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Abstract: For the coordination of multi-agent systems with bandwidth limited digital channels,
if there are unmeasurable states in agents’ dynamics, then to get the estimates of other agents’
states by properly designed encoding-decoding scheme is the objective of the cooperative
communication and is also the foundation of cooperative control design. In this paper,
the concept of cooperatability of digital multi-agent networks is proposed with respect to
quantized-observer based communication protocols and certainty equivalence principle based
control protocols to characterize the cooperative communication and control in an integrative
framework. The cooperatability for linear discrete-time multi-agent systems is investigated with
unmeasurable states and limited data rate. Some necessary conditions and sufficient conditions
are given for the existence of admissible communication and control protocols to ensure both the
cooperative state observation and cooperative stabilization. It is shown that these conditions
are quantitatively related to the stabilizability and detectability of agents’ dynamics and the
topology of the communication network.

1. INTRODUCTION

Coordination of a group of autonomous agents means
to achieve some given collective behaviors by schemes
of cooperative communication and control among agents.
For the coordination of multi-agent systems with digital
communication networks, the cooperative communication,
which aims at obtaining neighbors’ state information as
precise as possible, is usually the foundation of the co-
operative control design, so the effectiveness of the co-
operative control law depends deeply on the quality of
the cooperative communication. For real digital networks,
communication channels only have finite capacities and
the communication between different agents is a process
which consists of encoding, information transmitting and
decoding. For this case, the instantaneously precise com-
munication is generally impossible and people may seek
encoding-decoding schemes to achieve asymptotically pre-
cise communication.

Most of the early works on quantized coordination con-
centrated on quantized averaging or distributed averaging
with quantized communication, which assumed that the
states of each agent are fully measurable (Kashyap et al.,
2007; Frasca et al., 2009; Carli et al., 2010 and Li et al.
2011). For many situations, due to the limited capacity
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and cost of equipments, one may encounter high-order
systems with partially measurable or even unmeasurable
states such as unmanned underground vehicles with un-
measurable velocities and mechanical systems with non-
holonomic constrains (Qu 2009). The quantized output
feedback strategies are suitable and necessary for this case.

Different from the quantized feedback control of single-
agent systems, the quantized cooperative control of multi-
agent systems with unmeasurable states requires each
agent to observe not only state of itself but also those
of its neighbors, which may need their input information.
What’s more, the information exchange between different
agents is imprecise due to the limit capacity of digital
networks. These make the coordination of multi-agent
systems with quantized dynamic output feedback con-
trol much more complicated. Li & Xie (2012) proposed
a quantized observer-based encoding-decoding scheme for
the coordination of second-order multi-agent systems with
partially measurable states and limited date rate, which
integrated the state observation and communication mech-
anism together. They proved that if the communication
topology graph is connected, then each pair of neighbors
only need to transmit two bits information per communi-
cation to achieve exponentially fast cooperative stabiliza-
tion.

All the literature mentioned above (Kashyap, Basar &
Srikant 2007; Frasca et al. 2009; Carli, Bullo & Zampieri
2010; Li & Xie 2011 and Li & Xie 2012 etc.) focused on
designing specific cooperative communication and control
protocols and analyzing the closed-loop performances for
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specific systems. However, a fundamental problem of the
coordination of multi-agent systems with digital commu-
nication is for what kinds of dynamic networks, there exist
admissible communication and control protocols which can
guarantee the closed-loop system to achieve given cooper-
ative communication and control objectives jointly, which
is proposed as cooperatability in this paper.

For the case with precise communication, the consentabil-
ity of linear multi-agent systems were studied. The con-
cept of consentability was first proposed by Zhang &
Tian (2009) for discrete-time second-order multi-agent
systems. Ma & Zhang (2010) studied the consentability
of continuous-time linear systems with respect to linear
relative state feedback and static output feedback control
protocols. It was shown that the agent dynamics and the
communication topology have a joint influence on the
consentability, for which necessary and sufficient condi-
tions were given. You & Xie (2011) and Gu, Marinovici &
Lewis (2012) studied the consentability of single-input lin-
ear discrete-time systems. Sufficient conditions were given
with respect to (w. r. t.) relative state feedback control
protocols in You & Xie (2011) and w. r. t. filtered relative
state feedback control protocols in Gu, Marinovici & Lewis
(2012).

In this paper, we propose the concept of cooperatability
to integrally characterize the cooperative state observation
and cooperative stabilization. We consider the cooper-
atability of linear discrete-time multi-agent systems with
unmeasurable states and limited data rate. We propose
a class of admissible communication protocols based on
quantized-observer type encoders and decoders and a class
of admissible control protocols based on the relative state
feedback control law and the certainty equivalence prin-
ciple. We give some necessary conditions and sufficient
conditions for achieving cooperative state observation and
cooperative stabilization jointly w. r. t. the admissible
communication and control protocols. It is shown that
the cooperatability of multiagent systems is related to the
simultaneous stabilizability and the detectability of the dy-
namics of agents and the structure of the communication
graph.

The rest of this paper is organized as follows. In section 2,
we first give a universal framework for the cooperatability
problem of general multi-agent systems with unmeasur-
able states over digital networks. Then we formulate the
problem to be investigated and present the admissible
communication and control protocols. In section 3, we
give the main results of this paper. In section 4, some
concluding remarks and future research topics are given.

The following notation will be used. Denote the column
vectors or matrices with all elements being 1 and 0
by 1 and 0, respectively. Denote the identity matrix
with an appropriate dimension by I. Denote the sets of
positive integers, real numbers, positive real numbers and
conjugate numbers by N, R, R+ and C, respectively, and
Rn denotes the n-dimensional real space. For a given
vector or matrix X , its transpose(conjugate transpose) is
denoted by XT (X∗), its Euclidean norm is denoted by ‖X‖
and its infinite norm is denoted by ‖X‖∞. Denote the kth
element of any given vector X by [X ]k. For a given matrix
A, ρ(A) denotes its spectral radius. Define Bn×m

r = {X ∈

Rn×m|‖X‖ < r} and Bn
r = {x ∈ Rn| ‖x‖∞ < r}, where

r ∈ R+
⋃{+∞}. We use I(·) to represent the identical

function with a proper dimension, which means ∀ x ∈ Rn,
I(x) = x.

2. BASIC CONCEPTS AND PROBLEM
FORMULATION

In this section, we first give a universal framework to
describe the cooperatability of general multi-agent systems
over digital networks. Then based on this framework, we
formulate the problem to be studied in this paper.

2.1 Basic Concepts

For networked multi-agent systems with N agents, gener-
ally, the dynamics of each agent is given by:

{

xi(t + 1) = fi(xi(t), ui(t)),

yi(t) = gi(xi(t), ui(t)),
i = 1, · · · , N, (1)

where xi(t) ∈ Rn, ui(t) ∈ Rm and yi(t) ∈ Rp are the
state, input and output of agent i, respectively. Here, the
state xi(t) is not measurable and the output yi(t) can be
measured by agent i. To achieve group coordination, the
agents need to communicate and exchange information
with each other. The overall communication structure
of the system is represented by a directed graph G =
{V, E , A }, where V = {1, · · · , N} is the node set and each
node represents an agent; E denotes the edge set and there
is an edge (j, i) ∈ E if and only if there is a communication
channel from j to i, then, agent i is called the receiver
and agent j is called the sender, or i’s neighbor. The
concepts of neighbor set Ni of agent i, weighted adjacent
matrix A and Laplacian matrix L , which can be referred
to (Olfat-Saber & Murray 2004), are omitted here. The
eigenvalues of L in an ascending order of real parts are
denoted by λ1(L ) = 0, λi(L ), i = 2, · · · , N . The agent
dynamic equation (1) and the communication topology
graph G are jointly called a dynamic network denoted by
(fi, gi, i = 1, · · · , N, G ) (Olfati-Saber & Murray 2004).

In real digital networks, due to the limited capacity of com-
munication channels, only finite bits of data can be trans-
mitted at each time step, therefore, each agent need to
first quantize and encode their output into finite symbols
before transmitting them. Each pair of adjacent agents
uses a digital encoding-decoding scheme to exchange in-
formation. For each digital communication channel (i, j),
there is an encoder/decoder pair Hij = (Θij , Ψij) associate
with it. The encoder Θij maintained by agent i is given by

{

ξij(t + 1) = Fij(ξij(t), sij(t)),

sij(t) = Qij(Vij(ξij(t), yi(t))),
(2)

where ξij(t) ∈ Rl and sij(t) are the inner state and the
output of Θij , respectively, Qij(·) is a quantizer, Vij(·, ·)
is the input function of the quantizer. The decoder Ψij

maintained by agent j is given by
{

ζij(t + 1) = F̃ij(ζij(t), sij(t)),

x̂ij(t) = G̃(ζij(t)),
(3)

where sij(t), ζij(t) ∈ Rl and x̂ij(t) ∈ Rn are the input,
the inner state and the output of Ψij , respectively. At
each time step t = 0, 1, ..., agent i generates the symbolic
data sij(t) by the encoder Θij and sends sij(t) to agent j
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through the communication channel (i, j). After sij(t) is
received, by the decoder Ψij , agent j calculates x̂ij(t) as an
estimate of agent i’s state. Denote Eij(t) = xi(t) − x̂ij(t)
as the state estimation error.

For the dynamic network (fi, gi, i = 1, · · · , N, G ), {Hji, i =
1, · · · , N, j ∈ Ni|Hji = (Θji, Ψji)} is called a communica-
tion protocol, and the collection of admissible communica-
tion protocols is denoted by the admissible communication
protocol set H . Here, due to the encoding-decoding errors,
the instantaneously precise communication is generally
impossible and the ultimate goal of the communication be-
tween different agents can be characterized by the concept
of cooperative state observation. We say that the dynamic
network achieves asymptotic cooperative state observation
if

lim
t→∞

(xi(t) − x̂ij(t)) = 0, i = 1, · · · , N, j ∈ Ni. (4)

Accordingly, a cooperative control protocol of the dynamic
network is denoted by {ui(t), t = 0, 1, ..., i = 1, 2, · · · , N}.
The control protocol is called distributed if for each i,
ui(t) depends only on the information of agent i and its
neighbors j, j ∈ Ni, that is,

ui(t) = ki(yi(t), ξil1 (t), · · · , ξilmi
(t),

x̂j1i(t), · · · , x̂jni
i(t)), i = 1, · · · , N.

(5)

Here, ξilh(t), x̂jki(t), h = 1, · · · , mi, k = 1, · · · , ni are the
inner states of the encoders and the outputs of the de-
coders maintained by agent i. The collection of admissible
control protocols is denoted by the admissible control
protocol set U . For the most fundamental case, the ob-
jective of the cooperative control is to make the dynamic
network achieve cooperative stabilization (also called syn-
chronization), which means limt→∞(xi(t) − xj(t)) = 0,
i, j = 1, · · · , N. (Qu 2009). Based on the definition of coop-
erative state observation and cooperative stabilization, we
have the definition of cooperability of a dynamic network.

We say that the dynamic network (fi, gi, i = 1, · · · , N, G )
is locally cooperatable w. r. t. H and U if for any given
positive constants C1, C2, C3, there exist H ∈ H and
U ∈ U , such that for any xi(0) ∈ B

n
C1

, ξji(0) ∈ B
l
C2

,

and ζji(0) ∈ B
l
C3

, i ∈ 1, · · · , N , j ∈ Ni, the closed-
loop system achieves cooperative state observation and
cooperative stabilization under H and U . The dynamic
network is called globally cooperatable w. r. t. H and U ,
if there exist a communication protocol H ∈ H and a
control protocol U ∈ U , such that for any given initial
condition, the closed-loop system achieves cooperative
state observation and cooperative stabilization under H
and U .

2.2 Problem Formulation

In this paper, we consider the cooperatability of linear
discrete-time multi-agent systems. The dynamics of each
agent is given by
{

xi(t + 1) = Axi(t) + Bui(t),

yi(t) = Cxi(t),
t = 0, 1, · · · , (6)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. The communica-
tion structure among agents is represented by a directed
graph G as well. Here, the agent dynamics (6) together
with the communication topology graph G is called a
dynamic network and denoted by (A, B, C,G ).

We propose the following admissible communication pro-
tocol set:

H (ρ, LG)

=

{

H(γ, α, αu, L, Lu, G) = {Hji = (Θj , Ψji),

i = 1, · · · , N, j ∈ Ni}, γ ∈ (0, ρ), α ∈ (0, 1], αu ∈ (0, 1],

L ∈ N, Lu ∈ N, G ∈ B
n×p
LG

}

, (7)

where the constants LG ∈ R+
⋃{+∞}, ρ ∈ (0, 1] are

the given parameters of the admissible communication
protocol set, and γ, G, α, αu, L, Lu are the parameters
of a given communication protocol to be designed. The
encoder is given by

Θj =























































x̂j(0) = x̂j0, ûj(0) = ûj0,

sj(t) = Q(
yj(t − 1) − Cx̂j(t − 1)

γt−1
),

x̂j(t) = Ax̂j(t − 1)

+ γt−1Gsj(t) + Bûj(t − 1),

ûj(t) = ûj(t − 1) + γt−1su,j(t),

su,j(t) = Qu(
uj(t) − ûj(t − 1)

γt−1
),

(8)

and the decoder is given by

Ψji =



















x̂ji(0) = x̂j0, ûji(0) = ûj0,

x̂ji(t) = Ax̂ji(t − 1)

+ γt−1Gsj(t) + Bûji(t − 1),

ûji(t) = ûji(t − 1) + γt−1su,j(t).

(9)

Here, Q(·) and Qu(·) are finite-level uniform quantizers:

Q(y) =











































0, −1

2
α ≤ y <

1

2
α,

iα, iα − 1

2
α ≤ y < iα +

1

2
α,

Lα, y ≥ Lα − 1

2
α,

− Q(−y), y < −1

2
α,

Qu(y) =











































0, −1

2
αu ≤ y <

1

2
αu,

iαu, iαu − 1

2
αu ≤ y < iαu +

1

2
αu,

Luαu, y ≥ Luαu − 1

2
αu,

− Qu(−y), y < −1

2
αu.

Remark 2.1. Here the encoder maintained by each agent
is a broadcasting type encoder. By (8), all of the encoders
associated with the communication channels originated
from agent j are the same one, which is denoted by Θj.
Denote ξj(t) = (x̂T

j (t), ûT
j (t))T , ζji(t) = (x̂T

ji(t), û
T
ji(t))

T ,
then ξj(t) is the inner state of Θj, ζji(t) is the inner state of
Ψji and x̂ji(t) is the output of Ψji. So the encoder (8) and
decoder (9) proposed here are special cases of (2) and (3).
From (8) and (9), it’s easy to verify that x̂ji(t) = x̂j(t). So
Eji(t) = xj(t) − x̂j(t) and is denoted by Ej(t) for short.
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For the case with precise communication, Olfati-Saber &
Murray (2004) proposed a class of control protocols based
on relative state feedback:

ui(t) = K

N
∑

j=1

aij(xj(t) − xi(t)), i = 1, · · · , N. (10)

Based on (10) and the certainty equivalence principle, we
propose the following admissible control protocol set:

U (LK) =

{

U(K) = {ui(t) = K
∑

j∈Ni

aij(x̂ji(t) − x̂i(t)),

t = 0, 1, ..., i = 1, · · · , N},

K ∈ B
m×n
LK

}

, (11)

where the constant LK ∈ R+
⋃{+∞} is the given param-

eter of the admissible control protocol set and the gain
matrix K is the parameter of a given control protocol to
be designed.

Remark 2.2. Different from You & Xie (2011) and Gu,
Marinovici & Lewis (2012), here we consider the coop-
eratability of linear multi-agent systems with unmeasur-
able states and limited data rate. A quantized-observer
based encoding-decoding scheme is proposed to perform
the estimation of neighbors’ states while decoding. From
(9), the decoder has a similar structure as the Luenberger
observer. For the case with precise communication, the
quantizers degenerate to identical functions and the de-
coder degenerates to the Luenberger observer. Thus, for
each agent j = 1, · · · , N , the output of decoder Ψji, x̂ji(t)
is an estimate of xj(t). Note that there is the same observer
embedded in encoder Θj , so x̂j(t) is the estimate of xj(t)
by itself, and Ej(t) is the state estimation error.

By the definition of cooperatability in Section 2.1, we
say that the dynamic network (A, B, C,G ) is cooperatable
w. r. t. H (ρ, LG) and U (LK) for given constants ρ,
LG and LK with proper range of values, if there exist
a communication protocol H ∈ H (ρ, LG) and a control
protocol U ∈ U (LK), such that under H and U , the
closed-loop system achieves cooperative state observation
and cooperative stabilization, that is,

(a) lim
t→∞

(xi(t) − xj(t)) = 0, i, j = 1, · · · , N,

(b) lim
t→∞

Ej(t) = 0, j = 1, · · · , N.

For the coordination of dynamic network (A, B, C,G ),
it is natural and necessary to make clear whether some
admissible communication protocol and control protocol
exist before designing them. It is a fundamental problem to
investigate quantitatively the factors which will affect the
cooperatability of (A, B, C,G ). We will investigate these
questions in the next section.

3. MAIN RESULTS

In this section, w. r. t. the admissible communication
protocol set (7) and admissible control protocol set (11),
we give some necessary conditions and sufficient conditions
which ensure (A, B, C,G ) to be cooperatable. The follow-
ing assumptions will be used.

A1) There exists K ∈ Rm×n such that the eigenvalues of
A − λi(L )BK, i = 2, · · · , N are all inside the open unit
disk of the complex plane.

A2) (A, C) is detectable.

For y ∈ Rn, we denote Q(y) = (Q(y1), · · · , Q(yn))T . De-

note ∆j(t−1) =
yj(t−1)−Cx̂j(t−1)

γt−1 −sj(t) and ∆u,j(t−1) =
uj(t)−ûj(t−1)

γt−1 −su,j(t) as the quantization errors of Q(·) and

Qu(·), respectively. Denote ∆(t) = (∆T
1 (t), · · · , ∆T

N (t))T ,

X(t) = (xT
1 (t), · · · , xT

N (t))T , X̂(t) = (x̂T
1 (t), · · · , x̂T

N (t))T ,

U(t) = (uT
1 (t), · · · , uT

N(t))T , Û(t) = (ûT
1 (t), · · · , ûT

N(t))T ,

E(t) = X(t) − X̂(t), H(t) = U(t) − Û(t), δ(t) = X(t) −
(

1
1T π

1πT ⊗ In

)

X(t), where πT is the nonnegative left
eigenvector w. r. t. the eigenvalue 0 of L and it is easy to
verify that πT has at least one nonzero element. Here, δ(t)
is called the cooperative stabilization error. We have the
following theorems.

Theorem 3.1. For the dynamic network (A, B, C,G ) and
LG = +∞, LK = +∞ and ρ = 1, suppose that As-
sumptions A1) and A2) hold. Then, for any given positive
constants Cx, Cx̂ and Cû, there exist a communication
protocol H(γ, α, αu, L, Lu, G) ∈ H (ρ, LG) and a control
protocol U(K) ∈ U (LK) such that for any X(0) ∈ BnN

Cx
,

X̂(0) ∈ BnN
Cx̂

and Û(0) ∈ BmN
Cû

, the dynamic network
(A, B, C,G ) achieves cooperative state observation and
cooperative stabilization under H and U , and there exist
positive constants W and Wu independent of γ, α, αu, L,
Lu, G and K, such that supt≥0 sup1≤i≤N ‖∆i(t)‖∞ ≤ W

and supt≥0 sup1≤i≤N ‖∆u,i(t)‖∞ ≤ Wu.

The conclusion of Theorem 3.1 follows directly from The-
orem 3.1 of Meng and Li (2014), in which the constructive
procedure of admissible communication and control pro-
tocols are given under the conditions of Theorem 3.1.

Remark 3.1. Theorem 3.1 says that if Assumptions A1)
and A2) hold, then there exist admissible communication
and control protocols to ensure the cooperative state ob-
servation and cooperative stabilization. Furthermore, the
quantization errors are uniformly bounded, which implies
that the inputs of the quantizers are always bounded.
Obviously, the boundedness of the inputs of the quantizers
is good for the physical realization of the protocols.

Theorem 3.1 shows that Assumptions A1) and A2) are
sufficient conditions for the cooperatability of (A, B, C,G )
w. r. t. the quantized-observer based communication pro-
tocol set and the certainty equivalence principle based
control protocol set. What’s more, we find that they are
also necessary conditions if ρ < 1.

Theorem 3.2. For (A, B, C,G ) and finite LG > 0, LK >
0 and ρ ∈ (0, 1), if for any given positive constants
Cx, Cx̂ and Cû, there exist a communication protocol
H(γ, α, αu, L, Lu, G) ∈ H (ρ, LG) and a control protocol

U(K) ∈ U (LK), such that for any X(0) ∈ BnN
Cx

, X̂(0) ∈
BnN

Cx̂
and Û(0) ∈ BmN

Cû
, the closed-loop system achieves

cooperative state observation and cooperative stabilization
under H and U , and supt≥0 sup1≤i≤N ‖∆i(t)‖∞ ≤ W and
supt≥0 sup1≤i≤N ‖∆u,i(t)‖∞ ≤ Wu, where W and Wu are
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positive constants independent of γ, α, αu, L, Lu, G and
K, then Assumptions A1) and A2) hold.

Proof : We will use reduction to absurdity. Suppose that
for any positive constants Cx, Cx̂, Cû, there exist a commu-
nication protocol H(γ, α, αu, L, Lu, G) ∈ H (ρ, LG) and a
control protocol U(K) ∈ U (LK) such that under these

protocols, for any X(0) ∈ BnN
Cx

, X̂(0) ∈ BnN
Cx̂

and Û(0) ∈
BmN

Cû
, the closed-loop system satisfies limt→∞ E(t) = 0,

limt→∞ δ(t) = 0, supt≥0 sup1≤i≤N ‖∆i(t)‖∞ ≤ W and
supt≥0 sup1≤i≤N ‖∆u,i(t)‖∞ ≤ Wu, however, A1) or A2)
would not hold. Select a constant a satisfying

a >
4Wu‖B‖

√
mN

1 − ρ
+

4LGW
√

nN

1 − ρ
. (12)

Take Cx >
√

n(2N − 1)a‖Φ−1‖, Cx̂ >
√

nNCx + a
√

nN

and Cû > supK∈BLK
‖L ⊗ K‖Cx̂

√
nN . Now we prove

that for such Cx, Cx̂ and Cû, under any admissible
communication protocol and control protocol, there exist
X(0) ∈ BnN

Cx
, X̂(0) ∈ BnN

Cx̂
and Û(0) ∈ BmN

Cû
such

that the dynamic network can’t achieve cooperative state
observation and cooperative stabilization jointly, which
leads to the contradiction.

Denote the lower triangular Jordan canonical of L by
diag(0, J2, · · · , JN ) where Ji is the Jordan chain with
respect to λi(L ). We know that there is Φ ∈ RN×N , con-
sisting of the left eigenvectors of L , such that ΦL Φ−1 =
diag(0, J2, · · · , JN ). Let Φ = (π, φ2, · · · , φN )T . Denote

Φ̄ = (φ2, · · · , φN )T . Denote δ̃(t) = (Φ ⊗ I)δ(t). Let

δ̃(t) = (δ̃1(t), δ̃2(t))
T where δ̃1(t) ∈ Rn. By the defini-

tion of δ(t), we can see that δ̃1(t) ≡ 0. Suppose that
H(γ, α, αu, L, Lu, G) is a given admissible protocol and
U(K) is a given control protocol. Similarly to Theorem 3.1
of Meng and Li (2014), substituting H(γ, α, αu, L, Lu, G)
and U(K) to the system (6) leads to

(

E(t + 1)

δ̃2(t + 1)

)

= A(K, G)

(

E(t)

δ̃2(t)

)

+

(

InN

0

)

(IN ⊗ B)H(t)

+

(

InN

0

)

(IN ⊗ G)γt∆(t),

(13)

where A(K, G) =

(

J(G) 0
(Φ̄ ⊗ In)(L ⊗ BK) J̄(K)

)

, J̄(K) =

IN−1 ⊗A− diag(J2, · · · , JN)⊗BK and J(G) = diag(A−
GC, · · · , A − GC)nN×nN . Since A1) and A2) don’t hold
simultaneously, we have ρ(A(K, G)) ≥ 1 for any admissible
communication and control protocol. Transform A(K, G)
to its Schur canonical, that is, select a unitary matrix P
(P ∗ = P−1), such that

P ∗A(K, G)P =







λ1(A(K, G)) 0

× . . .
× × λ(2N−1)n(A(K, G))






.

Here × represents the elements below the diagonal of the
Schur canonical, and λi(A(K, G)), i = 1, ..., (2N −1)n, are
eigenvalues of A(K, G) with |λ1(A(K, G))| = ρ(A(K, G)).

Denote Z(t) = P ∗

(

E(t)

δ̃2(t)

)

. From (13), we know that

[Z(t + 1)]1

= λ1(A(K, G))[Z(t)]1 +

[

P ∗

(

InN

0

)

(IN ⊗ B)H(t)

]

1

+γt

[

P ∗

(

InN

0

)

(IN ⊗ G)∆(t)

]

1

= λt+1
1 (A(K, G))[Z(0)]1

+

t
∑

i=1

λt−i
1 (A(K, G))

[

P ∗

(

InN

0

)

(IN ⊗ B)H(i)

]

1

+

t
∑

i=0

λt−i
1 (A(K, G))γi

[

P ∗

(

InN

0

)

(IN ⊗ G)∆(i)

]

1

+λt
1(A(K, G))

[

P ∗

(

InN

0

)

(IN ⊗ B)H(0)

]

1

. (14)

Let P =

(

P1

P2

)

with P1 ∈ R
nN×n(2N−1) and P2 ∈

Rn(N−1)×n(2N−1). Take X(0) = (Φ−1 ⊗ In)

(

0
P2a

)

where

a = a1 ∈ Rn(2N−1) and 0 ∈ Rn, then ‖X(0)‖∞ ≤
√

n(2N − 1)a‖Φ−1‖‖P2‖. Note that ‖P2‖ ≤ ‖P‖ = 1,

we have ‖X(0)‖∞ ≤
√

n(2N − 1)a‖Φ−1‖ < Cx, implying

X(0) ∈ BnN
Cx

. Take X̂(0) = X(0)−P1a and Û(0) = −(L ⊗
K)X̂(0). Similarly, one can see that X̂(0) ∈ BnN

Cx̂
and

Û(0) ∈ BmN
Cû

. By the definition of δ(t), we have

δ(0) =

((

IN − 1
∑N

i=1 πi

1πT

)

⊗ In

)

X(0)

=

((

IN − 1
∑N

i=1 πi

1πT

)

⊗ In

)

(Φ−1 ⊗ In)

(

0
P2a

)

.

Since πT is the first row of Φ, we can see that δ̃(0) =
(

0
P2a

)

and δ̃2(0) = P2a. By the definition of E(t) and

H(t), we know that E(0) = X(0)−X̂(0) = X(0)−(X(0)−
P1a) = P1a, and H(0) = U(0)− Û(0) = −(L ⊗K)X̂(0)+

(L ⊗ K)X̂(0) = 0. Since Z(0) = P ∗

(

E(0)

δ̃2(0)

)

, we have

Z(0) = a and [Z(0)]1 = a.

From (12), we know that

∣

∣

∣

∣

∣

t
∑

i=1

λt−i
1 (A(K, G))

[

P ∗

(

InN

0

)

(IN ⊗ B)H(i)

]

1

+

t
∑

i=0

λt−i
1 (A(K, G))g(i)

[

P ∗

(

InN

0

)

(IN ⊗ G)∆(i)

]

1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

‖B‖
√

mNWu(λt
1(A(K, G)) − γt)

λ1(A(K, G)) − γ

+
‖G‖

√
nNW (λt+1

1 (A(K, G)) − γt+1)

λ1(A(K, G)) − γ

∣

∣

∣

∣

≤
(

2Wu‖B‖
√

mN

1 − ρ
+

2LGW
√

nN

1 − ρ

)

|λ1(A(K, G))|t+1

<
a

2
|λ1(A(K, G))|t+1. (15)

From (14), (15) and note that H(0) = 0, we can see that
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∣

∣[Z(t + 1)]1
∣

∣ ≥
∣

∣

∣|λ1(A(K, G))|t+1a − a

2
|λ1(A(K, G))|t+1

∣

∣

∣

≥ a

2
|λ1(A(K, G))|t+1.

By the invertibility of P , we know that

(

E(t)
δ(t)

)

does not

vanish as t → ∞. This is in contradiction with that the
dynamic network achieves cooperative state observation
and cooperative stabilization. So, A1) and A2) hold. 2

Remark 3.2. In Theorem 3.2 the communication protocol
set parameter ρ < 1. Actually, the communication protocol
parameter γ can represent the convergence speed of the
coordination (for both cooperative state observation and
cooperative stabilization). The smaller γ is, the faster the
convergence will be. The constant ρ is an upper bound of
γ, so it is a uniform upper bound of the convergence speed
under any admissible communication protocol. Theorem
3.2 shows that if (A, B, C,G ) is locally cooperatable with a
uniform exponential convergence speed, then (A, B, C,G )
must satisfy A1) and A2).

At present, we still don’t know whether A1) and A2)
are necessary conditions for (A, B, C,G ) to be locally
cooperatable w. r. t. H (1, LG) and U (LK). However, we
can show that if (A, B, C,G ) is globally cooperatable, then
A1) and A2) are necessary.

Theorem 3.3. For (A, B, C,G ) and LG = +∞, LK = +∞
and ρ = 1, if there exist a communication protocol
H(γ, α, αu, L, Lu, G) ∈ H (ρ, LG) and a control protocol

U(K) ∈ U (LK), such that for any X(0) ∈ RnN , X̂(0) ∈
R

nN , Û(0) ∈ R
mN , the closed-loop system achieves co-

operative state observation and cooperative stabilization
under H and U , and supt≥0 sup1≤i≤N ‖∆i(t)‖∞ ≤ W and
supt≥0 sup1≤i≤N ‖∆u,i(t)‖∞ ≤ Wu, where W and Wu are
positive constants independent of γ, α, αu, L, Lu, G and
K, then Assumptions A1) and A2) hold.

Remark 3.3. For the uniform quantizers Q(·) and Qu(·),
α and αu represent the quantization precision, αL and
αuLu represent the quantization range. If α, αu → 0 and
αL, αuLu → ∞, then Q(·) and Qu(·) tend to be identity
mappings. So the case with precise communication can be
viewed as a limit case of the communication with limited
data rate. Similarly, we can also show that Assumptions
A1) and A2) are the necessary and sufficient conditions for
(A, B, C,G ) to be globally cooperatable w. r. t. H (ρ, LG)
and U (LK) for the case with precise communication.

4. CONCLUSION

In this paper we studied the cooperatability of discrete
time linear multi-agent systems with unmeasurable states
over digital networks. We gave a universal framework for
general multi-agent systems over digital networks to de-
scribe the cooperative state observation and cooperative
stabilization, which are the objectives of cooperative com-
munication and control jointly. Under this framework, we
proposed a class of quantized-observer based admissible
communication protocols and a class of certainty equiv-
alence principle based admissible control protocols, and
provided necessary conditions and sufficient conditions for
the multi-agent systems to be cooperatable w. r. t. the

admissible communication protocol set and the admissible
control protocol set.

As a preliminary research, we assume that the commu-
nication channel is both noise-free and delay-free. The
case with channel noise and time delay may be the fu-
ture research topics. Here, we assume the communication
topology is fixed. The case with switching topologies is
also interesting.
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