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Abstract: This paper presents a practical recursive fault detection and diagnosis (FDD) scheme
for online identification of actuator faults for unmanned aerial systems (UASs) based on the
unscented Kalman filtering (UKF) method. The proposed FDD algorithm aims to monitor
health status of actuators and provide indication of actuator faults with reliability, offering
necessary information for the design of fault-tolerant flight control systems to compensate for
side-effects and improve fail-safe capability when actuator faults occur. The fault detection is
conducted by designing separate UKFs to detect aileron and elevator faults using a nonlinear
six degree-of-freedom (DOF) UAS model. The fault diagnosis is achieved by isolating true
faults by using the Bayesian Classifier (BC) method together with a decision criterion to avoid
false alarms. High-fidelity simulations with and without measurement noise are conducted
with practical constraints considered for typical actuator fault scenarios, and the proposed
FDD exhibits consistent effectiveness in identifying occurrence of actuator faults, verifying its
suitability for integration into the design of fault-tolerant flight control systems for emergency
landing of UASs.

Keywords: Fault diagnosis and isolation; unscented Kalman filter; multiple-model adaptive
estimation; emergency landing; unmanned aerial system.

1. INTRODUCTION

UASs have proved effective in a number of civilian op-
erations such as power line inspection, bush fire inves-
tigation and urban traffic monitoring. They also have
great potential to reduce cost and requirements for life
support due to recent development in UAS technology
(Kendoul (2013); Bernard et al. (2011)). However, one of
the key issues which remains unresolved is the demand
for an emergency landing system in case of accidental
actuator faults, especially when UASs are operating over
populated areas. In such situations, UASs are expected to
be equipped with sufficient capability to identify suitable
landing sites and accommodate faults to achieve safe emer-
gency landing. This requires automated implementation of
several systems onboard the UAS. A landing site decision
method is required which aims to provide feasible landing
locations given information about land texture, surface
flatness and turning rate constraints. A fault-tolerant flight
control system is also necessary which can detect, isolate
and accommodate online actuator faults.

Emergency landing of UASs has received increasing atten-
tion in the past decades due to occurrence of accidental
crash caused by mechanical failures (engine, actuator,
etc.) or loss of stability in extreme weather conditions
(strong gusts, storm, etc.). Several important aspects of
emergency landing has been investigated in the literature.

Development of a fault-tolerant guidance, navigation and
control system to improve emergency landing reliability
and minimize threat to the community has been addressed
in a number of references (Ducard (2009); Zhang and Jiang
(2000); Calise et al. (2001); Brinker and Wise (2001)).
Ducard (2009) designed a fault-tolerant control system
which focuses on the FDD of faults among sensors and
actuators and on development of a reconfigurable con-
trol allocation module. A fault-tolerant control system
was proposed by Zhang and Jiang (2000) which possesses
the ability to accommodate system component failures.
This system comprises a FDD scheme, a reconfigurable
controller and a control reconfiguration mechanism. Also,
Identification of appropriate landing sites for trajectory
planning in emergency situations has been addressed by
some researchers (Williams and Crump (2012); Mejias
et al. (2009); Mejias and Fitzgerald (2013)). Mejias et al.
(2009) proposed a computer vision based procedure to
identify emergency landing sites based on size, shape, slope
and texture of surfaces to achieve automatic classification
of the candidate landing sites. Williams and Crump (2012)
provided flight-test results of a landing system which uti-
lizes prior location information to decide the most feasible
landing sites.

Onboard fault detection and diagnosis has also been inves-
tigated in the literature for several aerospace applications.
The multiple-model adaptive estimation (MMAE) scheme
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has proven to be effective and been applied to dealing
with FDD problems in various flight scenarios (Maybeck
(1999); Eide and Maybeck (1996); Meskin et al. (2013);
Amirarfaei et al. (2013)). A bank of parallel Kalman filters
was adopted with each matched to a specific hypothesis
on the failure status by Maybeck (1999). The authors also
developed a hierarchical structure to keep the number of
online filters to a minimum. However, linear Kalman filters
only function effectively around operating conditions, and
a series of linearized flight models are required for the
FDD purpose to cover the whole flight envelope. This
would greatly aggravate onboard computational burden.
Further, this algorithm would collapse in situations where
linearized models do not exist. The MMAE with extended
Kalman filters (EKF) incorporated has been proposed for
fault estimation in Ducard (2009); Ducard and Geering
(2008). The validity of EKFs is based on the existence of
Jacobian matrices of the system model under all possible
flight conditions. Moreover, in situations where system
dynamics change abruptly, Jacobian matrices might not
exist or have singular issues (Julier and Uhlmann (2004)),
and EKF-based MMAE would fail to detect occurrence of
faults. Therefore, in our case where flight dynamics are
subject to abrupt changes when accidental faults occur,
we will develop a UKF-based FDD procedure. Campbell
and Brunke (2001) demonstrate that the UKFs show per-
formance improvement when compared with the EKFs for
a nonlinear F-16 like aircraft model. Another possible so-
lution to the online FDD is the interactive multiple model
(IMM) method. The IMM employs parallel filters which
interact with each other for performance improvement at
the expense of high computational and storage require-
ments (Zhang and Li (1998); Kim et al. (2008); Lee et al.
(2005)). This is due to the fact that the initial estimate
at the beginning of each cycle is a mixture of all most
recent estimates (Zhang and Li (1998)). In our work, we
are aimed at a feasible estimation approach which can be
implemented at the cost of limited flight computer memory
and provide sufficient estimation accuracy. Thus, we use
the MMAE with UKFs to perform the FDD of actuator
faults.

The current research is part of the ResQu project which
aims to develop automated safety technologies for UAS
safe recovery by providing a feasible emergency landing
system with autonomous vision-based site decision and
robust navigation, guidance and control capabilities. In
this research, we aim to develop an online FDD procedure
to monitor occurrence of actuator faults with minimum
time delay, and conduct fault detection when a UAS op-
erates in a wide range of flight envelopes. The proposed
algorithm should also consider computational burden and
FDD reliability. To this end, a nonlinear 6-DOF dynamic
model in consideration of aerodynamic forces and mo-
ments is explored. The UKF algorithm is designed based
on the nonlinear model and excludes the need for cal-
culating the Jacobian matrices. The aileron and elevator
are treated as additional system states in the augmented
state vector, and are estimated by the UKF algorithm.
To avoid false alarms of faulty actuators, a recursive fault
diagnosis algorithm is designed based on the measurement
residuals and error covariance of the UKF. Performance
of the FDD is evaluated using a high-fidelity 6-DOF UAS
model. Simulations are conducted to verify performance

of the proposed FDD scheme, and it is demonstrated that
actuator faults can be identified with guarantees.

2. FLIGHT DYNAMICS OF A UAS

In practice, emergency landing is required as a result of
occurrence of possible actuator faults under various flight
scenarios (steady-state, bank-to-burn, skid-to-turn, etc).
In the considered application which requires a detection
and diagnosis procedure to cover entire flight regions,
the nonlinear 6-DOF dynamic model is developed in
consideration of aerodynamic and propulsive forces and
moments. Details of the nonlinear dynamics are given in
Yang et al. (2013). We are concerned with a UAS model
with variable flight speeds as faults might occur during any
phase of flight. Thus, the current model is different from
the one which assumes constant flight speeds in Yang et al.
(2013).

The continuous-time system model is discretized using the
Euler integral method, and can be described by

x(k + 1) = f(x(k), u(k)) + ϵ(k) (1)

where state vector x refers to 8 state variables

x = [u, v, w, p, q, r, ϕ, θ]T (2)

and actuator inputs are u = [δa, δe]
T . Process noise ϵ =

[ϵ1, · · · , ϵ8]T is mutually independent Gaussian distribu-
tions and satisfies

E[ϵ(k)] = 0, E[ϵ(k)ϵT (i)] = δ(k − i)Q(k) (3)

where δ(·) is the Kronecker function and Q(k) is process
error covariance.

The measurement equation is

y(k) = C · x(k) + ξ(k) (4)

The constant matrix C = I8×8 and measurement noise
with Gaussian distribution ξ = [ξ1, ..., ξ8]

T satisfies

E[ξ(k)] = 0, E[ξ(k)ξT (i)] = δ(k − i)R(k) (5)

where R(k) is the measurement noise covariance.

3. UKF-BASED FAULT DETECTION

The MMAE is an effective approach to online detection
of system faults/failures. This method relies on a bank
of Kalman filters with each matching a particular system
mode (faulty or non-faulty). In our case, we are aimed at
developing a UKF-based MMAE scheme to cover a wide
range of flight conditions with reasonable computational
efficiency. Given this requirement, it is desired that a
complete set of system modes are to be explored, and each
is associated with evident separation properties. Measure-
ment residuals are a key factor to determine proper system
modes and distinct differences in them make the modes
identifiable by the UKF models. Furthermore, fault isola-
tion is achieved by computing model probabilities which
also rely on measurement residuals. Therefore, we will
build UKF models with each accompanied with notable
separation properties.

In our case, there are three possible modes: non-fault,
aileron fault and elevator fault. Thus, the filter design
process is formulated as the construction of filter models
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to represent dynamics of possible system behaviors by
employing the following N pairs of equations:

xi(k + 1) = fi(xi(k), ui(k)) + ϵi(k) (6)

yi(k) = Ci(k)xi(k) + ξi(k) (7)

Here, subscript i ∈ N relates to the mode mi ∈ Z. The
model set Z = {m0,ma,me} contains N(N = 3) possible
system modes where m0 refers to the non-fault mode, ma

the aileron fault and me the elevator fault. Also, fi(·) and
Ci(·) are of different structures for different system modes.

There are several recursive filter options available (EKF
and UKF, etc.) for nonlinear systems. The UKF-based
filters are preferred as singular issues can be avoided. In
the considered application, three single-filter-based UKFs
are developed with the first one for non-fault mode and
the other two for actuator faults. The two UKFs for
actuator fault detection are derived with each monitoring
the health status of one actuator. System model (Eq. (1))
and measurement model (Eq. (4)) can only be used for
state estimate in the non-fault scenario, and an augmented
system model is required with adequate modifications to
detect a specific actuator fault. We follow the strategy in
Ducard (2009) and augment the state vector as

xj = [xT
i , δj ]

T (8)

where δj , j = a, e refers to the aileron or elevator. This def-
inition considers the monitored actuator as an additional
state variable. Thus, control action from the δj to flight
performance is neglected and the status of the δj actuator
is estimated through conducting the UKF procedure.

The fault detection is conducted by designing separate
UKFs for ailerons and elevators, as shown in Fig. 1. Inputs
to each UKF are measured system states and other avail-
able information (angle-of-attack, sideslip, thrust, etc.).
The UKF algorithm is able to detect actuator faults with-
out knowledge of health status of any actuator. When
detecting aileron fault, the estimated elevator signal from
UKF2 is considered as a replica of the actual elevator com-
mand. Thus, UKF1 is able to estimate status of aileron.
Similarly, UKF2 takes estimated aileron command from
UKF1 as actual aileron and outputs estimate of elevator
status. Thus, the detection algorithm can be considered
as a black-box which takes measured states as inputs and
outputs status of actuators.

4. RECURSIVE FAULT DIAGNOSIS

4.1 Calculation of Fault Probability

Fault diagnosis refers to isolation of true faults which
can be used to trigger fault-tolerant control strategies.
Occasionally, actuator faults occur instantly and disappear
rapidly. These expeditious faults are often of low magni-
tude and cause ignorable effect on the handling quality
of a UAS due to the short duration. Thus, flight stability
can still be maintained by existing proportional-integral-
derivative (PID) controllers. However, in the event of true
actuator faults characterized by an evident time dura-
tion and significant magnitude, it is required that these
faults are identified with maximum probability such that
confident fault isolation is achieved which can trigger the
emergency landing procedure timely.

In the MMAE framework, each UKF generates an estimate
of the system states, and the actual system states are
the summation of these state vectors weighted by the
corresponding conditional probability (Maybeck (1999)),

x̂(k) =

N∑
i=1

Pi(k)xi(k) (9)

Here, the index i covers all possible faulty modes including
the non-fault mode. The probability Pi(k) is the posterior
conditional probability that declares the faulty mode m =
mi given the observed measurements up to the time
instant k,

Pi(k) = Pr[m = mi|Yk], Yk = {y0, · · · , yk} (10)

where measurement history vector Yk contains available
measurements at different time instants t0, · · · , tk.
For online fault isolation, Pi(k) can be computed by
the recursive Bayesian Classifier (BC) (Ducard (2009);
Maybeck (1999))

Pi(k) =
P [y = yk|m = mi, Yk−1]Pi(k − 1)∑N

j=0 P [y = yk|m = mj , Yk−1]Pj(k − 1)
(11)

with the conditional probability density for the current
measurement yk given by

P [y = yk|m = mi, Yk−1] = αi(k)e
−Si(k) (12)

where

αi(k) = (2π)−
m
2 |Σi(k)|−

1
2 (13)

Si(k) =
rTi (k)Σ

−1
i (k)ri(k)

2
(14)

Here, i is actuator fault mode, N is number of actuator
faults. Residual is ri(k) = yi(k)−µi(k) where yi(k) is mea-
surement vector and µi(k) predicted mean of measurement
from the UKF. Therefore, the complete recursive form to
compute fault probabilities at time instant k is

Pi(k) =
αi(k)e

−Si(k) · Pi(k − 1)∑N
j=0 αj(k)e−Sj(k) · Pj(k − 1)

(15)

where j ∈ {0, a, e} indicates an actuator fault. In practice,
it is found that the leading term αi(k) can be neglected in
the recursive process (Eide and Maybeck (1996)).

In our case, the BC approach conducts hypothesis testing
by assuming Gaussian distributions of the measurement
residuals. This method functions effectively when system
dynamics are contaminated by noise with Gaussian distri-
butions. Essentially, the UKF corresponding to the true
fault scenario would generate an estimated measurement
vector most close to the the observed measurement vector,
and yield the minimum residuals which result in the largest
probability to indicate the proper UKF in consonance with
the true fault scenario.

Remark 1. To avoid false alarms, the detected fault is
claimed to be true when the corresponding fault proba-
bility exceeds 0.95 for ten consecutive sampling points.

Remark 2. As we are concerned with emergency situations
where actuator faults occur abruptly, the UAS is assumed
steady-state flight conditions at the initial stage. Thus, the
initial probability for non-fault case is set to be unity and
probabilities for faulty actuators are set to be zero. The
probability will converge to declare the fault mode once
actuator fault occurs.
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Fig. 1. UKF-based fault detection and diagnosis scheme

Remark 3. In the recursion process, low bounds for the
probabilities are set to be 0.001 to prevent locking into
zero which would prevent the recursion algorithm from
converging to true probabilities.

4.2 Design of moving average filters

The probabilities generated from the BC are subject to
short-term fluctuations which obscure probability trend.
A proper filter is required to highlight the long-term trend
of probability without causing significant time delay for
fault identification. Three moving average filters (MAFs)
are designed to smooth out the raw probabilities from the
BC with proper window widths. These filters cannot be
initiated efficiently until sufficient raw probability samples
are collected and stored in the computer memory. In our
case, a window width of 20 points was chosen after a few
trails.

4.3 Actuator Fault Isolation

Even though the filtered probabilities become less noisy
and performance of fault isolation has been improved, the
isolation performance is yet to be satisfactory. For some
time instant, it is observed that the true fault probability is
ambiguous and not notably dominant over other probabili-
ties. This causes difficulties in distinguishing true actuator
faults and would result in false alarms. Ducard (2009)
imposed an supervision module to monitor probability
signals which assists in confirmation of actuator faults by
adding excitation signals. There was also an additional
filtering stage with lower and upper bounds to isolate
true faults. These bounds are chosen empirically to extract
dominant probabilities.

In our case, we employ a decision criterion proposed by
Zhang and Li (1998):

Pj(k) = max
mi∈Z

Pi(k), i = {0, a, e} (16)

where Z refers to actuator fault model space Z =
{m0,ma,me}.

PH(k) =
Pj(k)

maxi ̸=j,mi∈Z Pi(k)
(17)

if PH(k) ≥ PT ⇒ Hj : Fault j occurs, (18)

if PH(k) < PT ⇒ H0 : No fault occurs (19)

where PT is the probability threshold. This decision logic is
based on determination of a single threshold and facilitates
the implementation in practice. The choice of threshold
PT is problem-dependent, and different values are used for
different systems. Practically, the threshold begins with an
empirical value and is determined after a few trials. The
proper threshold is selected to reduce isolation time delay
and avoid missing detection.

The block diagram of the proposed FDD is illustrated
in Fig. 1. Based on the available measurements, the
fault detection part constructs three UKFs which each
monitoring a particular type of fault (including the non-
fault scenario). The residuals and error covariance of
each UKF are input into the hypothesis testing block to
generate raw probabilities, which are then filtered by the
MAFs to highlight long-term trends. The true probability
weights for each mode are obtained after the filtered
probabilities are regulated by the decision criterion. The
estimated system states are the probabilistically weighted
sum of the states from each UKF.

5. SIMULATION RESULTS

In this section, we test performance of the proposed FDD
procedure for typical actuator faults which are likely to
occur during flight. To identify and remedy possible defi-
ciencies of the procedure before real-time implementation,
we set up a high-fidelity simulation model based on param-
eters of one of ARCAA UASs by using the AeroSim simu-
lation blockset. The AeroSim library provides a complete
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Fig. 4. Estimated states for floating faults
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Fig. 2. Comparison of true and estimated actuator com-
mand for single floating faults

set of tools for developing nonlinear aircraft models for
overall evaluation of the FDD. Aerodynamic parameters
of our UAS platform can be found in Yang et al. (2013).

In simulations, our UAS is controlled to be within the
operational velocity range of [20.83m/s, 57.78m/s]. Also,
operational limits on elevators and ailerons are imposed
(δe ∈ [−25o, 25o] and δa ∈ [−15o, 15o]). The angle of
attack and sideslip are stabilized to change within the
scope of −5o ≤ α ≤ 5o and − 28o ≤ β ≤ 28o. Moreover,
measurement noise in velocities, attitudes and angular
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Fig. 3. Probabilities generated by the fault isolation deci-
sion criterion for single floating faults

rates are considered with progressive increasing levels to
test the performance of the FDD procedure. Two PID
controllers are designed for aileron and elevator to achieve
steady-state flight conditions. A group of control gains
are selected to satisfy performance specifications such as
settling time (< 100s) and steady-state errors (< %5).
Empirically, the proper control gains were found after a
few trails with kap = 0.2279, kai = 0.0027 and kad =

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2499



0.2 for the aileron control, and kep = −0.055, kei =
−0.01 and ked = −0.1 for the elevator control.

5.1 Detection and Diagnosis of Single Actuator Faults

Performance evaluation for single faults is firstly con-
ducted for sequential occurrence of actuator faults. There
are two typical actuator faults: floating fault and lock-in-
place (LIP) fault. The floating fault describes a fluctuating
actuator surface moving up and down without staying at
a desired position. The LIP fault refers to the situation
where the actuator is stuck at an unexpected location. In
simulations, both faults occur and last for a certain period
of time. Numerous simulations have been carried out and
performance for single floating fault scenarios is illustrated
in Fig. 2 and Fig. 3. As we are only concerned with
faults during steady-state flight, the transient response
in the first 10s is removed for observation convenience.
Two separate floating faults are generated with an aileron
fault occurring at time interval [30s, 40s] and an elevator
fault at [50s, 65s]. It is observed that the aileron fault is
consistently estimated when floating fault occurs within
[−7o, 7o]. In the time interval where elevator fault occurs
within [−8o, 8o], the UKF is able to detect the fault with
rapid response. The estimate time delay is approximately
0.4s for aileron fault and 0.5s for the elevator fault. This
is considered to be sufficient to conduct fault isolation
onboard to distinguish true faults.

The fault isolation performance is shown in Fig. 3. It is
seen that the raw probabilities from the BC are sensitive
and will lead to false alarms. In the initial stage, proba-
bilities for both aileron and elevator are zero. When the
probabilities for aileron increase abruptly (shown as spikes
in Fig. 3), these probabilities are set to zero after the filter-
ing stage to avoid false alarms as they are less than 0.95 or
last for less than 10 consecutive points. Only probabilities
larger than 0.95 with a duration of 10 successive points
are treated true faults. The decision threshold is chosen to
be PT = 14 after a few trials for fault isolation purpose.
It is noticed that the actual aileron and elevator faults
are effectively detected and isolated with rapid response.
The estimated system states calculated from Eq. (9) are
illustrated in Fig. 4. They are probabilistically weighted
sum of the estimated states from different UKFs. It is
observed that the proposed FDD is able to consistently
estimate local velocities, angular rates and attitudes with
a sufficient accuracy from the noisy measurements. When
the estimated system states deviate from the steady-state
values, our FDD procedure can detect and isolate true
faults within a short period of time.

Performance of the FDD method is also tested for LIP
actuator faults. Two individual LIP faults are created for
aileron and elevator as shown in Fig. 5. It is observed that
when LIP faults occur, it takes longer time to recover to
the nominal values. Further, the coupling effect has the
potential to result in an elevator fault when the aileron
fault occurs. It is found that our procedure is able to detect
and isolate an aileron fault within [−5o, 5o]. It is shown in
Fig. 5 that single LIP fault in aileron is accurately detected
and isolated with a time delay of 0.4s. For a continuous
LIP fault, it is seen that the estimate error increases due
to the fact that it takes time for the UKFs to track the
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Fig. 5. Comparison of true and estimated actuator com-
mand for single LIP faults
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Fig. 6. Probabilities generated by the fault isolation deci-
sion criterion for LIP faults

system dynamics. Thus, this leads to transient responses.
However, the LIP fault is still identified with a short time
delay as can be seen in Fig. 6. It is shown in Fig. 7 that
the estimated system states are accurately estimated from
noisy measurements and can be used to evaluate flight
conditions of a UAS.

5.2 Performance Evaluation for Measurement Noise

Measurement noise is an inevitable factor affecting esti-
mate performance in real-time applications. The sensitiv-
ity analysis of our FDD method indicates that detection
and isolation performance would degrade with an increase
in measurement noise levels. To assess the tolerable limit
for the proposed FDD, Gaussian random noise is imposed
with progressively increasing levels in simulations. The fol-
lowing quantitative specifications are employed to evaluate
the estimate performance:

σ =

√√√√ 1

N

N∑
k=1

(x(k)− x̄(k))2 (20)

The estimate capacity factor γ is

γ = 20 log10
σ

xmax
(21)
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Fig. 7. Estimated states for LIP faults

Here, x̄(k) is the average value of the estimated actuator
command. The mean squared error (MSE) σ aims to
check the standard deviation of the estimate. γ is used
to assess the estimation capacity when measurement noise
is present.

For single floating actuator faults, 100 simulations are
conducted with each lasting for 150s (simulation step is
0.01s). The single faults occur within the time interval
[0, 150s] when the standard deviation of measurement
noise increases. The estimate performance is illustrated in
Fig. 8 and Fig. 9. For single aileron faults with magnitude
variations between [−7o, 7o], it is observed that the MSE
is less than 1.05o which indicates an accurate estimate
of the faulty aileron. To quantify the acceptable estimate
capacity, a threshold for the estimate capacity factor is
required. The threshold is set to −13.97 dB in our case,
which means the MSE is 20% of the maximum estimated
aileron command. It is noticed in Fig. 8 that the estimate
capacity factor γ remains less than the threshold until
noise standard deviation is 0.16 m/s in velocities, 0.13o

in attitudes and 0.13o/s in angular rates. This indicates
the FDD can tolerate measurement noise with standard
deviations lower than these limit values. Similarly, single
floating elevator fault is generated with increasing mea-
surement noise to test estimate capacity of the FDD pro-
cedure. The elevator changes within [−4o, 4o]. It is shown
in Fig. 9 that the MSE is less than 0.97o for the estimated
elevator. Also, the estimate capacity factor remains less
than −13.97 dB until noise standard deviation reaches
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Fig. 8. MSE and estimate capacity factor for single floating
aileron faults

0.53 m/s for velocities, 0.42o for attitudes and 0.42o/s for
angular rates. It is seen that the proposed FDD procedure
functions effectively when the measurement noise is within
these limit values. Due to small measurement noise yielded
by available sensors in the considered application, our
FDD method can be applied to identification of single
actuator faults.

6. CONCLUSION AND FUTURE WORK

In this paper, we present a recursive FDD scheme for
identifying actuator faults with improved reliability. The
fault detection is performed by using the UKF algorithm
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Fig. 9. MSE and estimate capacity factor for single floating
elevator faults

and the fault diagnosis is conducted by the BC method.
Performance of the proposed FDD is evaluated by us-
ing aerodynamic parameters of an ARCAA UAS and it
is demonstrated in simulations that our method can ef-
fectively detect and isolate typical single actuator faults
when measurement noise is present within certain levels.
Future work includes assessment of our procedure for dual
actuator fault scenarios (simultaneous occurrence of two
actuator faults) and flight validation of the proposed FDD
method. Also, performance of the proposed FDD frame-
work will be tested for windy conditions.
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