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Abstract: In a “censoring” or “send/no-send” approach to decentralized detection, sensors only
transmit “informative” observations to the fusion center, which is able to significantly reduce
energy consumption particularly when one hypothesis is more likely. The canonical “censoring”
decentralized detection, however, assumes the communication channels between sensors and the
fusion center are perfect, which is not quite realistic. We consider the problem of decentralized
detection with censoring sensors over networks where packet dropout may occur. A sensor
decides whether to use a high or low transmission power to communicate with the fusion center.
With a general energy constraint, we prove that, to minimize the probability of error, the
transmitting region of likelihood ratio associated with low power level is a single interval, and
we derive necessary conditions for the lower and upper thresholds of this interval. For the
special case that the available energy is sufficiently small, we show that the intervals have zero
lower thresholds and can be determined independently for each sensor. A numerical example is
provided to illustrate the main results.

1. INTRODUCTION

In a typical decentralized detection network, a set of s-
patially deployed sensors are used to collect information
and transmit a summary of their observations, via wireless
channels, to a fusion center, which determines the nature
of a phenomenon. Due to the sensors’ limited battery
power and constrained bandwidth resource, only partial
information is available at the fusion center, which results
in degenerate detection performance compared with the
centralized counterpart. The nice inherent properties of
wireless sensor networks, such as low cost, flexility and ro-
bustness, still attracts considerable interests in performing
decentralized detection.

Canonical decentralized detection problems assume that a
sensor maps its local observations to different quantized
levels; quantization effect and corresponding optimal local
decision rules for sensors and fusion rules at the fusion
center’s side is studied. Viswanathan and Varshney [1997],
Blum et al. [1997] and references therein provided a review
of literatures on this topic. Recently, effect of unreliable
wireless communication channels is studied. Chamberland
and Veeravalli [2003] analyzed asymptotic detection per-
formance with constrained capacity of wireless channels
and showed that having identical binary decision sensors
is asymptotically optimal as the number of observations
per sensor goes to infinity, if sensors have i.i.d. exponential
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observations. Chamberland and Veeravalli [2004] studied
the same problem but with total energy constraint and
showed that when the sensors have i.i.d. observations,
having identical sensors is asymptotically optimal.

Unlike the canonical decentralized detection, “censoring”
decentralized detection assumes that sensors transmit
“real-valued” instead of quantized summary of observa-
tions to the fusion center when local information is re-
garded as “informative”. It is reasonable in the sense that
the transmitted packet in most packet-based networks
contains quite large space for the data and quantization
effect can be neglected. The idea of censoring detection is
first proposed in Rago et al. [1996] and lately studied in
Appadwedula et al. [2002, 2005, 2008], Tay et al. [2007].
Rago et al. [1996] proved that with limited communication
rate, to minimize the probability of error, transmission
occurs only when the likelihood ratio of one sensor’s ob-
servation does not fall in one certain single interval. It
also showed that this interval has zero lower bound if
the available communicate rate is severe. Appadwedula
et al. [2002, 2005, 2008] considered the uncertainty in
the distribution of the observations and studied censoring
strategies for composite testing problems. Asymptotic per-
formance of censoring strategies for both Neyman-Pearson
and Bayesian formulations is studied in Tay et al. [2007].

Most existing censoring detection literatures assume reli-
able communication channels between the sensors and the
fusion center, which is not quite realistic. Packet dropout
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is common in wireless communications and can be caused
by many factors, such as fading channels, interference and
low signal-to-noise ratio (SNR). In this paper, it is assumed
that packets may be dropped during transmissions. The
sensors have limited energy and can choose to use high
or low power level to communicate with the fusion center.
We assume that high power level leads to higher packet
arrival rate compared with low power level being used.
This assumption is reasonable as modern wireless sensor
nodes can choose its own transmission power levels (Dargie
and Poellabauer [2010]), and higher power level means
higher SNR, which leads to higher packet arrival rate.

The main contributions of this paper are summarized as
follows:

(1) We consider censoring decentralized detection over
packet-dropping networks with energy constraint of
each sensor. To the best of our knowledge, this
problem formulation is novel.

(2) We prove that, with energy constraint, the optimal
transmitting region associated with low transmission
power level is a single interval (Theorem 3.1). Two
necessary conditions of the lower and upper thresh-
olds of this optimal interval (Theorem 3.2) is given.
We also prove that, if the available energy is sufficient-
ly small, this optimal interval for each sensor has zero
lower threshold (Proposition 3.4).

The remainder of this paper is organized as follows. In
Section 2, the mathematical model of the considered
problem is given. After showing the main results in Section
3, a numerical example is provided in Section 4. Some
concluding remarks are provided in the end.

2. PROBLEM SETUP

We are concerned with binary hypothesis testing problem,
i.e., H0 (null) and H1 (target present), with parallel
sensor network topology, as depicted in Fig. 1. Let xi,
i = 1, 2, . . . , N denote the ith sensor’s observation. Each
sensor node evaluates a local output gi(xi) based on its
observation and sends the corresponding value to a fusion
center. The fusion center will make a final decision φ0

about the state, combining the data collected from all the
sensors and its own observation x0.

Quantization effect is mainly studied in the canonical
distributed detection setting, where gi maps xi to one of
the Di levels. A special case is that a sensor node just
sends its local decision 0 or 1 to the fusion center. On
the contrary, for the “send/no-send” censoring detection
problem, a sensor node sends the real-valued function
gi(xi) (likelihood ratio in most cases) to the fusion center
when the observation xi is considered as “informative”,
otherwise no transmission occurs and the observation is
discarded.

In the spirit of censoring detection, we introduce packet
dropout in the communication channel between the sen-
sors and the fusion center. Specifically, sensor i has two
communication power levels: ∆i and δi. If ∆i is used for
transmission, the arrival rate is λi,1, while the arrival rate
is λi,2 (0 ≤ λi,2 < λi,1 ≤ 1) when δi is used. In this case,
we define the sensor decision rule as

Fig. 1. Topology of censoring decentralized detection with
packet dropout

Ii(xi) =

{
1, if l(xi) ∈ Ri,
0, if l(xi) ∈ Rci ,

(1)

where l(xi) =
pi1(xi)

pi0(xi)
is the likelihood ratio and pij(·), i =

1, 2, . . . , N , j = 0, 1, denotes the conditional probability
density function (pdf) of the observation for sensor i under
the hypothesis j. Sensor i will send the likelihood ratio
l(xi) to the fusion center using power ∆i if Ii(xi) takes
1, and δi if Ii(xi) equals zero. Intuitively, in order to
achieve a better performance, “informative” data should
be transmitted with higher power level. To this end, the
set Ri should include likelihood ratio value l(xi) that can
provide more confidence (l(xi) is too small or too large) to
the decision maker for choosing one hypothesis.

As every sensor node has its own battery, it is natural to
consider average energy constraint of each sensor indepen-
dently as

π0 [Pr(Ii(xi) = 1|H0)∆i + Pr(Ii(xi) = 0|H0)δi ]

+ π1 [Pr(Ii(xi) = 1|H1)∆i + Pr(Ii(xi) = 0|H1)δi ] ≤ εi,

where π0 and π1 are the a priori probability of the
hypothesis H0 and H1, respectively; Pr(·|·) represents the
conditional probability and εi denotes the average energy
per transmit available for sensor i. Censoring detection
performs well particularly when one of the hypotheses is
much more likely compared with the other one. In this
paper, we focus on the case that hypothesis H0 is more
probable, i.e., π0 � π1. It is the case in many applications,
such as, fire alarm in a forest or occurrence of anomalies in
a friendly environment. Thus, the above energy constraint
can be simplified as

Pr(Ii(xi) = 1|H0)∆i + Pr(Ii(xi) = 0|H0)δi ≤ εi. (2)

We make the following two assumptions.

Assumption 2.1. (Conditional Independence). Observati-
ons taken by the sensors and the fusion center are mutually
statistically independent, and are also statistically inde-
pendent taken at different times, under each hypothesis.

Assumption 2.2. (No Point Mass). For all sensors and the
fusion center, the distribution function of the likelihood
ratio l(xi) ∈ (0,∞], i = 0, 1, 2, . . . , N, is continuous and
has continuous derivative conditioned on each hypothesis.

Remark 2.3. The above two assumptions are common
and standard in decentralized detection formulations and
can be found in most literatures, Rago et al. [1996],
Viswanathan and Varshney [1997], Appadwedula et al.
[2008], to list a few. If the observations are dependent,
complexity of the decentralized detection problem will
make it less tractable Viswanathan and Varshney [1997],
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Tsitsiklis and Athans [1985]. The no point mass assump-
tion is technical and can be satisfied for most practical
signals.

As there exists packet dropout between the sensors and
the fusion center, the fusion center cannot obtain the
complete knowledge of the sensors’ observations. When
a packet is dropped, the fusion center has to estimate
the likelihood ratio and get an imprecise one. Let γi be
the indicator function that takes 1 if the fusion center
successfully receives the data from sensor i, and equals
zero otherwise. Note that the observations of fusion center
are always available, i.e., γ0 = 1. We define the censored
likelihood at the fusion center as

lFC(xi) =

{
l(xi), if γi = 1,
ρi, if γi = 0,

(3)

where ρi is given by

ρi =
Pr(γi = 0|H1)

Pr(γi = 0|H0)
. (4)

Note that, unlike the censoring one, if an offline transmis-
sion strategy is adopted, nothing can be obtained when a
packet is dropped. Another reason why censoring strategy
outperforms the offline one is that in a censoring approach,
as in the preceding analysis, compared with the counter-
part, more “informative” observations are sent using the
high power level and hence arrive at the fusion center
successfully with a higher probability.

Let

Pe = π1Pr(decideH0|H1) + π0Pr(decideH1|H0) (5)

be the probability of detection error. Given the informa-
tion available at the fusion center, either precise likelihood
ratios or estimates ρi, the optimal fusion rule that mini-
mizes Pe is a likelihood ratio test. Specifically, whatever
the high power level region Ri in (1) is, the optimal fusion
rule under the constraint (2) is given by

φ0 =

 1,

N∏
i=0

lFC(xi) ≥ τ,

0, otherwise,

(6)

where τ = π0

π1
. This is a quite straightforward conclusion

based on the centralized detection theory (Poor [1988]).

Let R++ denote the set of positive real numbers. The
problem we are facing now is, in order to minimize Pe,
how to partition R++ into Ri and Rci for each sensor.

3. MAIN RESULTS

In this section, we will prove that the optimal transmitting
region associated with δi is a single interval and show some
properties of this interval under different conditions.

Theorem 3.1. With the energy constraint (2), local sensor
decision rule (1) and assumptions 2.1 and 2.2, the optimal
censoring region Rci in (1) that minimizes Pe is a single
interval.

Proof: The proof is very long and similar to that of
Theorem 1 in Rago et al. [1996], although our problem is
quite different. The key idea is to show that for a generic
Rci that may consist of several intervals, we can always
find another single interval Rci that has no larger Pe and

Fig. 2. Two possible censoring schemes for sensor 1

satisfies the energy constraint at the same time. This proof
mainly consists of three steps.

(1) Construct two proper schemes. This part is similar to
that in Rago et al. [1996].

(2) Obtain the difference between the two schemes’ de-
tection performance ∆Pe .

(3) Determine the sign of the difference. It will be shown
that the difference for our problem can be reduced to
a multiple of that in Rago et al. [1996].

Without loss of generality, we focus on sensor 1 and Rc1.
We consider the well defined probability space (Ω,A,P),
where Ω is the sample space, A is a σ−algebra and P
is the associated probability measure. As Rc1 is a set in
A, according to measure theory, it must be a countably
many union of disjoint intervals. For simplicity, as de-

picted in Fig. 2, Rc
I

1 for scheme I consists of two in-

tervals, while scheme II has a single interval Rc
II

1 =
[t1,1, t1,2]. Note that censoring regions of the other sen-
sors for the two schemes are identical. For convenience,
we will write t1,1, t1,2, λ1,1, λ1,2, p

1
0(·), p1

1(·) and l(x1) as
t1, t2, λ1, λ2, p0(·), p1(·) and l1, respectively. To make the
average energy consumption in the two schemes remain

unchanged, Rc
II

1 = [t1, t2] must satisfy the following two
equations: ∫

Rc
II

1

p0(l1)dl1 =

∫
Rc

I

1

p0(l1)dl1, (7)∫
Rc

II

1

p1(l1)dl1 =

∫
Rc

I

1

p1(l1)dl1. (8)

Note that for any Rc
I

1 , under Assumption 2.2, there always

exists such a unique Rc
II

1 . The estimate of dropping
likelihood ratio is given by

ρj1 =
(1− λ1) + (λ1 − λ2)

∫
Rc

j

1
p1(l1)dl1

(1− λ1) + (λ1 − λ2)
∫
Rc

j

1
p0(l1)dl1

, (9)

where j = I, II corresponds to scheme I and II, respec-
tively. One notes that ρj1 for the two schemes are also the
same, hence we will use the notation ρ1 in the remainder
of the proof.

Let x1 = [x0, x2, . . . , xN ] and u = lFC(x1). As the two
schemes differs only in the censoring region of sensor 1, u
is identical. Under conditional independence assumption,
the probability of error associated with each hypothesis
can be obtained as

P je = π1

[
1−

∫
dF1(u)

∫ ∞
l1:lj

FC
(x1)=τ/u

p0(l1)(l1 −
τ

u
)dl1

]
,

(10)

where Fi(·), i = 0, 1, denotes the distribution function
conditioned on hypothesis i.
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From (10), the difference between the probability of error
for the two schemes is given by

∆Pe = P IIe − P Ie

= π1

∫ ∞
0

dF1(u)

{
λ1

∫
l1:(l1>

τ
u )
⋂
RI1

p0(l1)(l1 −
τ

u
)dl1

− λ1

∫
l1:(l1>

τ
u )
⋂
RII1

p0(l1)(l1 −
τ

u
)dl1

+ λ2

∫
l1:(l1>

τ
u )
⋂
Rc

I

1

p0(l1)(l1 −
τ

u
)dl1

− λ2

∫
l1:(l1>

τ
u )
⋂
Rc

II

1

p0(l1)(l1 −
τ

u
)dl1

}

+ π1

∫ ∞
τ
ρ1

dF1(u)

{
(1− λ1)

∫
RI1

p0(l1)(l1 −
τ

u
)dl1

− (1− λ1)

∫
RII1

p0(l1)(l1 −
τ

u
)dl1

+ (1− λ2)

∫
Rc

I

1

p0(l1)(l1 −
τ

u
)dl1

− (1− λ2)

∫
Rc

II

1

p0(l1)(l1 −
τ

u
)dl1

}
. (11)

Since∫
Rc

I

1

p0(l1)(l1 −
τ

u
)dl1 =

∫
Rc

II

1

p0(l1)(l1 −
τ

u
)dl1,

we can rewrite (11) as

∆Pe

λ1 − λ2
= π1

∫ ∞
0

dF1(u)

∗

{∫
l1:(l1>

τ
u )
⋂
RI1

p0(l1)(l1 −
τ

u
)dl1

−
∫
l1:(l1>

τ
u )
⋂
RII1

p0(l1)(l1 −
τ

u
)dl1

}

= π1

∫ ∞
0

dF1(u)

∗

{∫
l1:(l1>

τ
u )
⋂
RI1

⋂
Rc

II

1

p0(l1)(l1 −
τ

u
)dl1

−
∫
l1:(l1>

τ
u )
⋂
Rc

I

1

⋂
RII1

p0(l1)(l1 −
τ

u
)dl1

}
.

(12)

It is proved in Rago et al. [1996] that the RHS of (12)
is non-positive. Using the fact that λ1 > λ2, we have
∆Pe ≤ 0, and the theorem is proved. �

The single interval censoring region can significantly facil-
itate the local processing of sensors, especially when the
likelihood ratio is monotone in observations. In general,
determining the optimal lower and upper thresholds of
these intervals for all the sensors is a joint optimization
involving 2N variables, the computation load of which
may be an issue. To alleviate this, we derive two necessary
conditions of the lower and upper thresholds for each
sensor independently.

Theorem 3.2. With the energy constraint (2), local sensor
decision rule (1) and assumptions 2.1 and 2.2, the optimal

censoring region Rci = [ti,1, ti,2] in (1) that minimizes Pe
must satisfy the following two constraints:

(1) ti,1 ≤ ρi ≤ ti,2,

(2)
∫ ti,2
ti,1

pi0(l(xi))dl(xi) = ∆i−εi
∆i−δi .

Proof: Without loss of generality, we focus on sensor 1
and prove the following two statements using the same
notation as the ones used in the proof of Theorem 3.1:

(1) t1 ≤ ρ1 ≤ t2,

(2)
∫ t2
t1
p0(l1)dl1 = ∆1−ε1

∆1−δ1 .

First, we prove that t1 ≤ ρ1 ≤ t2 holds if the energy
constraint has the form of

Pr(l1 ∈ R1|H0)∆1 + Pr(l1 ∈ Rc1|H0)δ1 = ε′1, (13)

where δ1 ≤ ε′1 ≤ ∆1. The probability of error is given by

Pe = π1

[
1−

∫
Ω1

(lFC − τ)dF0(lFC)

]
, (14)

where Ω1 is the decision region for hypothesis H1, which
is defined by {u, lFC(x1)|ulFC(x1) ≥ τ}. It is appropriate,
according to Theorem 3.1, to let Rc1 = [t1, t2]. Under
Assumption 2.1, (14) can be rewritten as

Pe
π1

= 1− λ1

∫ t1

0

p0(l1)

∫ ∞
τ/l1

(l1u− τ)dF0(u)dl1

− (1− λ1)

∫ t1

0

p0(l1)dl1

∫ ∞
τ/ρ1

(ρ1u− τ)dF0(u)

− λ1

∫ ∞
t2

p0(l1)

∫ ∞
τ/l1

(l1u− τ)dF0(u)dl1

− (1− λ1)

∫ ∞
t2

p0(l1)dl1

∫ ∞
τ/ρ1

(ρ1u− τ)dF0(u)

− λ2

∫ t2

t1

p0(l1)

∫ ∞
τ/l1

(l1u− τ)dF0(u)dl1

− (1− λ2)

∫ t2

t1

p0(l1)dl1

∫ ∞
τ/ρ1

(ρ1u− τ)dF0(u). (15)

Now we will get the derivative of Pe
π1

with respect to t1, in
finding which the derivative of the two dependent variables
t2 and ρ1 must be considered. As Rc1 = [t1, t2], one can
rewrite (13) as(

1−
∫ t2

t1

p0(l1)dl1

)
∆1 +

∫ t2

t1

p0(l1)dl1δ1 = ε′1. (16)

Taking the derivative of (16) w.r.t t1,

∂t2
∂t1

=
p0(t1)

p0(t2)
. (17)

Substituting Rc1 = [t1, t2] into (9),

ρ1 =
(1− λ1) + (λ1 − λ2)

∫ t2
t1
l1p0(l1)dl1

(1− λ1) + (λ1 − λ2)
∫ t2
t1
p0(l1)dl1

. (18)

Taking the derivative of the above equation w.r.t t1,

∂ρ1

∂t1
=

(λ1 − λ2)(t2 − t1)p0(t1)

(1− λ1) + (λ1 − λ2)
∫ t2
t1
p0(l1)dl1

. (19)

As observations of the fusion center are not censored,
under the Assumption 2.2, F0(u) is continuous and has
continuous derivative w.r.t. u. Then applying the funda-
mental theorem of calculus, one has
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∂Pe
∂t1

= π1(λ1 − λ2)p0(t1) ∗Υ,

Υ ≡
∫ τ/t1

τ/t2

(t2u− τ)dF0(u) + (t2 − t1)

∫ ∞
τ/t1

udF0(u)

− (t2 − t1)

∫ ∞
τ/ρ1

udF0(u). (20)

If t1 > ρ1, obviously Υ > 0, i.e., ∂Pe
∂t1
≥ 0. Hence to

minimize Pe, t1 must decrease until t1 ≤ ρ1. We can
rewrite (20) as

Υ =

∫ τ/t1

τ/t2

(t2u− τ)dF0(u)− (t2 − t1)

∫ τ/t1

τ/ρ1

udF0(u)

≤
∫ τ/t1

τ/t2

(t2 − t1)udF0(u)− (t2 − t1)

∫ τ/t1

τ/ρ1

udF0(u).

(21)

If t2 < ρ1, from (21), we know Υ < 0. Hence to minimize
Pe, t1 must increase, so does t2. Therefore one has t2 ≥ ρ1.

Now we prove the second statement:
∫ t2
t1
p0(l1)dl1 =

∆1−ε1
∆1−δ1 . Note that the energy constraint (2) can be rewrit-

ten as
∫ t2
t1
p0(l1)dl1 ≤ ∆1−ε1

∆1−δ1 . We need to prove that, to

minimize Pe, the available energy should be used up. It
suffices to prove that for a fixed t1, ∂Pe

∂t2
is positive for all

possible t2. If t1 is fixed, taking derivative of (18) w.r.t. t2,

∂ρ1

∂t2
=

(λ1 − λ2)p0(t2)(t2 − ρ1)

(1− λ1) + (λ1 − λ2)
∫ t2
t1
p0(l1)dl1

(22)

After taking derivative of (15), one can obtain

∂Pe
∂t2

= p0(t2) (λ1Υ1 + λ2Υ2) ,

Υ1 ≡
∫ τ/ρ1

τ/t2

t2udF0(u) +

∫ ∞
τ/ρ1

τdF0(u)−
∫ ∞
τ/t2

τdF0(u),

Υ2 ≡
∫ ∞
τ/t1

τdF0(u) +

∫ τ/ρ1

τ/t1

t2udF0(u)

−
∫ ∞
τ/ρ1

τdF0(u) +

∫ ∞
τ/t1

(t2 − t1)udF0(u). (23)

As t2 ≥ ρ1, t2u ≥ τ , if u ∈ [ τt2 ,
τ
ρ1

]. Hence one can get

Υ1 >

∫ τ/ρ1

τ/t2

τdF0(u) +

∫ ∞
τ/ρ1

τdF0(u)−
∫ ∞
τ/t2

τdF0(u)

= 0.

Similarly,

Υ2 >

∫ ∞
τ/t1

τdF0(u) +

∫ τ/ρ1

τ/t1

τdF0(u)−
∫ ∞
τ/ρ1

τdF0(u)

= 0.

Finally, we get ∂Pe
∂t2

> 0 for any possible t1 and t2. The
proof is thus complete. �
Remark 3.3. Note that there always exists Rci = [ti,1, ti,2]
such that ti,1 ≤ ρi ≤ ti,2, for example, ti,1 ≤ ρi ≤ ti,2
holds for all ti,1 < 1 and ti,2 > 1. The second constraint
means that better performance can be expected at the
cost of more energy consumption, which agrees with our
intuition.

Generally, ti,1 and ti,2 can be obtained only using nu-
merical methods, however, it will be shown later that

under some conditions (see Proposition 3.4), the optimal
censoring region can be determined for each sensor inde-
pendently.

Proposition 3.4. With assumptions 2.1 and 2.2 and local
sensor decision rule (1), if the available energy εi in
constraint (2) is sufficiently small, the optimal censoring
region Rci in (1) that minimizes Pe can be uniquely
determined as

ti,1 = 0, (24)∫ ti,2

0

pi0(l(xi))dl(xi) =
∆i − εi
∆i − δi

. (25)

Proof: Note that it suffices to prove zero lower bounds
(24), as (25) is then straightforward according to Theorem
3.2. Without loss of generality, we focus on sensor 1 and
prove t1 = 0. To this end, we need to prove ∂Pe

∂t1
> 0, i.e.,

Υ in (20) is positive for any t1 > 0.

Given a fixed t1, ∂Pe
∂t2

is given in (22). According to

Theorem 3.2, t2 > ρ1, hence ∂Pe
∂t2

> 0 for any possible
t2, and one can get

ρ1 ≤
(1− λ1) + (λ1 − λ2)

∫∞
t1
l1p0(l1)dl1

(1− λ1) + (λ1 − λ2)
∫∞
t1
p0(l1)dl1

≡ ρ̄1. (26)

Thus,

Υ =

∫ τ/ρ1

τ/t2

(t2u− τ)dF0(u)−
∫ τ/t1

τ/ρ1

(τ − t1u)dF0(u)

≥
∫ τ/ρ̄1

τ/t2

(t2u− τ)dF0(u)−
∫ τ/t1

τ/ρ̄1

(τ − t1u)dF0(u).

(27)

As ρ̄1 is independent of t2, (27) is monotonically increasing
w.r.t. t2. Hence, for any t1, one can find a sufficient-
ly large t2 ≥ t?2 (available energy is sufficiently smal-
l) such that Υ > 0, i.e., ∂Pe

∂t1
> 0. Hence zero lower

bound is proved. Note that t?2 is larger and close to∫ τ/t1
0

τdF0(u)+t1
∫ τ/t1
τ/ρ̄1

udF0(u)∫ τ/ρ̄1
0

udF0(u)
. �

Remark 3.5. The main results, Theorem 2 and Propo-
sition 1, in Rago et al. [1996] are special cases of our
theorems with λi,1 = 0, λi,2 = 1 and δi = 0.

4. SIMULATION RESULTS

In this section, by a numerical example, we show the
benefits of using censoring strategies and illustrate the idea
of Proposition 3.4. Consider the problem of detecting a
mean-shift in Gaussian noises with identical sensors as

H0 : xi ∼ N (0, 1) versus H1 : xi ∼ N (1, 1).

The observations of the fusion center and the two sensors
are i.i.d distributed.

Let π0 = 0.9, λ1 = 0.95 and r = ∆−ε
∆−δ . Performance of

two scenarios: λ2 = 0.3, N = 3 and λ2 = 0.5, N = 2 is
simulated. From Fig. 3, we observe that as the available
energy increases (i.e., r decreases), the probability Pe
decreases, which agrees with our intuition. Note that
when the available energy is large enough (r < 0.6 for
the first scenario and r < 0.8 for the second one), Pe
almost remains unchanged as r increases. This can be
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verified from (18) and (23). When the available energy
is sufficiently large, both the lower and upper thresholds
approach to 1; from (18) we know that the estimate of
dropped likelihood ρ is close to 1 too. ∂Pe∂t2

in (23) becomes
close to zero when t1, t2 and ρ are close to each other.

To show the benefits of adopting censoring strategies, we
plot the Pe for the sensors which communicate with the fu-
sion center with a randomly chosen power level. Of course,
the sensors must satisfy the same energy constraint, and
from (4), we know the estimates of dropping likelihood
ratios are all 1. It can be seen that Pe of “stochastic sen-
sors” is much larger than that of “censoring sensors” and
is almost linear with r. In the first scenario, Pe “censoring
sensors” has 16% decrease compared with “stochastic sen-
sors” at best, while for the second one, the best decrease is
7%. This is because the more number of sensors and bigger
difference between λ1 and λ2, compared with “stochastic
sensors”, the greater performance improvement can be
obtained by using the censoring strategy.

The lower threshold t1 as a function of r is shown in Fig. 4.
It can be observed that when the available energy is small
enough (r > 0.9), the lower threshold is zero and lower
threshold is quite small when r > 0.6.

5. CONCLUSION

Censoring decentralized detection over packet-dropping
networks is considered in this paper. The result that the

transmitting region associated with low power level is a
single interval facilitates local processing of sensors, espe-
cially in the case when the likelihood ratio is monotone
in the observations. Two necessary conditions about lower
and upper thresholds of this interval that minimize the
probability of error are derived, which is able to signifi-
cantly reduce computation load of numerically searching
for the optimal censoring regions of the overall system.
When the available energy is sufficiently small, the joint
optimization problem is decoupled as the lower thresholds
are zero and the upper thresholds can be determined in-
dependently for each sensor. Future work includes finding
the optimal transmitting strategy when sensors have con-
tinuous power levels and associated packet arrival rates.
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