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Abstract: In this paper, a distributed partially cooperative control framework is proposed for a
network of linear interconnected subsystems. It is assumed that each subsystem in the network
possesses its own objective and a corresponding nominal interaction-free state feedback law. The
proposed framework enables each subsystem to compute an additional control term in order to
help maintaining the integrity of the overall network. As this cooperation-like behavior involves
relative priority assignment, a communication aware heuristic is proposed with an associated
stability assessment that is based on the closed-loop network matrix’s spectrum monitoring.
Illustrative examples are used to assess the effectiveness of the proposed scheme including a
distributed load frequency problem.

1. INTRODUCTION

The design of distributed control framework for intercon-
nected systems has received a great attention in the last
recent years due to the fact that centralized frameworks
are often very expensive in terms of communication if
not impossible to be settled. On the other hand, when
the interactions between subsystems are strong, the fully
decentralized control schemes show bad performance Ho
[2005], Cui and Jacobsen [2002]. To overcome these limits,
distributed control schemes have been proposed. The main
idea is that each subsystem of the network has to cooperate
with its neighbors by sharing partial information in order
to contribute to the global objective of the network (or to
manage its own objective) while avoiding destabilizing the
whole network.
The literature related to the distributed/cooperative con-
trol of interconnected networks has witnessed an impres-
sive growth these last years. This makes quite difficult an
exhaustive relative positioning of the existing propositions.
An efficient way towards a comprehensive positioning is
to consider the control paradigm being addressed, the
information shared between network’s subsystems and the
coupling between them, and at the end the stability en-
hancement and assessment.

• In Dunbar and Murray [2006], Richards and How
[2004a], Franco et al. [2008], the paradigm lies in
performing a distributed solution of a unified optimal
control problem that involves all the subsystems.
• The amount of information items that is communi-

cated or shared among the subsystems is another
important issue in distributed control design. In
T. Keviczky and Hrovat [2006], Brett T. Stewart
[2010], the dynamic models of all neighbors are com-
pletely shared while in Dunbar [2007], A.N. Venkat
and Wright [2008], Richards and How [2004a], the

whole states and control vector and/or trajectories
are transmitted.

• The coupling between subsystems in the networks
can be limited to terms involving only control vectors
(Camponogara and de Oliveira [2009]), state vectors
(Jia and Krogh [2001], E. Camponogara and Talukdar
[2002], Dunbar [2007]) or general coupling terms
that do not induce instability (Dunbar and Caveney
[2012], Richards and How [2004b], T. Keviczky and
Hrovat [2006]).

• The stability assessment results can be obtained by
monitoring the spectrum of the closed-loop network’s
matrix either through LMI design or by checking the
eigenvalues (Jia and Krogh [2001], E. Camponogara
and Talukdar [2002], T. Li and Fei [2010]).

In the present work, we consider linear networks involv-
ing general potentially destabilizing interconnection terms
that involve both states and control. It is assumed that
each subsystem has its own objective, its own nomi-
nal feedback law and its own Lyapunov function. This
paradigm is industrially relevant as practitioners often
prefer rather modular design framework in which network-
related issues and solutions are added as an additional
layer that does not question the old existing widely as-
sessed local controllers. The information exchanged be-
tween subsystems preserves the details of the local deci-
sions and set-ups from being totally exchanged and only
aggregated quantities are blindly transmitted as far as this
transmission helps preserving the stability of the overall
network. Such kind of parsimonious information exchange
has been already adopted in (Farina and Scattolini [2012],
Namerikawa and Kato [2011], Richards and J.How [2007])
where only the interaction-related terms are exchanged
between neighbors. For the stability assessment, some pri-
ority coefficients optimized off-line have been used. More
precisely, for a given set of these priority coefficients, the
controls at the subsystems’ level are completely defined.
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Only once these coefficients have been successively opti-
mized by the network’s control designer who has the com-
plete knowledge of the overall network then the distributed
cooperative control scheme stability can be guaranteed.

The paper is organized as follows. In section 2, the control
problem is stated and the network equations and related
assumptions are given. In section 3, the distributed co-
operative control scheme is progressively introduced high-
lighting the role of the priority matrix. More precisely, it
is shown how each subsystem in the network constructs an
optimal control problem involving both its own objective
and the stability-related concerns of its neighbors. The
latter are transmitted through dedicated exchanged items.
The way terms coming from neighbors impacts the local
optimal control problem heavily depends on the priority of
the neighbors as viewed by the local subsystems. The way
the priority matrix is optimized using off-line dedicated
nonlinear programming is detailed in section 4. Section 5
shows the effectiveness of the proposed scheme with stabil-
ity assessment using two examples including a well known
frequency distributed control problem in order to illustrate
the different features of the proposed framework and to
assess its efficiency in yielding communication-aware sta-
bilizing cooperative control scheme. Finally section 6 con-
cludes the paper and gives hints for further investigation.
The following notations are used throughout the paper:

• N : total number of subsystems in the network
• N→j : number of systems that are affected by system
j
• nui and ni: dimension of input and state vector of

subsystem i
• O: array with only zero elements of appropriate

dimensions
• → and← indicate which system is affecting the other.

For example, a variable with (j → i) indicates that
this variables is involved in the way subsystem j
influences subsystem i

• � and � indicate the direction of the information
circulation. For example, a variable with (j � i) in-
dicates that it is sent from subsystem j to subsystem
i

• I→j : A set containing indices of subsystems that are
affected by subsystem j

• I←j : A set containing indices of subsystems that affect
system j

2. PROBLEM STATEMENT AT A SUBSYSTEM
LEVEL

Let us consider an interconnected network in which a sub-
system i is governed by the following Ordinary Differential
Equation (ODE):

ẋi = Aixi +Biui +
∑
j∈I←

i

(Aj→ixj +Bj→iuj) (1)

where xi , ui are respectively the state and the control
vector of subsystem i while the summation term describes
the effects of interaction with neighbors on subsystem
i. Based on the above argument, it is assumed that
subsystem i can be stabilized by a local controller: ui =
−Kixi such that there are a Lyapunov function Vi(xi) =

xTi Pixi and some positive definite function S(xi) such that
the following inequality holds in the nominal case:

V̇i(xi)|ẋi=Acl
i
xi
≤ −Si(xi) (2)

where Pi is a symmetric positive definite matrix and
Acli = Ai − BiKi is used to denote the nominal closed-
loop matrix of subsystem i.
When interaction with other subsystems is present, a
cooperative control term vi should be designed and added
to the nominal term by which subsystem i can keep its
own objective while helping its neighbors to maintain the
global stability. Thus,

ui = −Kixi + vi (3)

Consequently, equation (1) can be rewritten in the follow-
ing more compact form:

ẋi = Acli xi +
∑
j∈I←

i

(Aj→ixj +Bj→iuj) (4)

in which i ∈ I←i meaning simply that subsystem i is
impacting itself. This convention is used in the reminder
of the paper. Once the interaction is taken into account,
the inequality (2) becomes:

V̇i(xi) ≤ −Si(xi)+
∑
j∈I←

i

Lj→i(xi)·(Aj→ixj+Bj→iuj) (5)

where Lj→i(xi) = 2xi
TPi. Based on the above expressions,

one has the following straightforward lemma:

Lemma 1. [Stability constraint for subsystem i]
The subsystem i is asymptotically stable provided that the
following inequality holds:∑

j∈I←
i

Lj→i(xi) · (Aj→ixj +Bj→iuj) < µSi(xi) (6)

for some µ ∈ [0, 1[. 4

Now this requirement has to be sent, in a rather condensed
form to all the neighbors affecting i (namely, having indices
j ∈ I←i ). For this reason, the following assumption is
needed regarding communication rules as well as mutual
a priori knowledge available at each subsystem regarding
the neighbors characteristics:

Assumption 1. [Knowledge/Communication rule &
Network topology]

(1) The structure of interaction in the network is bidirec-
tional, namely: {i ∈ I←j } ⇐⇒ {j ∈ I←i }.

(2) Each subsystem j that affects i (j ∈ I←i ) is aware of
the interaction matrices Aj→i and Bj→i involved in
(4).

(3) At each time step, subsystem i sends to its neighbors
j ∈ I←i (affecting it) the following quantity:

Wi�j := Lj→i(xi) (7)

It should be pointed out that each subsystem j (j 6= i)
neither knows the dynamics of Wi�j nor the explicit value
of the state xi for all i that is affected by it (i ∈ I→j ). The
information being sent concerns the instantaneous value of
Lj→i(xi). Note however that as soon as the subsystem j
receives the value of Wi�j , it can consider the left hand
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side of (6) as a linear combination of xj and uj that has
to be reduced if subsystem i needs to be stabilized. But
since there are as many subsystems i as there are elements
in the set of indices I→j , there is clearly need to define a
relative priority weighting viewed by subsystem j. This is
the aim of the following section.

2.1 The priority vector

In many networks, some subsystems are more critical than
others. In such situations, it seems reasonable to consider
the stability constraints sent by such critical subsystems
with higher weight (or priority) that the stability con-
straints sent by other less critical subsystems. Since only
neighbors belonging to I→j are considered by j, the relative
priority weights are intimately linked to the connection
topology. To better explain this feature, let us consider
the following example where a network with 4 subsystems
coupled in a chain graph as shown in the right drawing of
Fig. 1. An associated priority matrix can be given in the

Fig. 1. Example of a coupled networks

following form:

Π = [ π1 π2 π3 π4 ] =



π1
1 π1

2 0 0

π2
1 π2

2 π2
3 0

0 π3
2 π3

3 π3
4

0 0 π4
3 π4

4


; πji ≥ 0

(8)

In (8), Π and πj denote respectively the priority matrix
of the network and the priority vector of subsystem j.
πji determines how important subsystem i is viewed by

subsystem j. Roughly speaking, the higher πji is, the more
important subsystem i is considered by subsystem j.

On receiving the information Wi�j subsystem j defines a
cost function to be minimized based on a given priority
vector in order to cooperate with all subsystems having
index i ∈ I→j . Namely

min
vj
{‖vj‖2Rj

+
∑
i∈I→

j

πij [Wi�j(Aj→ixj+ (9)

Bj→i(−Kjxj + vj))]}
Note that the above optimization problem is defined given
a pre-assigned value of the priority vector πj .

3. SOLVING THE OPTIMIZATION PROBLEM (9)

In order to solve (9) and derive the additional control term
vj , an extended dynamic system is constructed:

żj = Ajzj + Bjvj =

[
Aclj G1

j . . . G
N→j
j

O Γ

]
zj + Bjvj (10)

where

zj :=


xj

π1
jW

T
1�j

...

π
N→j
j WT

N→
j

�j

 ,Bj =

(
Bj
O

)
, Γ = diag(−ε)

with ε is a positive constant, Gij = 1
2πi

j

· (Ai→j −Bi→jKi) ·
(Pi)

−1 while assuming a hypothetical exponentially decay-
ing dynamic of WT

i�j .

3.1 Rewriting of the cost function

By expressing πijWi�j and xj in terms of the extended
state zj , and by using the following assumption:

Assumption 2. [Shared Knowledge]
For any subsystem i that are affected by j (i ∈ I→j ),
subsystem j knows the matrix

(Ai→j −Bi→jKi) · (Pi)−1 ∈ Rnj×ni

4

The optimization problem (9) can be put in the following
form:

min
vj
{vjTRjvj + zj

TQcoopj zj + zj
TN coop

j vj} (11)

with

Qcoopj =


0 Aj→1 .. Aj→N→

j

−Bj→1Kj 0 .. 0
... 0 .. 0

−Bj→N→
j
Kj 0 .. 0


and

N coop
j =


On∗nu

Bj→1

...
Bj→N→

j


By now, the linear dynamic model (10) and the quadratic
cost function (11) completely define a quadratic program-
ming problem that can be solved in a discrete-time setting
to compute the matrix gain Kv

j that is used by subsystem
j in order to compute the additional control vj according
to:

vj = −Kv
j zj (12)

The use of sampling control here enables the non nec-
essarily negligible communication time to be taken into
account.
Note that the above optimization problem is defined given
a pre-assigned value of the priority vector πj . In section
4, it is shown how the priority vectors can be computed
such that the resulting overall interconnected cooperative
network is asymptotically stable. However, let us first show
how (9) can be solved at the subsystem j level.

4. STABILITY ENHANCEMENT THROUGH THE
OPTIMIZATION OF THE PRIORITY VECTORS

The preceding sections propose a heuristic that results in
the complete definition of the distributed feedback control
once given a priority matrix Π [see (8)]. In other words,
regardless how justified is the heuristic proposed above,
it leads to a rigorously defined terms vj , j ∈ {1, . . . , N}
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leading to rigorously defined controls uj , j ∈ {1, . . . , N}.
In this section, it is shown that based on these resulting
control expressions (issued from heuristically defined pro-
cedure), one can rigorously compute the spectrum of the
network’s dynamic closed loop matrix as a function of the
priority matrix Π. Therefore, Π can be optimized by the
network control designer (in the off-line design step) in
order to guarantee the stability of the network. This is
explained in the following sections.

4.1 The complete state space model

A complete state space model of the distributed scheme is
built in which the states of all the subsystems are involved.
The rationale behind this is that although Wi→j is known
to subsystem j as an information sent by subsystem i, it
is known from a designer’s view as:

Wi�j = Lj→i(xi) = 2xi
TPi (13)

Since Wi�j is involved in the extended state zj and (13)
is linear in xi, zj can be expressed as linear combination
of the state vectors {xi|i ∈ I→j }. Once all the extended
states for each subsystem in the network are expressed
in this manner, the complete state space model that is
equivalent to the distributed scheme can be established.
This results in the following compact autonomous form:

X+ = E(Π)X (14)

with X =
[
x1
T x2

T · · · xNT
]T

in which Π is the priority
matrix defined above.

4.2 Stability analysis and off-line optimization of the
priority matrix Π

Let us use the following notation in order to refer to
the spectrum of the network matrix for a given priority
vector Π:

α(Π) = max
i
|λi(E(Π))| (15)

where λi is the i-th eigenvalue of E(Π). Therefore, the
stability of the distributed control based on the heuristic
explained in the preceding sections can be guaranteed
as soon as a priority matrix Π can be found such that
α(Π) < 1. Note also that E(Π) can be written in the
following form:

E(Π) = π̄1E1 + · · ·+ π̄Np
ENp

(16)

in which Np is the number of nonzero elements in the
connection matrix C while π̄i’s are the corresponding
elements of the priority matrix. The problem of minimizing
the radius of the spectrum of (16) is a well known problem
in the matrix-pencil literature (Burke et al. [2000]). Several
methods can be used to minimize the radius α(Π):

min
Π∈P
{α(Π)} (17)

where P ∈ RNp is a compact subset of admissible values
to defined according to the context. In the sequel, the
MATLAB subroutine fmincon is used to solve the above
optimization problem leading to the optimal priority ma-

trix Π̂.

Remark 2. When considering a large scale network, the
problem of defining the form of the priority matrix is
important since the matrix pencil optimization with high
dimension is hard to perform. One potential solution is

to reduce the number of degrees of freedom in the defini-
tion of the priority matrix by using reduced dimensional
parametrization of the form Π = Π(ρ). The dimension
of the optimization problem is therefore defined by the
dimension of the parameter vector ρ. ♦

5. ILLUSTRATIVE EXAMPLES

In this section, some illustrative examples are given to
show the efficiency of the proposed framework. In all
the examples, evolutions labeled with coop refer to the
distributed cooperative method while those labeled with
noncoop correspond to scenarios where the distributed
cooperative control is not activated (i.e. ui = −Kixi;
vi = 0).

5.1 Example 1: Stability enhancement of a numerical case
study

In this first example, a network is built randomly using
3 subsystems with 2 states and 1 control each. The
subsystems are interconnected with each other in a cyclic
graph as in Fig. 1 through states and control inputs. The
continuous-time equation of the subsystems are given as
follows:

ẋi = Aixi +Biui + β
∑
j∈I←

i

(Aj→ixj +Bj→iuj) (18)

in which Ai is the open-loop state matrix governing sub-
system i. The nominal local controllers are designed with
LQR method: Acli = Ai − BiKi. The cooperative control
is computed as presented in the previous sections. Note
that β expresses the strength of the coupling between
subsystems. At each β, three different control schemes
are applied to the resulted network: (a) only nominal
decentralized controllers are activated, (b) the cooperative
control with equal priority and (c) the cooperative control
with optimal priority.
In the cooperative control with equal priority, all the
priority vectors are set to πi = [ 1 1 1 ]T for each subsys-
tem. The optimal priority is obtained using the method
described in section 4. The radiuses of the spectrum α(Π)
of the three complete state space models when β grows
from 0 are shown in Fig. 2.
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Fig. 2. Example 1: The evolution of the spectrum of the
network under growing interconnection strength.

5.2 Example 2: Load Frequency control problem

In this example, the distributed control scheme is ap-
plied to the load frequency control problem described in
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(Namerikawa and Kato [2011]). The network consists of
N = 4 subsystems (areas) and each of them has n = 7
states which are coupled in a chain-like graph. The param-
eters of the network are taken according to (Namerikawa
and Kato [2011]) and the states of each area are influenced
by a white noise with covariance matrix 10−3 × I. An
additional coefficient β is added to tune the strength of
coupling between areas. Four case studies are presented to
illustrate the advantages of the proposed scheme.

Case study 1 - Cooperative control with equal priority:
In the first simulation, the coupling parameter β = 1 is
used (leading to the same model as (Namerikawa and Kato
[2011])). When the cooperative control is not activated,
the network spectrum radius is 0.99 which means that
the network is stable under the decentralized nominal
control. Nevertheless, when looking at the behaviors of
the Lyapunov function of the cooperative control Vcoop
and that of the decentralized nominal control Vnoncoop, it
can be seen on Fig. 3 that the firing of the cooperation
algorithm leads to far better overall performance.
Note that for the purpose of better illustrating the evolu-
tion of the Lyapunov functions (which we choose to eval-
uate the performances of the areas), the initial conditions
for all states of the areas are set to 1 (since all of them are
stable).
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Fig. 3. Example 2 - case study 1: Evolution of ∆Vr =
Vcoop − Vnoncoop indicating that cooperation with
equal priority enhance the overall performance of the
network even when decentralized control is sufficient
to achieve the stability (weak coupling).

Case study 2 - Cooperative control with higher priority
on certain subsystem: In this simulation the coupling
parameter is also chosen as β = 1. Area 1 has a higher
priority viewed by both itself and its neighbor Area 2.
One can see form Fig. 4 that the behavior of Area 1 is
improved while for other areas, since they are defined to
be less important, their performances are a little sacrificed.

Case study 3 - Cooperative control with optimal priority:
With the coupling parameter remaining as β = 1, we

explore the performance of the network when the optimal
priority matrix is applied. At this step, each element in
the priority matrix is chosen between πji ∈ [0.1, 10] in the
matrix pencil optimization. Similarly, the performance of
the network is verified by looking at the behaviors of the
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Fig. 4. Example 2 - case study 2: Evolution of ∆Vr =
VcoopArea1−Vcoop indicating that when higher priority
is applied to Area1, its performance is better than in
the equal priority situation at a cost of the reduction
of its neighbors’ performances (weak coupling)

Lyapunov functions of each area VcoopOptimal. VcoopOptimal
is compared to Vcoop obtained in section 5.2.1. Fig. 5
depicts the improvement of the behaviors of all four areas.
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Fig. 5. Example 2 - case study 3: Evolution of ∆Vr =
VcoopOptimal−Vcoop indicating that, in this case when
optimal priority assignment is applied to all areas,
their performances are all better than in the equal
priority situation (weak coupling)

Case study 4 - Cooperative control under destabilizing
interaction: In this simulation, the coupling parameter
is set as β = 2 and this changes the interaction between
the areas to a destabilizing one. To stabilize the network
despite of the destabilizing interconnection, we design the
optimal priority matrix as presented in section 4 and
each element is chosen between [0.1, 1000]. The initial
conditions for all areas are zero and the evolution of
frequency deviation under the cooperative control is shown
on Fig. 6. The cooperative control with optimal priority
selection clearly stabilizes all areas.

6. CONCLUSION

In this paper, distributed control framework with lim-
ited communication has been proposed for interconnected
subsystems with potentially destabilizing coupling. While
each subsystem in the network has its own objective
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Fig. 6. Example 2 - case study 4: Frequency deviation with
cooperative control under destabilizing interaction.
The fluctuation is caused by a white noise to all states
with covariance matrix 10−3 × I.

through an associated Lyapunov function, subsystems may
cooperate when the integrity of the network is threatened.
The choice of priority vector represents a standard ma-
trix pencil optimization problem which can be solved off-
line using non convex optimization algorithms that may
becomes interesting when high dimensional problems are
tackled. The proposed framework is particularly attractive
as a first step in the design of distributed control for
nonlinear networks. Indeed, unlike many works where the
degrees of freedom are represented by the linear feedback
gain matrices which loose their relevance as soon as nonlin-
ear dynamics are involved, the concept of relative priority
coefficients can be used in both linear and nonlinear design
[see (Alamir et al. [2011])]. Moreover, the optimal relative
priority set that is computed using the linearized model is
likely to remain relevant even for the nonlinear network
(at least as far as deviations are not very important).
They can therefore be used as relevant design parameters
for the nonlinear distributed control design. Investigating
such situations and comparisons between such algorithms
are currently under progress and represent obvious per-
spectives for the present paper.
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