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Abstract: It is well known that in most bilateral teleoperation systems, variable time-delays
arise in the communications. Motivated by this fact, the present work reports the extension to
the (asymmetric) variable time-delays case of the adaptive controller for bilateral teleoperators
with uncertain parameters and constant time-delays, reported in Nuño et al (2010) [Nuño,
E., Ortega, R. and Basañez, L. (2010). An adaptive controller for nonlinear teleoperators.
Automatica, 46(1), 155–159]. Compared to the previous work, the stability analysis does not
rely on the cascade interconnection structure of the local and remote nonlinear dynamics and
the linear interconnection map. Instead, the paper employs a different Lyapunov candidate
function that incorporates a strictly positive term, the local and remote position error. With the
only assumption that a bound of the time-delays is known, the paper also presents a sufficient
condition that ensures the asymptotic convergence of position errors and velocities to zero.
Some simulations, in free space and interacting with a stiff wall, illustrate the performance of
the proposed control scheme in the presence of variable time–delays.
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1. INTRODUCTION

The control of bilateral teleoperators is a highly active
field, that is challenging due to the complexity of their
nonlinear dynamics, to the time–delays in the communi-
cations as well as to the wide range of practical real-life
applications. A major breakthrough to the treatment of
this problem has been the use of scattering signals (wave
variables) to transform the pure time–delays of the com-
munications into a passive transmission line. Assuming
that the human operator and the environment are passive
(from force to velocity) and using a damping injection term
on the local and the remote manipulators to transform
the passive mechanical manipulators into output strictly
passive systems, asymptotic convergence to zero of veloci-
ties can be ensured (Anderson and Spong, 1989; Niemeyer
and Slotine, 1991). For a recent historical survey along this
research line the reader may refer to (Hokayem and Spong,
2006) and, for a tutorial on teleoperators control, to (Nuño
et al., 2011a).

Position tracking is rarely ensured by scattering–based
schemes mostly because, if a position error term is added
in the controller, the communications lose their passive
behavior, due to the extra energy generated by such
error term (Chopra et al., 2006). PD–like schemes that
overcome this obstacle, without employing the scattering
transformation, have been reported in (Lee and Spong,
2006; Nuño et al., 2008, 2009). Chopra and Spong (2006)
proposed to formulate the position tracking problem in

terms of synchronization, which also avoids the scattering
transformation. An adaptive version of this scheme is
proposed in (Chopra et al., 2008b) where the aim is to
synchronize the local and remote positions and velocities
using a synchronizing signal that is a linear combination
of such positions and velocities.

Nuño et al. (2010) reports an adaptive controller, for un-
certain bilateral teleoperators with constant time-delays,
that is capable of ensuring asymptotic convergence to zero
of both, local and remote, position errors and velocities.
The main, simple but essential, difference between the
controller in (Nuño et al., 2010) and the one in (Chopra
et al., 2008b) is the use of a linear combination of the
velocity and the position error —instead of the position—
in the, so-called, synchronizing signal. This idea has been
latter adopted in (Nuño et al., 2011c) to the problem of
synchronization and consensus of networks of nonidentical
Euler–Lagrange systems (an exception to the constant
time-delays is the recent work (Hashemzadeh et al., 2012),
where an adaptive controller together with a high-gain
sliding term is proposed). Recently, based on the small gain
theorem and assuming that the physical parameters are
known, (Polushin et al., 2013) proposes a controller for the
asymptotical stabilization of a cooperative teleoperation
system with variable time-delays.

Motivated by the wide number of applications of bilateral
teleoperators and networked robotic systems that exhibit
variable time–delays in their communications (Chopra
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et al., 2008a; Ryu et al., 2010; Secchi et al., 2008; Po-
lushin et al., 2006; Kang et al., 2013), the present paper
reports an extension to the asymmetric variable time–
delays case of the controller of Nuño et al. (2010). It
should be underscored that the proof of the convergence
in (Nuño et al., 2010) relies on the analysis of a cascade
interconnection between the nonlinear dynamics of the
local and remote manipulators and a linear map, that
accounts for their interconnection and contains some time–
delayed terms, with the synchronizing signal as an input.
The linear map stability is studied in the frequency domain
using the Laplace transform (see (Nuño et al., 2011b)).
Clearly, such technique cannot be employed in the case
of variable time–delays. Instead, this proposal employs a
different Lyapunov function candidate that incorporates a
strictly positive term with regards to the local and remote
position error. By doing so, the paper derives a sufficient
condition for the asymptotic convergence of position errors
and velocities to zero. Up to the authors knowledge, this
is the first work that deals with variable time-delays us-
ing an adaptive controller to estimate the robot physical
parameters in a bilateral teleoperation scenario. Finally,
some simulations in free space and in contact with a stiff
environment are presented to confirm the performance of
the proposed approach.

To streamline the presentation, throughout the paper the
following notation is introduced. Lower case letters denote
scalar functions, e.g. t, bold lower case letters denote
vectors, e.g. x, and bold upper case letters denote matrices,
e.g. A. Moreover, I,Ø will be the identity and all-zero
matrices, respectively, of appropriate dimensions. Addi-
tionally, we define R := (−∞,∞), R>0 := (0,∞), R≥0 :=
[0,∞). λm{A} and λM{A} represent the minimum and
maximum eigenvalues of matrixA, respectively, while ||A||
denotes the matrix–induced 2-norm. |x| stands for the
standard Euclidean norm of vector x. For any function f :
R≥0 → R

n, the L∞-norm is defined as ‖f‖∞ := sup
t≥0

|f(t)|,

and the L2-norm as ‖f‖2 := (
∫∞

0
|f(t)|2dt)

1

2 . The L∞ and
L2 spaces are defined as the sets {f : R≥0 → R

n : ‖f‖∞ <
∞} and {f : R≥0 → R

n : ‖f‖2 <∞}, respectively.

2. BACKGROUND

This section presents the dynamical model of the nonlinear
bilateral teleoperator and the previous adaptive controller.

2.1 Nonlinear Dynamical Model

The local and remote robot manipulators are modeled as
a pair of n–Degree Of Freedom (DOF), fully actuated,
Euler–Lagrange systems. Their corresponding nonlinear
dynamics are given by

Ml(ql)q̈l +Cl(ql, q̇l)q̇l + gl(ql) + dl = τh − τ l

Mr(qr)q̈r +Cr(qr, q̇r)q̇r + gr(qr) + dr = τ r − τ e,
(1)

where q̈i, q̇i,qi ∈ R
n are the acceleration, velocity and

joint position, respectively. The mappingMi : R
n → R

n×n

is the inertia matrix; Ci : R
n×R

n → R
n×n is the Coriolis

and centrifugal effects matrix, defined via the Christoffel
symbols of the first kind; gi : Rn → R

n is the vector of
gravitational forces; τ i ∈ R

n is the control signal; τh ∈
R

n, τ e ∈ R
n are the joint torques corresponding to the

forces exerted by the human operator and the environment
interaction, respectively, and di is an external disturbance
which is assumed unknown but constant. The subscript
i = {l, r} refers to the local and remote manipulators,
respectively.

With regards to the dynamics (1), the following standard
assumption is adopted:

A1. The generalized inertia matrix is positive definite and
bounded, i.e., ∀q, mi

mI ≤ Mi(q) ≤ mi
MI, where

mi
m := λm{Mi(q)} and mi

M := λM{Mi(q)}.

Further, it is well known that dynamics (1) enjoy the
following properties (Kelly et al., 2005; Spong et al., 2005;
Nuño et al., 2009):

P1. For all x ∈ R
n, x⊤[Ṁi(qi)− 2Ci(qi, q̇i)]x = 0.

P2. For all q,x,y ∈ R
n, ∃kic ∈ R>0 such that

|Ci(q,x)y| ≤ kic|x||y|. Hence |Ci(q,x)x| ≤ kic|x|
2.

P3. The dynamics are linearly parameterizable. Thus, for
all x,y ∈ R

n,

Mi(qi)y+Ci(qi, q̇i)x+gi(qi)+di = Yi(qi, q̇i,x,y)θi

where Yi : R
n × R

n × R
n × R

n → R
n×p is a map of

known functions and θi ∈ R
p is the constant vector

containing the manipulator physical parameters (link
masses, moments of inertia, etc.).

2.2 Previous Approach for Constant Time–Delays

Let ei ∈ R
n denote the position errors, defined, for a

constant time-delay T , by

el = ql − qr(t− T ); er = qr − ql(t− T ). (2)

The control objective of (Nuño et al., 2010) is to drive the
position errors and the velocities to zero independently of
the constant time–delay T and without using the scatter-
ing transformation. For, the following adaptive controllers
are proposed

τ l = λM̂lėl + λĈlel − ĝl − d̂l +Klǫl +Bėl (3)

τ r =−λM̂rėr − λĈrer + ĝr + d̂r −Krǫr −Bėr,

where, to shorten the equation, the explicit dependence
on qi and q̇i has been withdrawn from M̂i, Ĉi and ĝi

which are the estimated inertia matrix, Coriolis matrix
and gravity vector, respectively, and d̂i is the estimated
external disturbance. The controller gains Ki and B are
diagonal and positive definite n×n matrices. Additionally,
the synchronizing signal ǫi is defined as

ǫi = q̇i + λei, (4)

for any λ ∈ R>0. Note that using Property P3, controllers
(3) can be written as τ l = Yl(ql, q̇l, el, ėl)θ̂l+Klǫl+Bėl
and τ r = −Yr(qr, q̇r, er, ėr)θ̂r − Krǫr − Bėr, and thus

Yiθ̂i = λM̂iėi + λĈiei − ĝi − d̂i.

The dynamics of the estimations of the uncertain param-
eters θ̂i(t) is given by

˙̂
θi = ΓiY

⊤
i ǫi, (5)

where Γi = Γ⊤
i ∈ R

p×p are positive definite matrices.

The following proposition states the convergence claims of
the previous result (Nuño et al., 2010).
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Proposition 1. (Nuño et al., 2010) Consider the bilateral
teleoperator (1) in free motion (τh = τ e = 0) con-
trolled by (3) and using the parameter update law (5)
together with (4). Then, for any constant time-delay T ,
all signals in the system are bounded. Moreover, position
errors and velocities asymptotically converge to zero, i.e.,
lim
t→∞

|ei(t)| = lim
t→∞

|q̇i(t)| = 0. �

The proof of the previous proposition exploited the cas-
cade interconnection structure between the closed–loop
teleoperator, (1) and (3), and the linear interconnection
map (4). First, using the Lyapunov-Krasovskǐi candidate
function V = 1

2

∑

i∈{l,r}

Vi with

Vi = ǫ
⊤
i Miǫi + θ̃

⊤

i Γ
−1
i θ̃i + λe⊤i Bei +

t
∫

t−T

q̇⊤
i Bq̇idσ,

it has been shown that lim
t→∞

|ǫi(t)| = lim
t→∞

|ėi(t)| = 0. Then

using the matrix representation of (4), together with a
proper change of variables and its transformation to the
frequency domain —using the Laplace transform 1 — it is
proved that lim

t→∞
|ei(t)| = lim

t→∞
|q̇i(t)| = 0.

3. THE ADAPTIVE CONTROLLER FOR THE
VARIABLE TIME-DELAYS CASE

In this section the paper reports its main contribution,
that is, the extension of controller (3) to the variable time–
delays. With regards to the time–delays, the following
standard assumption is used:

A2. The variable time-delays have known upper bounds
∗Ti, i.e., 0 ≤ Ti(t) ≤ ∗Ti < ∞. Additionally, the

time–derivatives Ṫi(t) are bounded.

It should be noted that, contrary to (Nuño et al., 2010),
the time–delays can be also asymmetric.

Since delays are now time–varying, the position errors in
(2) change to 2 :

el = ql − qr(t− Tr(t)); er = qr − ql(t− Tl(t)). (6)

In this case,

ėl = q̇l − (1− Ṫr(t))q̇r(t− Tr(t))

ėr = q̇r − (1− Ṫl(t))q̇l(t− Tl(t)). (7)

The local and remote proposed controllers are

τ l = λM̂l(ql)ėl + λĈl(ql, q̇l)el − ĝl(ql)− d̂l +Klǫl

τ r = −λM̂r(qr)ėr − λĈr(qr, q̇r)er + ĝr(qr) + d̂r −Krǫr.
(8)

Compared to (3), these controllers do not contain the term
Bėi and the position and velocity errors are calculated
using (6) and (7), respectively.

Invoking Property P3 and using (4), the teleoperator (1)
in closed–loop with (8) is given by

1 Note that, if a signal x(t) ∈ R
n accepts the Laplace transform L

and L{x(t)} = X(s), then L{x(t− T )} = e
−sT

X(s), where s is the
Laplace variable.
2 With some abuse of notation, the rest of the paper uses ei for the
position errors with variable delays.

Ml(ql)ǫ̇l +Cl(ql, q̇l)ǫl +Klǫl =Ylθ̃l + τh (9)

Mr(qr)ǫ̇r +Cr(qr, q̇r)ǫr +Krǫr =Yrθ̃r − τ e

where θ̃i = θi − θ̂i, Yiθ̂i = λM̂iėi + λĈiei − ĝi − d̂i and
Ki = K⊤

i > 0 ∈ R
n×n.

We are now ready to state the main result of this paper.

Proposition 2. Consider the nonlinear teleoperator (1) in
free motion (τh = τ e = 0) and in closed-loop with the
controller (8) and using the parameter estimation law (5).
If the controller gain λ is set as

1 ≥ λ2(∗Tl +
∗Tr)

2, (10)

then, for any variable time–delay fulfilling Assumption A2,
all signals in the system are bounded. Moreover, the local
and remote position errors and velocities asymptotically
converge to zero, i.e., lim

t→∞
|ei(t)| = lim

t→∞
|q̇i(t)| = 0. �

Proof. As usual in adaptive control, let us start by

defining Wi =
1
2ǫ

⊤
i Mi(qi)ǫi +

1
2 θ̃

⊤

i Γ
−1
i θ̃i.

From Assumption A1, Wi is positive definite and radially
unbounded with regards to ǫi and θ̃i. It can be easily
verified, using Property P1, that Ẇi along the closed-loop
trajectories (9) is Ẇi = −ǫ

⊤
i Kiǫi. Since Wi ≥ 0, Ẇi ≤ 0

we conclude that ǫi ∈ L2 ∩ L∞ and θ̃i ∈ L∞.

Now, consider W = Wl +
kl

kr

Wr + λkl|ql − qr|
2, where

ki := λm{Ki}. Clearly, W is positive definite and radially

unbounded with regards to ǫi, θ̃i and |ql − qr|. Its time-

derivative is Ẇ = Ẇl +
kl

kr

Ẇr + 2λkl(ql − qr)
⊤(q̇l − q̇r).

Using Ẇi ≤ −ki|ǫi|
2 yields

1

kl
Ẇ ≤ −|ǫl|

2 − |ǫr|
2 + 2λ(ql − qr)

⊤(q̇l − q̇r).

At this point, it is useful to note that

qi − qi(t− Ti(t)) =

∫ t

t−Ti(t)

q̇i(σ)dσ (11)

Now, using (4) and (11) on Ẇi returns

1

kl
Ẇ ≤−λ2(|el|

2 + |er|
2)− |q̇l|

2 − |q̇r|
2 −

− 2λq̇⊤
l

∫ t

t−Tr(t)

q̇r(σ)dσ − 2λq̇⊤
r

∫ t

t−Tl(t)

q̇l(σ)dσ

Integrating Ẇi, from 0 to t, yields

1

kl
W (t)−

1

kl
W (0) ≤ −λ2(‖el‖

2
2 + ‖er‖

2
2)− ‖q̇l‖

2
2 −

− ‖q̇r‖
2
2 − 2λ

∫ t

0

q̇⊤
l (θ)

∫ θ

θ−Tr(θ)

q̇r(σ)dσdθ −

− 2λ

∫ t

0

q̇⊤
r (θ)

∫ θ

θ−Tl(θ)

q̇l(σ)dσdθ.

Invoking Lemma 1 of Nuño et al. (2009) to the double
integral terms, with αl and αr, respectively, yields
1

kl
W (t)−

1

kl
W (0) ≤ −λ2(‖el‖

2
2+‖er‖

2
2)−ψl‖q̇l‖

2
2−ψr‖q̇r‖

2
2

where ψl := 1 − λαl −
λ∗T 2

l

αr

, ψr := 1 − λαr −
λ∗T 2

r

αl

.
Solving simultaneously for ψi > 0 and for αi > 0, it is
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straightforward to show that there exist possible solutions
if λ is set fulfilling 1 ≥ λ2(∗Tl +

∗Tr)
2. If this inequality

holds, then there exists ψi > 0 and thus

1

kl
W (t)+λ2(‖el‖

2
2+‖er‖

2
2)+ψl‖q̇l‖

2
2+ψr‖q̇r‖

2
2 ≤

1

kl
W (0)

Clearly ei, q̇i ∈ L2 and W ∈ L∞. This last and the fact
that W is radially unbounded with respect to |ql − qr|,
shows that |ql − qr| ∈ L∞.

Further, using (6), q̇i ∈ L2 and |ql − qr| ∈ L∞ ensure
that ei ∈ L∞. Immediately, from (4) with ǫi, ei ∈ L∞ it
is also shown that q̇i ∈ L∞ which in turn —together with
Assumption A2— implies that ėi ∈ L∞.

From the closed–loop system (9), Assumption A1, Prop-
erties P2 and P3, and all the previous bounded signals it
is proved that ǫ̇i ∈ L∞. This concludes the boundedness
part of the proof.

Finally, the fact that ǫ̇i, ėi ∈ L∞ and ǫi, ei ∈ L2 ∩
L∞ ensures, from Barbalǎt’s lemma, that lim

t→∞
ǫi(t) =

lim
t→∞

ei(t) = 0. Since ǫi = q̇i + λei it is also concluded

that lim
t→∞

q̇i(t) = 0. This concludes the proof.

Remark 1. The proposed stability analysis for the vari-
able time-delays case is based on simple Lyapunov–like
functions and thus is more straightforward than the one
appearing in (Nuño et al., 2010). In such work, apart
from the fact that it considers only constant time-delays,
the stability analysis is cumbersome and involves the use
of Lyapunov-Krasovskǐi functionals and frequency domain
techniques.

Remark 2. Compared to (Nuño et al., 2010), no additional
damping terms, see −Bėi, need to be incorporated to
prove the convergence of position errors and velocities to
zero.

Remark 3. As it has already been observed in the liter-
ature, see for example (Nuño et al., 2011a), it can be
readily shown that if the human and environmental input
forces are bounded then the velocities and position error
are also bounded. In addition, and although not presented
here due to space limitations, it can be shown that if the
external forces τ i are assumed to belong to the L2 space
then ei, q̇i ∈ L2, while if τ i ∈ L2 ∩ L∞ then lim

t→∞
|ql(t)−

qr(t)| = lim
t→∞

|q̇i(t)| = 0.

Remark 4. In order to compute Ṫi(t) at both ends, the
value of a new function fi(t) is sent through the commu-
nications together with position and velocity data. Thus,
when fi(t) arrives to its destination it has the value fi(t−

Ti(t)). Hence, we can estimate Ṫi(t), indirectly, from ḟi(t−

Ti(t)) = ḟi(t)[1−Ṫi(t)]. Designing fi(t) s.t. ḟi(t) = 1, yields

Ṫi(t) = 1 − ḟi(t − Ti(t)). Hence, Ṫi(t) can be obtained
without knowledge of Ti(t).

4. SIMULATIONS

To show the effectiveness of the proposed scheme, some
simulations, in which the local and remote manipulators
are modeled as a pair of 2 DOF serial links with revolute
joints (cf. Fig. 1), are presented. Their corresponding
nonlinear dynamics are modeled by (1). In what follows

Stiff Wall

Local

Remote

m
2
l

Controller ControllerComm.

l
2l

l
1l

q
1l

q
2l

m
1
l

m
2r

l
2r

q
2r

l
1r m

1r

q
1r

Fig. 1. Simulations scheme.

αi := l22im2i + l21i(m1i + m2i), βi := l1i l2im2i and δi :=

l22im2i . The inertia matrices Mi(qi) are given by

Mi(qi) =

[

αi + 2βic2i δi + βic2i
δi + βic2i δi

]

.

c2i is the short notation for cos(q2i). qki
is the articular

position of link k of manipulator i, with k ∈ {1, 2}. The
Coriolis and centrifugal effects are modeled by

Ci(qi, q̇i) =

[

−2βis2i q̇2i −βis2i q̇2i
βis2i q̇1i 0

]

.

s2i is the short notation for sin(q2i). q̇1i and q̇2i are the
respective revolute velocities of the two links. The gravity
forces gi(qi) for each manipulator are represented by

gi(qi) =







1

l2i
gδic12i +

1

l1i
(αi − δi)c1i

1

l2i
gδic12i






.

c12i stands for cos(q1i +q2i). lki
and mki

are the respective
lengths and masses of each link. For simplicity, the external
disturbance d̂i is set to zero.

The following parametrization Y(q, q̇, e, ė) is proposed for
both manipulators

Y =

[

λė1 λY12 λė2 −gc12 −gc1
0 λ(c2ė1 + s2q̇1e1) λ(ė1 + ė2) gc12 0

]

,

θ =

[

α β δ
1

l2
δ

1

l1
(α− δ)

]⊤

,

where Y12 = 2c2ė1 + c2ė2 − s2q̇2e2 − 2s2q̇2e1.

The physical parameters for the manipulators are: the
length of links l1i and l2i , for both manipulators, is 0.38m;
the masses of the links are m1l = 1.5kg, m2l = 0.75kg,
m1r = 2.5kg and m2r = 1.5kg.

The initial conditions are q̇i(0) = 0 and q⊤
l (0) =

[−1/8π; 1/8π], q⊤
r (0) = [1/6π;−1/4π].

For simplicity, in the simulations we set Tl(t) = Tr(t),
and ∗Tl = ∗Tr = 0.7. The variable time–delay and its
derivative can be seen in Fig. 2.

The controller gains are set as: Kl = 5I2, Kr = 15I2 and
Γl = Γr = 0.5I5. Further, λ is set fulfilling (10) as λ = 0.7.

The human operator is modeled as the spring–damper
system τ = Kh(qd − ql)− dq̇l where Kh = 25 and d = 5.
Fig. 3 depicts the desired human position qh.
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Fig. 2. Variable time-delay employed in the simulations.
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Fig. 3. Desired human position.

4.1 Remote Manipulator in Free Space

In this section, the simulations in which the remote ma-
nipulator moves without contact with its environment are
presented. In Fig. 4, it can be observed that position
tracking between the local and the remote manipulators is
established in this case. Moreover, Fig. 5 shows that local
and remote velocities asymptotically converge to zero.
Finally, Fig. 6 depicts the time evolution of the estimated
parameters, which are clearly bounded.
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← Remote
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Fig. 4. Joint position an error when the remote manipula-
tor moves freely.
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V
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Fig. 5. Joint velocities in free space.
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θ̂
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Time (s)

Fig. 6. Dynamic behavior of the estimated parameters.

4.2 Remote Manipulator Interacting with a Stiff Wall

In this set of simulations, a stiff wall is added in the
remote environment. The wall is located in the xz−plane
at y = 0.3m. It is modeled as a spring–damper Cartesian
system with stiffness equal to 20000Nm and damping equal
to 200Nm/s.

For this case, Fig. 7 and Fig. 8 show the position tracking
capabilities of the proposed controller in Cartesian space
and in joint space, respectively. From these figures it is
concluded that, despite variable time–delays and a stiff
interaction with the environment, position error converges
to zero and hence position tracking is established. Fig. 9
presents the local and remote velocities and Fig. 10 the
evolution of the estimated parameters.
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Fig. 7. Cartesian position when interacting with a stiff
wall, located at yr = 0.3m.
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5. CONCLUSIONS

This work proposes an adaptive controller for general
nonlinear teleoperators with variable time–delays. This
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Fig. 10. Time evolution of the estimated parameters θ̂i(t)

adaptive controller can be seen as an extension of the
previous schemes reported in (Nuño et al., 2010). The
proposed controller excels that in (Nuño et al., 2010) in
two main aspects, the time–delays can be asymmetric
and variable and it injects less damping. The reported
scheme assures that, in free motion, all signals in the
system are bounded and position errors and velocities
asymptotically converge to zero. The paper presents some
numerical simulations that confirm the theoretical results.

Future work includes the extension of this framework to
the more general case of synchronization of networks of
Euler–Lagrange systems with variable time-delays in the
interconnection.
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