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Abstract: This paper investigates a self adaptation mechanism regarding the rate with which
new measurements have to be incorporated in Moving-Horizon state estimation algorithms. This
investigation can be viewed as the dual of the one proposed by the author in the context of
real-time model predictive control. An illustrative example is provided in order to assess the
relevance of the proposed updating rule.
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1. INTRODUCTION

Moving-Horizon Observers (MHO) are algorithms that
involve repeated on-line optimization in order to update
the estimated value of the state [Michalska and Mayne,
1995, Alamir, 1999, Rao et al., 2003, Kuhl et al., 2011].
More precisely, the estimated state is the optimal solution
of an optimization problem in which the cost function
accounts for the interpretation of the past measurement
(over some observation horizon) and the compatibility
with the presumed model of the system. Periodically,
the observation horizon is shifted in order to take into
account new measurements while discarding older ones.
Typically, the shifting period is taken equal to the mea-
surement acquisition period which, in the early stage of
MHO development was compatible with the assumption
of instantaneous solvability of the optimization problem.

Amazingly enough, this feature has never been revisited
despite the recent advances in real-time implementation
framework where the optimization is truncated before an
optimal solution is reached. In such frameworks, the time
that is available for the optimization is tightly related to
the horizon shifting period. More precisely, the question is
the following:

How many iterations of the optimization al-
gorithm should be executed before the cost
function is updated by including new available
measurements?

The same question can be reformulated equivalently:

How many new measurement instances should
be acquired before the cost function is up-
dated? (During how many periods should the
optimizer work on the same unchanged prob-
lem before the latter is updated to account for
the newly available measurements?)

To assess the relevance of the questions above, one can sim-
ply argue that it has never been proved that the commonly
used answer is optimal in all circumstances. Yet, there
is another, probably more convincing argument, which

is that recent investigations (see [Alamir, 2008, 2013])
on the dual problem of Model Predictive Control (MPC)
context clearly showed the existence of time varying, con-
text dependent, optimal control updating period (which
is the period during which the optimizer works on the
same problem before the control defined by the updated
parameter is applied to the system).

In this paper, it is shown that a similar formulation, sim-
ilar techniques and, under certain circumstances, similar
conclusions can be obtained regarding the optimal mea-
surement inclusion rate problem.

The paper is organized as follows: First, the problem is
stated in section 2 by showing that monitoring the mea-
surement inclusion rate can be viewed as a discrete-time
output regulation problem in which the control input is
the number of iterations to be performed before new set
of measurements is accounted for. In section 3, a gradient-
based heuristic is proposed to solve this problem leading
to an updating law for the measurement inclusion rate.
An illustrative example is given in section 4 in order to
assess the efficiency of the proposed updating scheme and
its ability to handle varying circumstances during the
system’s lifetime. Finally, section 5 concludes the paper
and gives hints for further investigation.

2. THE MEASUREMENT INCLUSION RATE AS AN
OUTPUT REGULATION PROBLEM

Let us consider dynamical systems that are governed by
the following evolution law:

x(k) =X(M,x(k −M),u(k)) (1)

y(k) = h(x(k), u(k)) (2)
where x ∈ Rn is the state vector, M is some integer and
where the notation x(k) refers to the state at instant kτ for
some sampling period τ that is supposed here (without loss
of generality) equal to the measurement acquisition period.
u(k) represents the sequence of some measured exogenous
inputs such that:
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u(k) = {u(k −M), . . . , u(k)} (3)
Note that equation (1) represents a multi-step state tran-
sition map that gives the value of the state vector starting
from the initial value x(k − M) and under the input
sequence defined over the time interval [k−M,k] by u(k).
In the sequel, the length of the sequence of inputs u(k) is
defined from the context so that the same notation u(k)
can be used to designate sequences of different lengths
provided that the last input is u(k).

k

⌧

time

Ym(k)

X(N + q, p,u)

p

Observation horizon
at instant k ⌧u

updating
period

k - ` - N k - `

Fig. 1. Schematic view showing the key notation used in
the definition of MHO.

Ideal Moving-Horizon Observers (MHO) are algorithms
which compute a rational estimation x̂(k) of the current
state x(k) based on the last estimation popt(k− `) of some
decision variable p and the sequence of past measured
outputs Ym(k) defined by (see Figure 1):

Ym(k) :=




ym(k)
...

ym(k −N)


 ∈ R(N+1)·ny (4)

More precisely, the general form of MHO-based state
estimation is given by:

x̂(k) = F (popt(k),u(k)) (5)

popt(k) = arg min
p∈P

J
(
p | Ym(k − `),u(k − `), popt(k − `)

)

(6)
where

X p(k − `) is a vector of decision variables that is gen-
erally taken to be the presumed value of the state at
the beginning of the observation horizon (at instant
k − `−N) or it can be the whole state trajectory as
in the multiple-shooting version of the MHO imple-
mentation [Kuhl et al., 2011].

X P ⊂ Rn is the set of admissible parameter values.

X J(·) is the cost function that is generally decomposed
into an output prediction error-related term and a
system’s dynamic related term with the standard
trade-off weighting coefficients that depend on noise
covariance matrices.

Remark 1. At this stage, it is very important to under-
line that the definition of the cost function is out of the

timetktk-1tk-1 - N⌧

Observation horizon
at instant tk

Observation horizon
at instant tk-1

p(tk-1)

updating
p(tk)p(tk)

p⇤(tk-1)

`(q)⌧

Fig. 2. The time structure of the updating scheme defined
by (11)-(12).

scope of the present contribution in which the cost function
is supposed to be given by the designer. The aim of the
forthcoming developments is to suggest a way to distribute
the minimization of this cost function over the system
lifetime. Whether this enhances a better estimation of the
state or not depends on the relevance of the weighting
matrices that are used to define this cost function. ♠

Figure 1 shows a schematic view of the situation when the
presumed value of the state at instant k−`−N is taken as
decision variable, denoted by p. Note that in this specific
case, the map F involved in (5) is given by:

x̂(k) = X(N + `, popt(k),u(k)) =: F (popt(k),u(k)) (7)

In this framework, the time period that lasts between the
availability of the measurement data Ym(k − `) (namely
instant k− `) and the delivery of the optimal value popt(k)
(instant k) is equal to the so called updating period τu
given by:

τu = ` · τ (8)

During this amount of time, the optimization problem
defined by (6) has to be solved.

For systems that need fast updating periods, the updating
time τu = `τ may not be sufficient to reach the optimal
solution (regardless of local minima). In such situations,
the definition (6) is no more relevant. Indeed, one can only
refer to an updating rule that involves a limited number
q of iterations of some optimization subroutine S. This
implicitly assumes that q iterations of the subroutine S can
be performed during the updating period `τ . Denoting by
τc the time needed to perform a single iteration, it comes
that:

` = `(q) = int
⌊qτc
τ

⌋
+ 1 (9)

where for any positive real s, int(s) stands for the integer
part of s. Based on the above discussion, in the sequel,
` can be viewed as a function of q for a given pair of
measurement acquisition period τ and an optimization
subroutine that defines the time τc on a specific hardware
facility.
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Consequently, the decision variable p can be updated only
at updating instants (see Figure 2):

tk = tk−1 +
[
`(q(tk−1))

]
· τ (10)

This leads to the following updating rules:

p(tk) = S(q)
(
p∗(tk) |Ym(tk−1),u(tk−1)

)
(11)

p∗(tk) = X(`(tk−1), p(tk−1),u(tk−1 −Nτ)) (12)
Note that the definition of p∗(tk) involves an `-step pre-
diction map. Note that p∗(tk) is used as an initial guess
for the iterations invoked in (11).

Figure 2 illustrates the temporal structure of the updating
laws given by (11)-(12). It shows the following features:

X The shift of the observation horizon corresponds at
instant tk to `(q(tk)) basic sampling periods leading
to a temporal shift of `(q(tk))τ .

X The computation of p(tk) is done during the time
interval [tk−1, tk] based on the initial guess p∗(tk).

X Note that the updating of the state estimate can still
be done at each basic sampling period using the last
updated value of p using the following expressions:

∀i ∈ {1, . . . , `}, (13)

x̂(tk−1 + iτ) = X(`+N + i, p(tk−1),u(tk−1 + iτ))

where ` = `(q(tk−1)).

Now given that p∗(tk) is defined in terms of p(tk−1) and
u(tk−1 − Nτ) [see (12)] and that the latter is contained
in u(tk−1), one can write the evolution equation for the
parameter vector p by combining (11)-(12) :

p(tk) = G
(
p(tk−1), q(tk−1),w(tk−1)

)
(14)

for a straightforward definition of G where w(tk−1) stands
for the past measurement data, namely:

w(tk−1) :=
{
Ym(tk−1),u(tk−1)

}
(15)

Note also that using the same notation, the value of the
cost function at instant tk can be written in the following
form [according to (6)]:

J
(
p(tk)|p(tk−1),w(tk−1)

)
(16)

and again, since p(tk) is given by (14), the cost function
can be written in a more compact form:

J = h
(
p(tk−1), q(tk−1),w(tk−1)

)
(17)

The discussion above enables to view the situation as
the one in which there is a discrete-time dynamic system
defined by (14) in which, the state is p, the control is given
by q and the past measurement (including the control and
the measured output) are exogenous non modeled signals
while the control objective is to steer the output J given
by (17) to its minimum value.

This is obviously a control problem (see Figure 3) in which
the control variable is defined by q which is the number

p+ = G
�
p, q,w

�
w

q

J = h(p, q,w)

p

J
Updating

Law?

Fig. 3. The measurement inclusion rate problem viewed
as an discrete-time output regulation problem with
dynamic state p, control input q and a regulated
output J .

of measurements that enter (and leave) the buffer of the
MHO at the next shift of the observation interval.

Solving this control problem leads to an adaptive behavior
of q that takes into account both the measurement buffer
and the measured behavior of the cost function during the
system lifetime. The decision variable q is called hereafter
the Measurement Inclusion Rate as it defines the updating
time `(q)τ during which no new measurements are ac-
counted for and iterations are applied to the same cost
function.
Remark 2. Note that the computations involved in the
updating rule for q (the feedback law) must correspond to a
negligible burden since the whole framework is supposed to
compensate for the lack of computation time (see section
3.2).

3. UPDATING LAW FOR THE MEASUREMENT
INCLUSION RATE

In order to simplify the expressions, the following short
notation is used:

X J(tk) denotes the best obtained value of the cost
function defined on the observation horizon [tk−1 −
Nτ, tk−1] after q iterations.

X J∗(tk) denotes the value of the same cost function at
the initial guess p∗(tk) that is computed according to
(12).

Obviously, one key step toward understanding the con-
vergence issue is to examine the ratio between the best
obtained values of the cost function at two successive
updating instants tk−1 and tk, namely (see Figure 2):

J(tk)

J(tk−1)
=

J(tk)

J∗(tk)︸ ︷︷ ︸
E(q,tk)

× J∗(tk)

J(tk−1)︸ ︷︷ ︸
D(q,tk)

(18)

=E(q, tk)×D(q, tk) =: K(q, tk) (19)
Note however that in order for the ratios involved in (18)
to be well defined, the following easy-to-meet assumption
is needed:
Assumption 1. There is a positive c > 0 such that for
all t and all p, one has: J(p, t) ≥ c. ♠

Note that this can be fulfilled by adding c to any original
nonnegative cost function’s definition.
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The terms E(q, tk) and D(q, tk) are similar to the terms
invoked in [Alamir, 2008, 2013] where the dual MPC prob-
lem is studied. More precisely:

X E(q, tk) is linked to the local efficiency of the opti-
mizer’s iterations as it represents the contraction of
the cost function due to the execution of q successive
iterations. This ratio is obviously lower or equal to 1.

X D(q, tk) is the ratio between the value of the cost
function after horizon shift and using the model-
based predicted value p∗(tk) that is compatible with
the last achieved value p(tk−1) (hot start). In the
case where p(tk−1) matches the true value of the
state x(tk−1 − Nτ) then in the ideal case (no model
discrepancies and no measurement noise), the ratio
D(q, tk) is equal to 1. Consequently, when this is
not the case, D(q, tk) can be viewed as a disturbance
indicator which gathers all the unavoidable above
mentioned imperfections. Note also that since the
length of the updating period τu = `τ = int(qτc/τ)+1
depends on q, the disturbances induced ratio D(q, tk)
depends also on q.

Based on the discussion above, the following model of the
disturbance ratio is used in the sequel:

D(q, tk) = 1 + α(tk) · q (20)
where α(tk) is a parameter to be identified on-line as shown
later.

Now, given the evolution equation:

J(tk) = K(q, tk) · J(tk−1) (21)
it becomes obvious that one rationale that can be used
in the derivation of the updating law for q is to force the
multiplicative gainK to be lower than one as this enhances
the convergence of the cost function J and when this goal is
achievable, q must be monitored so that the response time
of the closed-loop continuous-time system (in the sense of
Figure 3) is minimized.

These considerations lead to the following ideal updating
law for q:

q(tk+1) =

arg min
q∈{qmin,...,qmax}





q

| log(K(q, tk))|
if K(q(tk), tk) < 1

K(q, tk) otherwise
(22)

This is because the ratio:
q

| log(K(q, tk))|

is almost proportional (up to the int function disconti-
nuity) to the response time of a discrete-time dynamics
(21) that is characterized by the discrete pole K and the
sampling time `(q)τ where `(q) is given by (9). Note that
qmin ≥ 2 is systematically considered in order to be always
capable of estimating the gradient of the cost function
involved in (22) w.r.t q as it is explained in the sequel.

The exact solution of the optimization problem (22) would
needs too many computations that would make the up-
dating rule inappropriate (see Remark 2). Instead, an ap-
proximated gradient approach is used following the ideas
proposed in [Alamir, 2013] in the case of MPC framework.

To do this, the sensitivity of K(·, tk) w.r.t q is computed
by computing those of E(·, tk) and D(·, tk) using the avail-
able algorithm data at the past updating instant. Then a
quantized gradient step is applied to update the value of
q(tk+1). This is detailed in the following section.

3.1 Updating Algorithm

Note first of all that since the past value q(tk) ≥ 2, it
is possible to compute the following approximation of the
gradient of the efficiency map:

∆E

∆q
(tk) ≈ J(p(q(tk)), tk−1)− J(p(q(tk)−1), tk−1)

J(p∗(tk), tk−1)
(23)

On the other hand, using the presumed structure (20) of
D, one can use the available algorithm’s data to compute
an estimation of α(tk) which is nothing but the gradient
of D w.r.t q, that is:

∆D

∆q
(tk) ≈ 1

q(tk)

[ J∗(tk)

J(tk−1)
− 1
]
≈ α(tk) (24)

Now, using equations (23)-(24), the gradient of the multi-
plicative gain K w.r.t q can be computed according to:

∆K

∆q
(tk) ≈ E(tk)

∆D

∆q
(tk) +D(tk)

∆E

∆q
(tk) (25)

and having this estimation of the gradient, the gradient of
the cost function involved in the ideal updating rule (22)
can be computed:

∆
(
q/| log(K(tk))|

)

∆q
≈
− log(K(tk)) +

q

K(tk)
× ∆K(tk)

∆q
[
log(K(tk))

]2

(26)

Using the above computed quantities, the following algo-
rithm can be used to compute the updated value q(tk+1):

Algorithm 1 Updating rule q(tk+1) = U(q(tk), tk)

1: If (K(tk) ≥ 1) then

2: Γ← ∆K

∆q
(q(tk)) [see (23)-(24) and (25)]

3: Else
4: Γ← ∆(q/| log(K(tk))|)

∆q
[see (26)]

5: End If
6: q(tk+1)← max

{
qmin,min

{
qmax, q(tk)− δ · sign(Γ)

}}

In this algorithm, Γ represents the gradient of the quantity
to be minimized. A quantized step (δ ∈ N) in the opposite
direction is implemented in Step 6 to update the value of
q.
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3.2 Complexity Analysis

Based on the expressions (23)-(26), one can construct
Table 1 that shows the additional number of elementary
operations that are needed to compute the updating law
involved in Algorithm 1. By additional, it is meant that
the computation of the cost function J(tk), J∗(tk−1) and
J(tk−1)) are excluded because they are by-products of the
optimization process and are therefore computed regard-
less of whether an updating process is used or not.

Expression Equation (±) (×) (÷) log

K (19) 2 1
(∆E)/(∆q) (23) 1 1
(∆D)/(∆q) (24) 1 2
(∆K)/(∆q) (25) 3 2 3
Γ (26) 4 5 6 1

Algorithm 1 5 5 6 1

Table 1. Elementary computations involved in
the updating law q(tk+1) = U(q(tk), tk).

Table 1 clearly shows that the computations involved in
the updating rule involves only few arithmetic operations
and a single logarithm computation).

4. ILLUSTRATIVE EXAMPLE

Let us consider the following modified van-der-pol system:

ẋ1 = x2

ẋ2 =−ax1 + (1− ux3x21)x2

ẋ3 = 0

The measured output is defined by:

y = x1 + ν

where ν is a white noise. The parameter a is a parameter
that can be badly known in order to enhance the uncer-
tainty feature of the model. The basic sampling (measure-
ment acquisition) period is taken equal to τ = 2 ms.

The optimization subroutine involved in (11) is based on a
fast gradient approach [Nesterov, 1983, 2004] with restart
mechanism [O’Donoghue and Candes, 2012]. The details of
these algorithms can be found also in [Alamir, 2013]. The
explicit definition of these algorithms is not mandatory
here since the proposed approach is generic and the use
of fast gradient approach as an instantiation of S is only
a matter of choice that enables the main idea to be illus-
trated. Note that the optimization is performed assuming
the following box constraints that are to be interpreted
component-wise:

(−10
−10
0.1

)
≤ x ≤

(
10
10
40

)
(27)

The computation time τc needed to perform a single itera-
tion of the subroutine S [see (9)] is given by τc = 500 µsec
The minimum and the maximum number of iterations

involved in the updating rule appearing in the step 6. of
Algorithm 1 are qmin = 20 and qmax = 1000.

The observation horizon is taken equal to N = 200 basic
sampling period leading to a time window of T = 0.4 sec.
The variance of the measurement noise is taken equal to
ν = 0.03. The cost function J(p) that has been used in all
the simulations takes the following form at instant k:

J :=

N∑

i=0

‖ŷ(k + i|p)− y(k + i)‖2 + ρ‖p− p̂)‖2

where p̂ is the estimate based on the past estimation of p.
The coefficient ρ = 0.01 is used in the sequel.

In the following sections, the validation scenario is clearly
stated and the comparison indicators are defined.

4.1 Validation Scenarios

For each comparison, Ns := 50 scenarios are executed
using different values of the initial estimated state x̂0.
These values are randomly chosen according to:

x̂0 := (0.2× I + 1.8

(
r1 0 0
0 r2 0
0 0 r3

)
)x0 (28)

where x0 = (3, 1, 1)T is the true initial state. ri are
uniformly distributed random variable belonging to the
interval [0, 1]. Note that (28) simply means that each com-
ponent x̂0i of the initial state of the observer is randomly
chosen in the interval [0.2x0i , 2x

0
i ]. The resulting set of

observer initial states is denoted hereafter by X̂0.

Simulations are performed during Nsim = 2000 sampling
periods (4 sec) using the following input profile:

u(t) := 1− 1

2
cos(2t)

Five observer settings are compared which are:

(1) Setting 1. q = qmin = 20. No updating is used.
(2) Setting 2. q = qmin = 50. No updating is used.
(3) Setting 3. q = qmin = 100. No updating is used.
(4) Setting 4. q = qmin = 300. No updating is used.
(5) Setting 4. q(0) = qmin = 20. Updating is used for q

using the rule expressed in Algorithm 1 starting from
the initial value q(0) = qmin = 20 and the increment
size δ = 10. Note that the first four settings can be
obtained using δ = 0 while initializing q to 20, 50, 100
and 300 respectively.

Note that for each of the above mentioned five settings, the
same 50 trials leading to the set X̂0 are used. That is, the
trials are first done and then the 50 simulated scenarios
are executed for each of the five settings leading to 250
simulations. This avoid biased comparison that may be
due to different trials for each setting.

4.2 Performance indicator

As mentioned in Remark 1, we are interested in the
behavior of the cost function. That is the reason why
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the characteristics (mean and variance) of the following
quantities are monitored:

Ĵ (s)(k|x̂0) for k = 1, . . . , Nsim −N and x̂0 ∈ X̂0

where Ĵ (s)(k|x̂0) is the cost function at instant k for the
scenario starting at x̂0 ∈ X̂0 and using the setting number
s.

More precisely, for easiness of comparison, the following
quantities are considered for all setting index s:

m(s) := Meank,x̂0

[J (s)(k|x̂0)− J (1)(k|x̂0)

J (1)(k|x̂0)

]
(29)

σ(s) := Vark,x̂0

[J (s)(k|x̂0)− J (1)(k|x̂0)

J (1)(k|x̂0)

]
(30)

where the mean and the variance invoked in (29) and (30)
are taken on the set of values of (k, x̂0) given by:{

1, . . . , Nsim −N
}
× X̂0

Two scenarios are used to assess the relevance of the
updating rule. In the first the parameter a = 10 is perfectly
known by the observer while in the second scenario, the
observer uses an erroneous value â = 7. Figure 4 shows the
corresponding performance of the different observers using
circles that are centered at m(s), s = 1, . . . , 5 and with
radius that are equal to twice the corresponding variance
σ(s). In the first case, an optimal updating period seems
to be close to q = 100 (see Figure 4.a). However, when
model uncertainties increase (as in the second scenario),
the optimal updating period becomes the minimum value
q = qmin. Note that in both cases, the performance of the
updated version systematically spots close to the optimal
performance. Note also that if the parameter a changes
during the scenario, then, the observer with the proposed
updating scheme would likely be better that any observer
with constant updating period.

5. CONCLUSION AND FUTURE WORK

In this paper, a novel updating rule for the measurement
inclusion rate in MHO is proposed and validated through
a simple example. The proposed rule enables near optimal
performance to be achieved in presence of unavoidable,
unpredictable model discrepancies and without off-line
extended tuning. Current investigation focuses on the
validation of the proposed methodology on real-world
estimation problems.
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