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Abstract: Estimation of corkscrew target maneuver with unknown turning rate is considered. The 

modeling of the target's equations of motion takes into account the rotation of the velocity and 

acceleration vectors as the target maneuvers. The inclusion of the more detailed kinematic behavior of the 

maneuvering target creates nonlinear equations of motion.  The state - position, velocity acceleration and 

jerk, and the angular rate of the velocity vector are estimated. This is done without inclusion of the 

angular rate into the state vector, but in separate equation. As the equations of motion are nonlinear the 

State Dependent Differential-Difference Riccati Equation based estimator (SDDRE) is implemented. Two 

filters are evaluated. The velocity based jerk and acceleration based snap filters are considered.  It is 

demonstrated via simulations that the acceleration based snap filters has improved performance with 

respect to the velocity based jerk filter. 

Keywords: Estimation algorithm, SDRE, SDDRE, estimation of nonlinear system, target tracking. 

1. INTRODUCTION 

The issue of estimating a maneuvering target is widely 

treated subject. A comprehensive survey of models and 

estimators is presented in [Li and Jilkov (2000), 

(2010),(2001),(2002),(2005)]. The simplest approach is to 

implement three independent Constant-Step acceleration 

filters (CA) or Exponentially Correlated Acceleration (ECA) 

filters [Fitzgerald], one filter for each coordinate. 

However these filters may not achieve the required 

performance for corkscrew maneuver as they are not matched 

to these maneuvers, i.e. steady state errors are created.  

For more advanced estimators it has been understood that 

incorporating detailed information on the target dynamics and 

kinematics into the estimator's equations has the potential to 

increase the quality of estimation. However, the inclusion of 

more detailed target maneuver model and the related 

constraints leads to nonlinear models. Thus the Kalman Filter 

is not directly applicable. The most common approach to deal 

with nonlinear systems is the Extended Kalman Filter (EKF).  

The current approaches to estimation of nonlinear systems 

include many methods and many publications. A 

comprehensive survey of such methods applied to 

maneuvering target estimation is presented in [Li and 

Jilkov.(2000),(2010),(2001),(2002),(2005)]. In [Tahk and 

Speyer] the issue of pseudo measurements had been 

introduced and the Extended Kalman Filter was applied. In 

[Tahk and Speyer ] it was pointed out that inclusion of a 

constraint is usually difficult to incorporate into the dynamic 

equation and it is much easier to incorporate them into the 

measurement equations.  

For example: in [Marks] a multiple model approach is 
1
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applied. In [Chen, Speyer and Lianos] algebraic constraint is 

incorporated in the state equations; and in [Dezert and 

Pannetier] the IMM approach is applied to estimate 

maneuvering target. The corkscrew maneuver estimation is 

dealt with in [Imado and Miwa ][Ryoo, Whang and 

Tahk][Zarchan and Alpert] [Kim, Vaddi and Menon] 

[Chadwick and Zarchan] [Kim, Vaddi, Menon and Ohlmeyer, 

[Rusnak. and Meir] [Speyer, Kimand Tahk.] [Zarchan]. 

Extensive review of tracking algorithms of corkscrew-barrel 

roll maneuvers is presented in [Ghosh  and Mukhopadhyay] 

where the jerk has been included into the target's state.  

In this paper the corkscrew maneuver [Imado and Miwa] with 

unknown turning-barrel roll rate is considered. One of the 

main and important issues is the estimation of the angular 

turning rate. This is needed for achieving better matching of 

the estimator and for the derivation of high performance 

guidance law for this type of evading maneuver [Agarwal]. 

[Zarchan and Musoff., chapter 10] show that the algorithms 

that include the turning rate as part of the state are 

problematic, to say the least. 

Two novel approaches to modelling the maneuvering target 

equations of motion are dealt with here: 

i) Rotating velocity vector based jerk equations – VJ 

(Jerk is the derivative of the Acceleration); 

ii) Rotating acceleration vector based snap equations – 

AS (Snap is the derivative of the Jerk). 

In this paper the State Dependent Differential-Difference 

Riccati Equation (SDDRE) based estimator is applied to the 

nonlinear equations of motion. The SDDRE approach is very 

intuitive, although it is not optimal as shown for the State 

Dependent Algebraic Riccati Equation (SDARE) approach in 

[Mracek, Cloutier, and D'Souza][ Shue and Agarwal][ Xin 

and Balakrishnan][ Lam, Anderson and Xin]. The optimal 

filter requires additional terms for optimality ][ Shue S and 

Agarwal ][Xi and Balakrishnan][Lam, Anderson and Xin] 
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[Xin, Balakrishnan and Ohlmeyer]. Despite the sub-

optimality of the direct SDDRE approach it is claimed/known 

that the SDDRE based estimator is BIBO stable [Haessig and 

Friedland]. 

The SDDRE approach to estimation of piecewise coordinated 

turn and barrel roll target's maneuvers in 2D, based on the 

equation of motions of a rotating vector, has been presented 

in [Ryoo, Whang and Tahk] and for piecewise 2D spiralling 

trajectory in [Zarchan  and Alpert]. 

The novelty in this paper is: Application of the SDDRE to 

estimation of a 3D corkscrew maneuver with unknown 

turning rate. Simulations demonstrate the performance of 

estimators based on the rotating velocity (VJ) and rotating 

acceleration (AS) vector kinematics equations of motion. It is 

shown that the AS based estimator performs well for 3D 

corkscrew target maneuver, and is able to estimate the 

corkscrew maneuver with unknown turning rate. 

2. PROBLEM STATEMENT AND APPROACH TO THE 

SOLUTION 

The problem considered here is the state estimation of the 

nonlinear stochastic system 
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All vectors and matrices are of appropriate dimensions.  

The problem being considered here is finding the optimal 

estimate )t(x̂  as a functional of {z(t), to≤t≤tf} that minimizes 

the quadratic criterion: 

     .;)t(x̂)t(x)t(x̂)t(xEJ
T

0  (2.3) 

2.1. Estimators for Nonlinear System 

For nonlinear systems there are several approaches. Here the 

SDRE/SDDRE [Mracek, Cloutier, and D'Souza ] [Shue and 

Agarwal][ Xin and Balakrishnan][Lam, Anderson, and Xin] 

approaches are considered. The SDRE approach is based on 

the dual of the SDRE based nonlinear control [Lam, 

Anderson, and Xin]. This approach parameterizes the state 

equation (2.1) into the linear structure called State Dependent 

Coefficient Form. This approach includes the State 

Dependent Algebraic Riccati Equation (SDARE) based 

estimation and the State Dependent Differential-Difference 

Riccati Equation (SDDRE) based estimation. Then for linear 

measurement of the state, i.e. g(x(t))=Cx(t), The state 

equation are represented as 
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The SDDRE based estimator is 
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This is a suboptimal estimator. The optimal estimator has 

additional terms as detailed in [Shue and Agarwal ][ Xin, and 

Balakrishnan][Lam, Anderson and Xin]. 

3. KINEMATIC EQUATIONS OF MANEUVERING 

TARGET 

Comprehensive survey of modelling the behaviour of a 

maneuvering target can be found in [Li and Jilkov 

(2000),(2010),(2001),(2002),(2005)]. Here one specific case 

is considered. Aerodynamically controlled aircraft is 

assumed, i.e. velocity perpendicular to acceleration. 

3.1. The Kinematics as a Function of Velocity 

We assume that the target's velocity is expressed as 

 

vTT vv 1


 (3.1)  

where 

Tv


 - target velocity vector [m/sec] 

Tv  - absolute value of the target's velocity 

v1  - unit vector in the target velocity direction 

3.1.1. Velocity based acceleration equations -VA 

First order equations of motion based on the target's velocity 

(3.1) are derived. As the target is maneuvering the velocity 

vector is rotating. The target's acceleration is given by 

[Blakelock, J.H.] 
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Ta


- target acceleration vector [m/sec
2
] 

Tv


- angular rate of the target velocity vector [rad/sec] 

3.1.2. Velocity based Jerk equations - VJ 

Jerk is the derivative of the acceleration. The jerk has been 

included into the target's state in [Ghosh and 

Mukhopadhyay]. Second order equations of motion based on 

the targets velocity (3.1) are derived. As the target is 

maneuvering the velocity vector is rotating. The jerk 

(derivative of acceleration) is the given by [Blakelock][ 

Asseo and Ardila].This is called here Velocity based Jerk 

(VJ) equations of motion. The target's jerk is [Blakelock] 

[Asseo and Ardila.] 

 (3.4) 
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2
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 - target's jerk vector [m/sec
3
] 

 

Substituting  
vTv 1 from (3.2) gives [Asseo and Ardila] 
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3.2. The Kinematics as a Function of Acceleration 

In effort to reduce the computational effort with the SDDRE 

based on the Velocity based Jerk (VJ) equations of motion, as 

can be seen in section 6, here an acceleration based equations 

are derived. For aerodynamically controlled aircraft, under 

the aforementioned assumptions (the acceleration and 

velocity are perpendicular) the target's velocity's angular rate 

is equal to the target's acceleration angular rate. Then if the 

target's acceleration is expressed as 

aTT aa 1


 (3.6) 

where 

Ta


 - target acceleration vector [m/sec
3
] 

Ta  - absolute value of the target's velocity 

a1  - unit vector in the target acceleration direction 

(perpendicular to 
v1 ) 

From (3.7) it is possible to derive the following kinematic 

relations. 

 

3.2.1. Acceleration based Jerk equations - AJ 

First order equations of motion based on the target's 

acceleration (3.6) are derived. As the target is maneuvering 

the acceleration vector is rotating. The jerk (derivative of 

acceleration) is the given by [Blakelock]. This is called 

Acceleration based Jerk (AJ) equations of motion. The 

target's jerk is given by 
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where 

Tv


- target velocity vector [m/sec] 

Tj


- target jerk vector [m/sec
3
] 

Ta


- angular rate of the target acceleration vector [rad/sec] 

Remark: The angular rate of the target velocity vector (3.3) is 

not necessarily equal to the angular rate of the target 

acceleration vector (3.8)! 

3.2.2. Acceleration Based Snap equations - AS 

Snap is the derivative of the jerk. Second order equations of 

motion based on the targets acceleration (3.6) are derived. As 

the target is maneuvering the acceleration vector is rotating. 

The snap is the given by [Blakelock][ Asseo and Ardila]. 

This is called here Acceleration based Snap (AS) equations of 

motion. The target's snap is [Blakelock,[ Asseo and Ardila] 
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Ts


 - target's snap vector [m/sec
3
] 

 

Substituting  
vTa 1 from (4.7) gives the snap [Asseo and 

Ardila] 
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4. THE VARIANCE AND SPECTRUM OF THE GLINT 

NOISE 

It is assumed that the measurement noise is the glint noise. 

The spectral density  .2 HzmVgo
 of the glint is given by 

[Papoulis] 











Hz

m
TV sggo

2
2 ,   (4.1) 

is the one presented in [Peled-Eitan and Rusnak (2012)] 

where g
is the standard deviation of the glint noise [Barton 

and Ward], and Ts is the sampling interval of the frequency 

agile radar the spectral density of the measurement noise, v(t).  

5. INCORPORATION OF THE KINEMATIC 

CONSTRAINT 

The kinematics equations in section 3 are constraints that can 

be incorporated into the estimator equations. It is possible to 

incorporate the kinematic constraint into the state equation or 

measurement equation and the "unknown" quantities are 

interpreted as either a measurement noise or system driving 

noise. The approach here has the advantage that the 

kinematic constraints are incorporated in the system 

equations, the unknowns are the system driving noise and the 

measurements are linear. 

5.1. Velocity based Kinematic Equation 

5.1.1. Jerk kinematic equation - VJ 

With velocity based jerk equations (3.5), the kinematics of 

maneuvering target is modelled as 
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where it is assumed that: (i) the absolute value of target 

velocity is almost constant, i.e. constantvT 


; (ii the 

target's angular turning rate is constant, i.e. 0T 


; and (iii) 

wT represents the deviation of the actual behaviour of the 

target from the constant angular turning rate and constant 
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absolute value of the velocity assumptions. We have the state 

space representation in the State Dependent Coefficient Form 

in three dimensions (notice that this is a third order 

differential equation) 

 (5.3) 
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where 

z,y,x  - target position [m] 

z,y,x   - target velocity [m/s] 

z,y,x   - target acceleration [m/s
2
] 

Ta  - target acceleration [m/sec
2
] 

)(twTj - target process driving noise (jerk) [m/sec
3
] 

)t(v -target-missile separation measurement noise(glint) [m] 

5.2. Acceleration based Kinematic Equation  

5.2.1. Snap kinematic equation – AS 

With acceleration based snap equations (3.10) it is assumed 

that 0

 . Thus the kinematics of maneuvering target is 

modelled as 
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where it is assumed that (i) the absolute value of target 

acceleration is almost constant, i.e. constantaT 


; (ii) the 

target's angular turning acceleration is constant, i.e. 

0Ta


; and (iii) Tw represents the deviation of the actual 

behaviour of the target from the constant angular turning 

acceleration and constant absolute value of the acceleration 

assumptions.   

The state space representation in the State Dependent 

Coefficient Form is in three dimensions is (notice that this is 

a fourth order differential equation) 

 (5.7) 
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)(twTs - target process driving noise (snap) [m/sec
4
] 

6. TARGET MANEUVER MODEL 

6.1. Corkscrew Target Maneuver 

It is assumed that the target moves in a constant direction and 

the corkscrew (barrel roll) trajectory is created by 

accelerations in the perpendicular plane. 

6.2. The trajectory 

The trajectory of the corkscrew (barrel roll) is modelled as in 

[Li and Jilkov(2000)][Zarchan and Musoff [Imado and 

Miwa]. It is 
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where CS is the corkscrew maneuver turning rate. 

This trajectory is transformed to the inertial estimator's space 

according to 
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T  (6.2) 

where 
33R)roll,yaw,pitch(TIP is a transformation from 

the trajectory generation coordinates () to the inertial 

space (xT,yT,zT) by pitch, yaw, and roll angles, and the rest of 

the variables are self evident. 

In this example, the trajectory is obtained by multiplying the 

trajectory above by the transformation matrix above at some 

arbitrary angles in pitch, yaw and roll. 

6.3. Angular rate of the velocity and acceleration vectors 

Corkscrew maneuver propagating in the z-axis direction is 

considered, i.e. 
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6.4. The angular rate of the velocity vector 

For 000  TT yx   we get 
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This is a constant modulus rotating vector. Its direction in the 

space is not constant. That is 0T 


. This representation is 

not consistent with the assumption of constant angular 

acceleration (5.1) of the VJ based estimator and eventually is 

the cause of increased estimation errors.  

6.5. The angular rate of the acceleration vector 

We have 
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This is a constant direction and constant modulus vector. Its 

direction in the space is constant. This representation is 

consistent with the assumption of constant angular 

acceleration (5.5) of the AS based estimator. 

6.6. Discussion + Rational 

One can clearly see that the directions of the angular velocity 

vector and the angular acceleration vectors are different! 

They are equal only if the circular motion is planar, i.e. no 

motion in the z direction. In looking for representation of the 

trajectory motion with unknown parameters the 

representation for which the unknown parameters are 

constant is preferred as for this case the estimator is not 

required to increase its bandwidth to account for the 

dynamics of this unknown parameter/variable. 
 

7. SIMULATION RESULTS 

In this section the performance of the Velocity based Jerk 

(VJ) (5.1) and the Acceleration based Snap (AS) equation 

based filters (5.5) are compared via simulations. The discrete 

estimator has been implemented. 

    ];//[10];//[10
2423 HzsmWHzsmW ASprocessVJprocess   

The sampling interval is msTs 100  and the measurement 

noise level is g =3m. 

7.1. Tilted corkscrew trajectory  

The initial conditions and the trajectories' parameters are 

deg][],0,0,30[],/[2],[8

],/[40],/[0],/[40],[0],[0],[0 000

inanglesTTsradga

smsmsmmmm

IPIPCST

TTTTTT
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
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Figure 7.1 presents a tilted corkscrew trajectory used in this 

example. Figures 7.2 present the deterministic and stochastic 

tracking error of tilted corkscrew target maneuver by the VJ 

and AS based estimators.  
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Figure 7.1: Tilted corkscrew trajectory in the inertial space, 

real and measured position. 
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Figure 7.2: Deterministic(a) and  stochastic(b) tracking error of 

tilted corkscrew target maneuver by the VJ and AS based 

estimators. 

 

Figures 7.3 present deterministic and stochastic turning rate 

estimation error of tilted corkscrew target maneuver by the 

VJ and AS based estimators. The supremacy of the AS based 

estimators is clearly seen from these figures. Figure 7.4 

presents the position estimation RMS errors of tilted 

corkscrew target maneuver. Figure 7.4 presents the 

Position(x), velocity (dx), acceleration(d2x) and jerk(d3x) 

estimation RMS errors of tilted corkscrew target maneuver. 

The performance of the VJ and AS based filters is clearly 

demonstrated.  
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Figure 7.3: Deterministic(a) and  Stochastic (b) turning rate 

estimation error of tilted corkscrew target maneuver by the VJ and 

AS based estimators. 
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Figure 7.4: Position estimation        Figure 7.5: The X-Position(x), 

RMS errors of tilted corkscrew        velocity(dx), acceleration(d2x) 

target maneuver.                               and jerk(d3x) estimation RMS 

                                                         errors of tilted corkscrew target 

         maneuver.  
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From the results above one can clearly see the superiority of 

the acceleration based snap (AS) filters.  

Unlike other approaches, e.g. the IMM filter in [Peled, Moran 

and Rusnak], the performance is independent of the tilt of the 

trajectory.  
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