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Abstract: In the recent years the wind turbine industry has focused on optimising the cost
of energy. One of the important factors in the achievement of this task consists of increasing
the reliability of the wind turbines, which can be obtained using advanced fault detection and
isolation strategies. Clearly, most faults are managed quite easily at a wind turbine control level.
However, some faults are better dealt with at wind farm level, when the wind turbine is located
in a wind farm. This paper aims at proposing a fault detection and isolation solution with
application to a wind farm benchmark model. The considered benchmark includes a small wind
farm of nine wind turbines, based on simple models of wind turbines, as well as the wind and
interactions between wind turbines in the wind farm. The solution relies on a set of piecewise
affine Takagi–Sugeno models, which are identified from the noisy measurements acquired from
the simulated wind park. The design of the fault isolation strategy is also enhanced by the use
of the proposed fuzzy approach. Finally, the wind park simulator is exploited for validating the
achieved performances of the suggested methodology.

1. INTRODUCTION

A consequence of the increased level of wind generated
power in power grids is that it has become more and
more important that wind farms are reliable. It is clear
that wind farms should be able to generate the power
continuously, given the wind speed level. This means that
possible faults in the wind turbines of the wind farm should
be detected and isolated, in order to avoid any change in
the generated power without introducing additional and
more critical faults.

In the recent years, the research focus has been oriented
to advanced Fault Detection and Isolation (FDI) of wind
turbines. As an example, a model–based fault diagnosis
system that detects faults was presented in (Chen et al.
[2011]). An unknown input observer was designed for the
detection of sensor fault of the wind turbine drive train in
(Odgaard et al. [2009]). With reference to a wind turbine
benchmark model described in (Odgaard and Stoustrup
[2009]), several solutions were recently proposed in (Chen
et al. [2011], Svard and Nyberg. [2011], Zhang et al. [2011]),
whilst the achieved results were summarised in (Odgaard
and Stoustrup [2012]). It is worth noting that regarding
the wind farm issue, only a few works on condition
monitoring and fault detection have been reported, see e.g.
in (Kusiak and Verma [2011], Kusiak and Li [2011]).

In particular, many papers on model–based FDI were
published over the last decade, using both signal– and
process model–based methods. Unsurprisingly, these show
that the more accurate the model is at describing the
process behaviour, the better its performance will be in
1 Corresponding author.

detecting anomalous conditions. Unfortunately, an accu-
rate and complete mathematical model of such a complex
system is usually unavailable, typically because of the as-
sumptions introduced to reduce mathematical complexity.
Hence, FDI schemes that relate to first principle models
are costly to develop, while current alternatives tend to be
mathematically complex or require considerable a priori
knowledge to be incorporated into the monitoring scheme.

In this paper, the use of fuzzy identification is proposed
through the wind farm process for finding a viable solution
of the FDI problem. To this aim, three practical aspects
of the presented work are stressed. Firstly, the system
complexity may not indicate a requirement for a sophis-
ticated physical model. In fact, as shown in this work,
a fuzzy identification method can be successfully used,
thus obviating the requirement for physical descriptions.
In particular, the Errors–In–Variables (EIV) framework
(Van Huffel and Lemmerling [2002]) and a proper identi-
fication algorithm is used in connection with fuzzy logic
descriptions. Secondly, fuzzy prototypes for residual gen-
eration are considered instead of using purely nonlinear
observer or filters. Moreover, as the purpose of system
supervision is to monitor the conditions of the system in
different working points, piecewise affine prototypes are
successfully proposed (Simani et al. [1999]). Third, the
fuzzy identification method enhances the design of the
fault diagnosis scheme, and in particular, the development
of the residual generator bank for fault isolation. The same
methodology was successfully exploited in (Simani [2013]),
but applied to real data from a diesel engine process. The
benchmark model considered in this paper represents a
small wind farm with nine 4.8MW wind turbines, which is
described in (Odgaard and Stoustrup [2013]).
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The remainder of this paper is organised as follows. Section
2 describes the wind farm benchmark considered in this
paper. Section 3 presents the structure of the fuzzy model,
and briefly recalls how to integrate the well–established
identification method for the estimation of TS systems
within a general procedure for fuzzy identification. Section
4 addresses the design of the diagnostic scheme for FDI of
the wind farm. The achieved results summarised in Section
5 seem to demonstrate the effectiveness of the technique
proposed. Finally, some concluding remarks are reported
in Section 6.

2. WIND FARM BENCHMARK DESCRIPTION

In this benchmark model a simple wind farm with 9 wind
turbines is considered, arranged in a square grid layout
(Odgaard and Stoustrup [2013]). The distance between
the wind turbines in both directions are 7 times the rotor
diameter, L. Two measuring masts are located in front
of the wind turbines, one in each of the wind directions
considered in this benchmark model, e.g. 0o and 45o. The
wind speed is measured by these measuring masts and
they are located in a distance of 10 times L in front of
the wind farm. The wind turbines of the farm are defined
by their row and column indices in the coordinate system
illustrated in Fig. 1 (Odgaard and Stoustrup [2013]).

Fig. 1. Layout of the wind farm with 9 turbines of the
square grid and the masts along the wind directions.

The farm uses generic 4.8MW wind turbines, which were
described in (Odgaard and Stoustrup [2009]). The turbine
is a three bladed horizontal axis, pitch controlled vari-
able speed wind turbine. Each of the wind turbines are
described by simplified models including control logics,
variable parameters and 3 states. The i–th wind turbine
model generates the electrical power, Pi g(t), the collective
pitch angle, βi(t), and the generator speed, ωi g(t). Note
that only one measured pitch angle is provided since it
is assumed that the wind turbine controller regulates the
pitch angles in the same way. The two scenarios with
different wind directions but driven both by the same
wind speed sequence vw(t) (possibly with a time shift)
are considered. The wind sequence contains a wind mean

speed increasing from 5 m/s. to 15 m/s, and with a peak
value of about 23 m/s. In this benchmark model a very
simple wind farm controller is used, which provides the
wind turbine controllers with a power reference Pi ref (t). If
the wind farm is requested to generate a power lower than
the available one, the references are evenly distributed
among the wind turbine controllers. More details on wind
farm model considered in this paper can be found in
(Odgaard and Stoustrup [2013]). It is worth noting that
the wind farm considered here could be seen as simplistic
model. However, the work (Odgaard and Stoustrup [2013])
describes how the simulator can fit actual wind farm.

With these assumptions, the complete continuous–time
description of the wind farm under diagnosis has the
following form:{

ẋc(t) = fc (xc(t), u(t))

y(t) = xc(t)
(1)

where u(t) = [vw(t), βi(t)]
T and y(t) = xc(t) =

[ωi g(t), Pi g(t)]
T are the input and the monitored output

measurements, respectively. The subscript i indicates the
measurement from the i–th wind turbine of the wind
farm (i = 1, . . . , 9). fc (·) represents the continuous–time
nonlinear function that will be approximated with the
discrete–time fuzzy prototype from N sampled data of u(t)
and y(t), and using the procedure presented in Section 3.

In this benchmark three faults are considered that in-
fluence the measured variables from the wind turbine,
i.e. βi(t), ωi g(t), and Pi g(t). It is also assumed that the
considered faults can be detected at a wind farm level by
comparing the performance from other wind turbines in
the wind farm, but they are difficult to detect at a wind
turbine level. Moreover, these three faults affect different
wind turbines at different times, as described in more
detail in (Odgaard and Stoustrup [2013]).

The remainder of this section describes the relations
among the fault cases considered above, and the monitored
measurements acquired from the wind park benchmark,
in the presence of uncertainty and measurement errors. In
this way, it will be shown that the fault isolation task can
be easily solved by using the fuzzy scheme proposed in this
work, thus representing one of the main motivations of the
suggested approach. In particular, Table 1 shows the fault
effect distribution in the case of single fault occurrence,
with respect to the acquired inputs and outputs of the
wind park simulator.

Table 1. The FMEA results for the wind park
benchmark.

Fault affecting Selected measurements Fault

wind turbine nr. after FMEA case

i = 2

{vw(t), ω9(t), P4 g} Fault 1

i = 7

i = 1

{vw(t), β2(t), P6 g} Fault 2

i = 5

i = 6

{vw(t), β3(t), P7 g} Fault 3

i = 8

Table 1 was obtained by performing the so–called fault
sensitivity analysis, i.e. the Failure Mode & Effect Anal-
ysis (FMEA) (Stamatis [2003]). In practice, Table 1 is
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thus built by selecting the most sensitive measurement
(ui or yj) with respect to the simulated fault conditions.
Obviously, when different fault conditions have been con-
sidered with respect to the scenario of this work, different
measurements will probably be taken into account.

3. FUZZY MODELLING AND IDENTIFICATION

This section addresses the approach exploited for obtain-
ing the mathematical description of the residual generators
applied to the wind farm. In particular, the fuzzy identi-
fication scheme, which is recalled in Section 3, allows the
design of the proposed fault diagnosis scheme shown in
Section 4. In this study, TS fuzzy models are exploited
(Babuška [1998]). The TS fuzzy model description is able
to describe the global behaviour of the nonlinear system.

A large part of fuzzy modelling and identification algo-
rithms (Babuška [1998]) share a common two–step pro-
cedure, in which at first, the operating regions are de-
termined using heuristics or data clustering techniques.
Then, in the second stage, the identification of the param-
eters of each submodel is achieved using the identification
algorithm in particular already proposed by one of the
authors in (Simani et al. [1999]), which can be seen as a
generalisation of the classic least–squares. From this per-
spective, fuzzy identification can be regarded as a search
for a decomposition of a nonlinear system, which gives a
desired balance between the complexity and the accuracy
of the model, effectively exploring the fact that the com-
plexity of systems is usually not uniform. A suitable class
of fuzzy clustering algorithms can be thus used for this
decomposition purpose, and in particular, the Gustafson–
Kessel (GK) fuzzy clustering is exploited in this work, and
is available in (Babuška [2000]).

In the TS fuzzy models, the rule consequents are crisp
functions of the model inputs:

Ri : IF x is Ai THEN yi = fi

(
x
)

(2)

where i = 1, 2, · · · , M , x ∈ <p is the input (antecedent)
variable and yi ∈ < is the output (consequent) variable.
Ri denotes the i–th rule, and M is the number of rules
in the rule base. Ai is the antecedent fuzzy set of the i–th
rule, defined by a (multivariate) membership function. The
consequent functions fi are typically chosen as instances of
a suitable parameterised function, whose structure remains
equal in all the rules and only the parameters vary.
A simple and practically useful parameterisation of the
function fi is the affine form:

yi = ai x + bi (3)

where ai is the parameter vector (regressand), and bi is
the scalar offset. x = x(k) represents the regressor vector,
which can contain delayed samples of u(t) and y(t). This
discrete–time model can be written in a polytopic form as
(Babuška [1998]):

y(k + 1) =
∑M

i=1 µi (x(k)) yi∑M
i=1 µi (x(k))

(4)

where k here indicates the k–th sample. The antecedent
fuzzy sets µi are extracted from the fuzzy partition matrix
(Babuška [1998]). The consequent parameters ai and bi are

estimated from the data using the procedure presented in
(Simani et al. [1999]). This identification scheme exploited
for the estimation of the TS model parameters has been
integrated into the FMID toolbox for Matlab r© by the
author. This approach developed by the author is usually
preferred when the TS model should serve as predictor,
as it computes the consequent parameters via the Frisch
scheme, developed for the Errors–In–Variables (EIV) de-
scriptions (Van Huffel and Lemmerling [2002]). Therefore,
after the clustering of the data has been obtained via
the GK algorithm (Babuška [1998]), the data subsets are
processed according the Frisch scheme identification pro-
cedure (Simani et al. [1999]), in order to estimate the TS
parameters for each affine submodel.

4. FAULT DIAGNOSIS SCHEME DESIGN

This section addresses the problem of the detection and
isolation of the faults affecting the process under diagnosis.

In the following, it is assumed that the monitored system
in terms of input–output signals is modelled according to
the EIV structure. The term y is the system output vector
measurement, and u the control input vector. According to
the EIV description, in realistic situations the variables u∗

and y∗ are measured by means of sensors, whose outputs
are affected by noise.

Neglecting sensor dynamics, faults affecting the measured
input and output signals u and y are modelled as:{

u = u∗ + fu

y = y∗ + fy
(5)

in which, fu and fy represent additive signals, which
assume values different from zero only in the presence of
faults.

There are different approaches to generate the diagnostic
signals, i.e. the residuals (or symptoms), from which it will
be possible to diagnose the considered fault cases. In this
work, TS fuzzy prototypes are used as residual generators.
The residual signals are generated by the comparison of
the measured y and the estimated ŷ output. The residual
evaluation refers to a logic device which processes the
redundant signals generated by the first block in order to
detect when a fault occurs, and to univocally identify the
unreliable actuator or sensor.

The fault detection task is performed by using the thresh-
olding logic in (6):

r̄ − δ σr ≤ r ≤ r̄ + δ σr

if fault–free

r < r̄ − δ σr or r > r̄ + δ σr

if faulty

(6)

In practice, the residual signal is represented by the
stochastic variable r, whose mean and variance values are
estimated from its samples r(k) as follows:

r̄ =
1
N

N∑
k=1

r(k)

σ2
r =

1
N

N∑
k=1

[r(k)− r̄]2

(7)
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r̄ and σ2
r are the values for the sample mean and variance

of the fault–free residual, respectively. N is the number of
samples r(k) of the signal r. The values of r̄ and σ2

r depend
on the signal r statistics, which are usually unknown.

In order to separate normal from faulty behaviour, the tol-
erance parameter δ (normally δ ≥ 2) is selected and prop-
erly tuned. Hence, by a proper choice of this parameter δ, a
good trade–off can be achieved between the maximisation
of fault detection probability and the minimisation of false
alarm rate. This parameter δ could be fixed with empirical
rules or, once the values of r̄ and σ2

r have been estimated
from the r signal, using the 3–sigma rule. On the other
hand, less conservative results could be obtained exploiting
a procedure borrowed from the aerospace framework (Pat-
ton et al. [2010]), which leads to determine via extensive
simulations the optimal δ minimising the false alarm rate
and maximising the detection/isolation probability. This
issue will be briefly considered in Section 5.

Finally, regarding the fault isolation problem, a Dedicated
Observer Scheme (DOS) has to be exploited (Patton et al.
[1989]). In particular, as described in Section 2, each
fault affects different wind turbines, and therefore different
measurements βi, ωi g and Pi g. Therefore, to uniquely
isolate these faults concerning one of the inputs u or one
of the outputs y of (1), a bank of fuzzy estimators (4) is
used, as shown in Fig. 2.

Fig. 2. Fuzzy estimator scheme for fault isolation.

The number of these fuzzy estimators (denoted with f)
is equal to the number of residuals rl required for the
correct detection and isolation of the faults fu and fy.
The number of measured input signals is c, whilst the
number of available outputs is m. The l–th fuzzy estimator
is driven by the i–th input ui (or even more inputs, if
necessary) and the j–th output yj of the system, and
generates a residual function rl, which is sensitive to the
fault affecting the i–th input ui or the j–th output yj . The
identification procedure for these output fuzzy estimators
follows the procedure described in Section 3. In particular,
when the fuzzy estimator insensitive to the i–th input (or
even more inputs, if necessary) and the j–th output has
to be designed, the corresponding signals are exploited for
the identification process. In this way, the fault isolation
is possible, since a fault on the i–th input ui or the j–th
output yj affects the particular residual rl except that of
the device which is insensitive to these signals, ui and yj .

5. SIMULATION RESULTS

The proposed methodology was applied to the identifica-
tion, as well as the fault detection and isolation of the
wind farm described in Section 2. The considered process
input–output signals are the wind speed vw(t), the pitch
angle βi(t), the generator speed ωi g(t), the generated
power Pi g(t) from the i–th wind turbine of the wind farm.
The available data from the measured inputs and outputs
consist of 440×103 samples from normal operating records
acquired with a sampling rate of 100 Hz.

According to Fig. 2, the required fault diagnosis residuals
are implemented as a bank of TS fuzzy Multiple–Input
Single–Output (MISO) models (4). Thus, by following the
scheme of Fig. 2 and the isolation scheme described in
Sections 2 and 4, the first fuzzy predictor used for the
computation of the residual r1(t) is fed by the measure-
ments {vw(t), ω9(t), P4 g}, with M = 5 and n = 2. The
second fuzzy estimator generating the residual r2 is fed by
the measurements {vw(t), β2(t), P6 g}, with M = 5 and
n = 2. Finally, the third fuzzy estimator generating r3(t) is
fed by the measurements {vw(t), β3(t), P7 g}, with M = 5
and n = 2. The membership degrees µj required by the
fuzzy estimators (4) have been modelled with Gaussian
functions, whose parameters have been estimated by the
fuzzy clustering algorithm (Babuška [2000]).

Therefore, the complete fuzzy estimator strategy is ob-
tained by following Table 2, as these estimators, organised
into a bank structure, after the fault detection, allow to
perform also the required fault isolation task, as described
in Section 4 and Table 1.

Table 2. Wind farm measurement selection.
Residual signals Fuzzy generator Fault

for fault isolation inputs case

r1(t) {vw(t), ω9(t), P4 g} Fault 1

r2(t) {vw(t), β2(t), P6 g} Fault 2

r3(t) {vw(t), β3(t), P7 g} Fault 3

In particular, the measurement selection is summarised
in Table 2 and was obtained by considering the fault
scenario described in Section 2. In practice, Table 2 is
obtained by selecting the measurement (uj and yl) affected
by the simulated fault conditions (fault 1, fault 2, and
fault 3). Note also that, since each fault affects 2 different
turbines of the wind farm, each fault is diagnosed by
using the residual generator rh(t) depending on a set of
input–output measurements from i–th wind turbine, as
highlighted in Table 2.

The considered faults cause the alteration of the signals
ui(t) and yj(t), and therefore of the residual rk(t) given by
the predictive model (4). These residuals indicate the fault
occurrence according to the logic (6), whether their values
are lower or higher than the thresholds fixed in fault–free
conditions.

By considering different test data sequences generated by
the wind farm simulator, Table 3 reports the achieved Pre-
dicted Per Cent Reconstruction Error (PPCRE). These
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reconstruction errors for rk(t) in fault–free conditions are
computed as the difference between the measurement and
the corresponding output from the k–th fuzzy predictor.
Since this error is normalised with respect to the output
standard deviation, the PPCRE index can be also seen
as the percentage of data that are not correctly explained
by the identified TS models. The values summarised in
Table 3 indicate that the fuzzy prototypes are able to
generate reliable residual signals for the wind farm fault
diagnosis. Note that Table 3 highlights how the PPCRE
values in general increase when sequences different from
the estimation data are used, e.g. the so–called validation
and test sets.

Table 3. TS fuzzy model errors.

Data Set PPCRE

r1 r2 r3

Estim. data 0.90% 0.87% 0.92%

Valid. data 2.80% 1.80% 2.10%

Test data 4.20% 3.50% 4.00%

These identified TS fuzzy prototypes organised into the
residual generator bank structure of Fig. 2 have led to the
results summarised in Fig. 3.

In particular, Fig. 3 shows the residual r1(t) affected by
the fault 1. The fault detection thresholds, which are
highlighted in Fig. 3 with dashed lines, have been settled
according (6) with δ = 3.1.

Fig. 3. (Solid black line) faulty residuals for fault 1 and
(dashed grey line) detection thresholds.

As highlighted in Figs. 3 and 4, the fault 1 can be detected
and isolated by the residual r2 between 1000s. and 1100s.,
and by the signal r1 from 3000s. to 3100s. On the other
hand, Fig. 4 depicts the residual signal r2(t) for the FDI
of the fault 2. Similar results have been obtained for the
residual signal r3(t), but they will not be reported here for
lack of space.

The non–zero values of the residuals when the faults are
not acting on the wind turbines are due to modelling
and measurement errors. A value of δ = 4.5 has been
selected, according to the logic of Section 4. Note that
the fault detection thresholds reported in the relation (6)
are represented as constant grey dashed lines in Fig. 3.
Their values were properly settled by selecting δ, which
leads to minimise the false alarm and missed fault rates,
while maximising the correct detection and isolation rates.

In the remainder of this section, further experimental
results have been reported regarding the performance
evaluation of the developed FDI scheme with respect to

Fig. 4. (Solid black line) faulty residuals for fault 2 and
(dashed grey line) detection thresholds.

modelling errors and measurement uncertainty. In partic-
ular, the simulation of different fault–free and faulty data
sequences has been performed by exploiting the simulator
capabilities described in Section 2 and a Matlab r© Monte–
Carlo analysis. In fact, the Monte–Carlo tool is useful
at this stage as the FDI performances depend on the
wind process, its realisations, and the residual errors. As
remarked in Section 2, the wind farm benchmark is able to
generate the required signals and the injection of realistic
fault cases.

Moreover, it is assumed that the input–output data were
affected by measurement errors. Thus, for performance
evaluation, robustness and reliability analysis of the FDI
scheme, some indices have been used. The performances
of the FDI method are thus empirically evaluated on 500
Monte–Carlo runs. These indices are defined as:

False Alarm Rate (rfa): the number of wrongly de-
tected faults divided by total fault cases;

Missed Fault Rate (rmf ): for each fault, the total num-
ber of undetected faults, divided by the total number of
times that the fault case occurs;

True Detection/Isolation Rate (rtd, rti): for a par-
ticular fault case, the number of times it is correctly
detected/isolated, divided by total number of times that
the fault case occurs;

Mean Detection/Isolation Delay (τmd, τmi): for a
particular fault case, the average detection/isolation de-
lay time.

These criteria are computed off–line for each fault case.
Table 4 summarises the results obtained by considering
the fuzzy residual generators, and with a choice of the
threshold parameter δ in (6) leading to achieve optimal
results.

Table 4. Monte–Carlo analysis by monitoring
residuals via (6) with optimal δ.

Fault rfa rmf rtd, rti τmd, τmi δ

1 0.002 0.003 0.997 0.75s 4.8

2 0.001 0.001 0.999 0.95s 4.5

3 0.002 0.003 0.997 0.60s 4.6

Table 4 shows that with the proper selection of the thresh-
old levels depending on δ it is possible to achieve false
alarm and missed fault rates of less than 0.3% and detec-
tion and isolation rates larger than 99.7%, with minimal
detection and isolation delay times. The results demon-
strate also that in this case, the Monte–Carlo analysis is an
effective tool for experimentally testing the design robust-
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ness of the proposed FDI method with respect to error and
uncertainty. This last simulation technique example hence
facilitates an assessment of the reliability of the developed
and applied FDI method to real test cases, as shown for
example in (Simani [2013], Simani and Castaldi [2013b,a]).

6. CONCLUSION

This paper proposed a procedure for the fault detection
and isolation of a wind park model using fuzzy prototypes
estimated from uncertain input–output measurements. It
is assumed that the process under investigation was non-
linear, and the available measurements were normally not
very reliable, due to the wind speed uncertain nature.
The fault diagnosis strategy considered here for residual
generation was based on Takagi–Sugeno fuzzy models,
which were able to describe the different operating con-
ditions of the process. The proposed approach was ex-
ploited to generate redundant residuals, thus enhancing
also the fault isolation task. The effectiveness of these
strategies was tested on the data acquired from the wind
park benchmark. The robustness and reliability properties
were investigated via extensive Monte–Carlo experiments.
Future investigations will concern the application of the
diagnosis strategy to real wind farm installations.
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