dead-zone (Tao and Kokotovic , 1994):

u =

{
m(v − br), v ≥ br,
0, bl < v < br,
m(v − bl), v ≤ bl,

(3)

where m is the slope of the dead-zone characteristic, br

and bl represent the break points.

Before proceeding further, we introduce two useful lemmas
for the actuator nonlinearity models.

Lemma 1 (Su et al., 2000): The solution of (2) is

u(t) = cv(t) + d1(v), (4)

d1(v) = [u(0)− cv(0)]e−α(v−v(0))sgn(v̇)

+e−αv(sgn(v̇))

v∫

v(0)

(B1 − c)eαζ(sgnv̇)dζ, (5)

and d1(v) is bounded.

Lemma 2 Wang et al. (2004): The dead-zone model (3)
can be represented as

u(t) = mv(t) + d2(v), (6)

d2(v) =

{−mbr, v ≥ br,
−mv, bl < v < br,
−mbl, v ≤ bl,

(7)

and d2(v) is bounded.

The control objective is to design a control law v(t) in
(1) such that all the closed-loop signals are bounded,
while the system state vector X = [x, ẋ, . . . , x(n−1)]T
exponentially tracks a specified desired trajectory Xd =
[xd, ẋd, . . . , x

(n−1)
d ]T with zero tracking error, where xd(t)

is a given reference signal.

To this end, we make the following assumptions.

Assumption 1 : The reference signal xd(t) and its first n
derivatives are known and bounded.

Assumption 2: The parameters of actuator nonlinearity
such as α, c, B1 in the Backlash-like hysteresis and m, br, bl

in the dead-zone model are unknown. Moreover, the un-
certain parameters b, c, m are such that bc > 0, bm > 0.

3. ADAPTIVE CONTROL DESIGN

Now, substituting (4) or (6) into (1) yields

x(n)(t) +
r∑

i=1

aiYi(x(t), ẋ(t), . . . , x(n−1)(t))

= ρv(t) + D(t), (8)
where

ρ = bc, D(t) = bd1(v) + d(t), (9)
or

ρ = bm, D(t) = bd2(v) + d(t). (10)
From Assumption 2, it follows that ρ is unknown but ρ >
0. Applying Lemmas 1-2 together with the boundedness
of d(t), we know that D(t) is bounded. Let the tracking
error

e = X −Xd, (11)
that is, e = [e1, e2, . . . , en]T ,
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e1 = x− xd, e2 = ẋ− ẋd, · · · , en = x(n−1) − x
(n−1)
d .

(12)
From (8) and (12), the dynamics of the tracking error is
governed by

ė = Ae + B

[
−

r∑

i=1

aiYi(X) + ρv(t) + D(t)− x
(n)
d

]
,(13)

where

A =




0 1 0 · · · 0
0 0 1 · · · 0

. . . . . .
0 0 0 · · · 1
0 0 0 · · · 0




, B =




0
0
...
0
1




. (14)

It is observed that (A,B) is controllable. So is (A+σ1I, B),
where σ1 > 0 is a design parameter. Thus, there exists a
constant matrix k satisfying that (A + σ1I) + Bk is stable
and hence P = PT > 0 exists such that

[(A + σ1I) + Bk]T P + P [(A + σ1I) + Bk] = −Q, (15)
where Q = QT > 0 is a given matrix, that is,

(A + Bk)T P + P (A + Bk) = −Q− 2σ1P < −2σ1P.(16)
Before adaptive control scheme is presented, we define
some variables used in what follows:

f(X, t) =
r∑

i=1

√
|Yi(X)|2 + hi +

√
‖e(t)‖2 + h + 1,(17)

d0 = sup
t≥0

[
|D(t)|+ |x(n)

d |
]
, (18)

θ = max {|a1|, . . . , |ar|, ‖k‖, d0} , (19)

θ∗ =
θ

ρ
, (20)

where h, hi, i = 1, 2, . . . , r, are positive design constants, ‖·
‖ denotes the Euclidean norm of a vector. By Assumption
1 and the boundedness of D(t), we know that d0 does
exist. Then, the control law and parameter update law are
designed as, respectively,

v(t) =

− eT PBθ̂2(t)f2(X, t)

eT PB tanh [l−1eT PB exp(2σ2t)] θ̂(t)f + l exp(−2σ2t)
,

(21)
˙̂
θ = γ exp(2σ1t)|eT PB|f(X, t), (22)

where l, σ2 are positive design constants, γ > 0 is adaptive
gain, σ2 satisfies σ2 > σ1, θ̂(t) is the estimate of θ∗,
θ̂(0) ≥ 0.

Theorem 1: Consider the closed-loop system consisting of
the system (1) with actuator nonlinearity (2) or (3), con-
trol law (21) and adaptive law (22) based on Assumptions
1-2. Then, all the closed-loop signals remain bounded, and
the tracking error converges to zero exponentially with the
rate of not less than σ1.

Proof: We first rewrite (13) as

ė = (A + Bk)e

+B

[
−

r∑

i=1

aiYi(X) + ρv(t) + D(t)− x
(n)
d − ke

]
.(23)

Define a positive Lyapunov function

V = eT Pe +
ρ

γ
exp(−2σ1t)θ̃2(t) (24)

with the estimation error

θ̃(t) = θ∗ − θ̂(t). (25)
In view of (23)-(25), the derivative of V is

V̇ = eT
[
P (A + Bk) + (A + Bk)T P

]
e

−2σ1ρ

γ
exp(−2σ1t)θ̃2 − 2ρ

γ
exp(−2σ1t)θ̃

˙̂
θ + 2eT PB

·
[
−

r∑

i=1

aiYi(X) + ρv(t) + D(t)− x
(n)
d − ke

]
. (26)

Substituting (16) and (22) into (26) and noting (24), we
have

V̇ ≤−2σ1e
T Pe− 2σ1ρ

γ
exp(−2σ1t)θ̃2 − 2ρθ̃|eT PB|f(X, t)

+2eT PB

[
−

r∑

i=1

aiYi(X) + D(t)− x
(n)
d − ke

]

+2ρeT PBv(t)

=−2σ1V − 2ρθ̃|eT PB|f(X, t) + 2ρeT PBv(t)

+2eT PB

[
−

r∑

i=1

aiYi(X) + D(t)− x
(n)
d − ke

]
. (27)

Noting the definitions in (17)-(20), we have

eT PB

[
−

r∑

i=1

aiYi(X) + D(t)− x
(n)
d − ke

]

≤ ρ|eT PB|θ∗f(X, t). (28)
Combining (25), (27) and (28) implies that

V̇ ≤−2σ1V − 2ρθ̃|eT PB|f(X, t) + 2ρeT PBv(t)

+2ρ|eT PB|θ∗f(X, t)

=−2σ1V + 2ρeT PBv(t) + 2ρ|eT PB|θ̂f(X, t). (29)
Then, substituting (21) into (29) results in

V̇ ≤ −2σ1V + 2ρ|eT PB|θ̂f(X, t)

− 2ρ(eT PB)2θ̂2f2(X, t)

eT PB tanh [l−1eT PB exp(2σ2t)] θ̂f + l exp(−2σ2t)
≤ −2σ1V + 2ρl exp(−2σ2t)

· |eT PB|θ̂f(X, t)

|eT PB|θ̂f(X, t) + l exp(−2σ2t)
≤ −2σ1V + 2ρl exp(−2σ2t). (30)

Thus, we obtain

V (t) ≤
(

V (0) +
ρl

σ2 − σ1

)
exp(−2σ1t). (31)

Owing to (24), we conclude that
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eT Pe ≤
(

V (0) +
ρl

σ2 − σ1

)
exp(−2σ1t), (32)

ρ

γ
exp(−2σ1t)θ̃2 ≤

(
V (0) +

ρl

σ2 − σ1

)
exp(−2σ1t),(33)

which further implies that

‖e‖ ≤
√

V (0) + ρl
σ2−σ1

λmin(P )
exp(−σ1t), (34)

|θ̃| ≤

√√√√γ
(
V (0) + ρl

σ2−σ1

)

ρ
. (35)

Clearly, it can be seen from (34) that the tracking error
converges to zero exponentially, and the convergence rate
is not less than σ1. Moreover, from (25) and (35), it follows
that the parameter estimate θ̂(t) is bounded. By (11),
(34) and Assumption 1, it is shown that X is bounded.
Examining (17), we obtain the boundedness of f(X, t).
Next, we will prove v(t) is bounded. Using (21), we get

|v(t)| ≤ θ̂f(X, t) + κθ̂2f2(X, t), (36)

where κ = 0.2785. Noting the boundedness of θ̂ and
f(X, t), we can obtain the boundedness of v(t). Therefore,
all the closed-loop signals are bounded. This completes the
proof.

4. SIMULATION STUDIES

Example 1: Consider the uncertain nonlinear system stud-
ied in Zhou et al. (2006), Su et al. (2000), Zhou et al.
(2004), Su et al. (2005) and Wang and Su (2006)

ẋ = a
1− exp(−x)
1 + exp(−x)

+ bu(t), (37)

where the parameters a = 1, b = 1, are assumed to be
unknown constants. The actuator nonlinearity is modeled
as backlash-like hysteresis (2) with unknown parameters
α = 1, c = 3.1635, B1 = 0.345. The initial condition of the
controlled plant (37) is set to be x(0) = 1.05. The objective
is to design the control v such that x can track the desired
trajectory xd = 12.5 sin(2.3t). According to (11), (14) and
(17), we have

e = x− xd,

A = 0, B = 1,

f(x, t) =

√[
1− exp(−x)
1 + exp(−x)

]2

+ h1 +
√

e2 + h + 1,(38)

where h1, h are chosen as h1 = 0.01, h = 0.01, respectively.

In the simulation, we choose σ1 = 0.01, k = −1.01, Q =
10, γ = 3, l = 0.1, σ2 = 0.05, u(0) = 0, θ̂(0) = 0. Thus,
the solution of (15) is P = 5. The system responses are
shown in Figs. 2-5. From Fig. 3, we can see that the
tracking error converges to zero rapidly. At the same time,
the boundedness of control signal v is shown in Fig. 5,
from which the large difference between hysteresis input v
and its output u can also be observed. The boundedness
of other signals including plant state x and parameter
estimate θ̂ is revealed in Figs. 2 and 4, respectively.
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Fig. 2. Example 1: plant state x and reference signal xd
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Fig. 3. Example 1: tracking error
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Fig. 5. Example 1: designed input v and actual input u

Example 2: To further illustrate the effectiveness of our
design method, we simulate the proposed adaptive com-
pensation controller on a nonlinear system described by
Wang et al. (2004)

ẍ = a1
1− exp(−x)
1 + exp(−x)

− a2(ẋ2 + 2x) sin(ẋ)

−0.5a3x sin(3t) + bu. (39)

In this example, we consider the dead-zone model (3).
The plant parameters and dead-zone parameters are re-
spectively given as a1 = a2 = a3 = b = 1,m = 1, br =
0.5, bl = −0.6, which are assumed to be unknown. The
initial condition of the controlled plant (39) is set to be
x(0) = −2.5, ẋ(0) = 3.5. The reference signal is xd =
2.5 sin(t).

From (11), (12), (14) and (17), it follows that

e = [e1, e2]T , e1 = x1 − xd, e2 = x2 − ẋd,

A =
[

0 1
0 0

]
, B =

[
0
1

]
,

f(x1, x2, t) =

√[
1− exp(−x1)
1 + exp(−x1)

]2

+ h1

+
√

[(x2
2 + 2x1) sin(x2)]

2 + h2

+
√

[0.5x1 sin(3t)]2 + h3 +
√
‖e‖2 + h + 1, (40)

where x1 = x, x2 = ẋ, h1, h2, h3, h are selected as h1 =
h2 = h3 = h = 1. Then, we apply the proposed control
scheme to this example. The design parameters are chosen
as follows: σ1 = 0.01, k = [−1,−1.1], Q = [6 3; 3 6], γ =
4, l = 100, σ2 = 0.1, θ̂(0) = 0. Solving (15), we have

P =
[

5.8617 3.0586
3.0586 5.5584

]
. (41)

According to Theorem 1, the control law and adaptive
law can be derived. The simulation results are shown in
Figs. 6-9. From these figures, similar conclusions on the
signal boundedness and exponential tracking, as discussed
in Example 1, can be drawn.
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Fig. 6. Example 2: plant states and reference signals (a)
x, xd; (b) ẋ, ẋd
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Fig. 9. Example 2: designed input v and dead-zone region

5. CONCLUSION

The problem of adaptive tracking control for a class of
uncertain nonlinear systems with two possible actuator
nonlinearities has been considered. The plant parameters
and the parameters of actuator nonlinearity are assumed
to be unknown. We have proposed a class of adaptive
controllers for tracking of dynamical signals. We have
shown that by employing the presented adaptive tracking
controller, the tracking error can be guaranteed to decrease
to zero exponentially.
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