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Abstract: We consider boundary stabilization for a multi-dimensional wave equation with
boundary control matched disturbance that depends on both time and spatial variables.
The active disturbance rejection control (ADRC) approach is adopted in investigation. An
disturbance estimator is designed to estimate, in real time, the disturbance, and the disturbance
is canceled in the feedback loop with its approximation. All subsystems in the closed-loop are
shown to be asymptotically stable. The numerical experiments are carried out to illustrate the
convergence and effect of peaking value reduction.
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1. INTRODUCTION

The active disturbance rejection control (ADRC), as an
unconventional design strategy similar to the external
model principle ([6]), was first proposed by Han in [4].
One of the remarkable features of ADRC is that the
disturbance is estimated in real time through an extended
state observer ([1]) and is canceled in the feedback loop
which makes the control energy significantly reduced. The
generalization of ADRC to the systems described by one-
dimensional PDEs are also available in our previous work
[2] but there is no study for multi-dimensional PDEs.

In this paper, we are concerned with stabilization for a
multi-dimensional wave equation with Neumann boundary
control described by the following PDE:




wtt(x, t) = ∆w(x, t), x ∈ Ω, t > 0,

w(x, t)|Γ0 = 0,

∂w

∂ν

∣∣
Γ1

= v(x, t) + d(x, t),

w(x, 0) = w0(x), wt(x, 0) = w1(x),

(1)

where Ω ⊂ Rn(n ≥ 2) is an open bounded domain with a
smooth C2-boundary ∂Ω = Γ0 ∪Γ1. Γ0 and Γ1 (int(Γ1) 6=
∅) are disjoint, relatively open in ∂Ω, int(Γ0) 6= ∅, and ν is
the unit normal vector of ∂Ω pointing the exterior of Ω; v
is the control input, d is the unknown external disturbance
which is supposed to satisfy

d ∈ L∞(0,∞;C(Γ1)) ∩ C(0,∞;C(Γ1)),
dt ∈ L∞(0,∞;C(Γ1)).

(2)

? This work was supported by the National Natural Science Founda-
tion of China and the National Research Foundation of South Africa.

It is well known that when there is no disturbance, the
collocated feedback control

v(x, t) = −kwt(x, t), x ∈ Γ1, k > 0 (3)
exponentially stabilizes system (1) provided that there
exists a coercive smooth vector field h on Γ, that is, the
following condition is satisfied ([5, p. 668]).




(i). h · ν ≤ 0 on Γ0.
(ii). h is parallel to ν on Γ1, h(σ) = `(σ)ν(σ)

for a smooth `, σ ∈ Γ1.
(iii). For some constant ρ > 0,∀ y ∈ (L2(Ω))n :

∫

Ω

H(x)y(x) · y(x)dx ≥ ρ

∫

Ω

|y(x)|2dx

where H(x) = {∂hi/∂xj}n
i,j=1.

(4)

However, the stabilizing controller (3) is not robust to the
external disturbance as shown from the following example.
Example 1.1. Let Ω = {x = (x1, x2) ∈ R2| 1 < x2

1 +
x2

2 < 4} be a two-dimensional annulus. Let Γ0 be the
unit disk of R2 and Γ1 = ∂Ω \ Γ0, and d(x, t) ≡ d be a
constant. Then condition (4) is satisfied with h(x) = x.
However, system (1) under the feedback (3) admits a
solution (w, wt) = (d ln(x2

1 + x2
2), 0).

We consider system (1) in the energy Hilbert state space
H = H1

Γ0
(Ω) × L2(Ω), HΓ0 = {f ∈ H1(Ω)| f = 0 on Γ0}

with the usual inner product given by

〈(f1, g1)>, (f2, g2)>〉 =
∫

Ω

[∇f1(x)∇f2(x) + g1(x)g2(x)]dx,

∀ (f, g)> ∈ H,

and the control space U = L2(Γ1). Define the operator A
as follows:
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A(f, g)> = (g, ∆f)>, ∀ (f, g)> ∈ D(A),

D(A) =
{
(f, g)> ∈ H ∩ (H2(Ω)×H1(Ω))∣∣∣∣

∂f

∂ν

∣∣∣∣
Γ1

= g|Γ0 = 0

}
.

(5)

Then it is easy to verify that A∗ = −A in H.

Let A = −∆ be the usual Laplacian with D(A) = {f | f ∈
H2(Ω) ∩ H1

Γ0
(Ω), ∂f

∂ν

∣∣
Γ1

= 0}, which is a positive definite
unbounded operator in L2(Ω). It is easily shown (see e.g.,
[3]) that D(A1/2) = H1

Γ0
(Ω) and A1/2 is an canonical

isomorphism from H1
Γ0

(Ω) onto L2(Ω). An extension Ã ∈
L(D(A1/2, D(A1/2)′) of A is defined by

〈Ãf, g〉D(A1/2)′×D(A1/2) = 〈A1/2f,A1/2g〉L2(Ω),

∀ f, g ∈ D(A1/2) = H1
Γ0

(Ω).

Define the Neumann map Υ ∈ L(L2(Γ1),H3/2(Ω)) ([5,
p.668]), i.e., Υu = v if and only if{

∆v = 0 in Ω,

v|Γ0 = 0,
∂v

∂ν

∣∣
Γ1

= u.
(6)

Using the Neumann map, one can write (1) in D(A1/2)′ as

ẅ = −Ãw + Bu, (7)
where B ∈ L(U,D(A1/2)′) is given by

Bu = ÃΥu, ∀ u ∈ U,B∗f = f |Γ1 ,∀, f ∈ D(A1/2). (8)
Therefore, system (1) can be written as

d

dt

(
w
wt

)
= A

(
w
wt

)
+ B[u(x, t) + d(x, t)], (9)

where B = (0, B∗)>. However, since B is not admissible for
the semigroup eAt generated byA onH (see [5, p.669]), (9)
does not always admit a unique solution in H for general
v ∈ L2

loc(0,∞, U). To overcome this difficulty, we first
introduce a damping on the control boundary by designing

v(x, t) = −k1wt(x, t) + u(x, t), k1 > 0,∀ x ∈ Γ1, (10)
under which, the system (1) becomes





wtt(x, t) = ∆w(x, t), x ∈ Ω, t > 0,

w(x, t)|Γ0 = 0,

∂w

∂ν

∣∣
Γ1

= −k1wt(x, t) + u(x, t) + d(x, t),

w(x, 0) = w0(x), wt(x, 0) = w1(x).

(11)

Similar from (1) to (7), we can write (11) as

ẅ = −Ãw − k1BB∗ẇ −B(u + d) in D(A1/2)′ (12)
or in the first order form

d

dt

(
w
wt

)
= A

(
w
wt

)
+ B(u + d)

in D(A1/2)×D(A1/2)′,
(13)

where



A
(

f
g

)
=

(
g

−Ãf − k1BB∗g

)
,

D(A) =
{

(f, g)>| f, g ∈ D(A1/2), Ãf

+k1BB∗g ∈ L2(Ω)
}
,

B = (0,−B)>.

(14)

The following result is well known.

Proposition 1.1. The operator A defined in (14) gener-
ates a C0-semigroup of contractions eAt on H and B
is admissible to eAt. Therefore, for any initial value
(w(·, 0), ẇ(·, 0))> ∈ H and control input u ∈ L2

loc(0,∞, U),
(11) admits a unique solution (w, ẇ)> ∈ H.

By proposition 1.1, the (weak) solution of (11) satisfies

d

dt

〈(
w
wt

)
,

(
f
g

)〉

H
=

〈(
w
wt

)
,A∗

(
f
g

)〉

H

+
∫

Γ1

[u(x, t) + d(x, t)]g(x)dx,∀ (f, g)> ∈ D(A∗).
(15)

A simple computation shows that

A∗(f, g) = −(g, ∆f)>,

D(A∗) =
{

(f, g)> ∈ (H2(Ω) ∩H1
Γ0

(Ω))×H1
Γ0

(Ω)

∣∣ ∂f

∂ν

∣∣
Γ1

= k1g
}

.

(16)

In Section 2, we state the main results. Section 3 gives the
proof for the main results. Some numerical simulations for
Example 1.1 are presented in Section 4 for illustration.

2. THE MAIN RESULTS

In addition to (2), we suppose further that there exists a
positive nondecreasing differentiable continuous function
K such that for all xi ∈ Γ1, i = 1, 2, t ≥ 0,

|d(x1, t)− d(x2, t)| ≤ K(t)|x1 − x2|α. (17)
Let ε be a continuous function such that

ε(t) ∈ (0, 1], ε̇(t) < 0, lim
t→∞

ε(t) = 0. (18)

In addition, we can choose ε appropriately so that

δ(t) =
(

ε(t)
K(t)

)1/α

,

lim
t→∞

r(t)δn−1(t) = ∞ and sup
t>0

|δ′(t)δn−2(t)| < ∞,

(19)

where r ∈ C(R̄+,R+) is a time varying gain satisfying

ṙ(t) > 0, lim
t→∞

r(t) = ∞,
ṙ(t)
r(t)

≤ M, M > 0. (20)

Lemma 2.1. Let δ be defined by (19). Then, one can
construct {x(i)}∞i=1 ⊂ Γ1 so that the time varying covers
{Γ1 ∩ U(x(i), δ(t))}N(t)

i=1 of Γ1 satisfies

Γ1 = {Γ1 ∩ U(x(i), δ(t))}N(t)
i=1 ,

N(t)∑

i=1

meas(Γ1 ∩ U(x(i), δ(t)))

≤ C(Γ1)(n− 1)
n−1

2 2n−1meas(Γ1),

(21)

where U(x(i), δ(t)) denotes the ball of Rn centered at
x(i) ∈ Γ1 with radius δ(t); the boundary measure is the
Lebesgue measure in R(n−1) space; C(Γ1) is a positive
constant; and the time dependent integer N depends on δ
directly and limt→∞N(t) = +∞.

The next step is to construct a disturbance estimator. To
this end, let (f t

i , g
t
i)
> ∈ D(A∗), i = 1, 2, · · · , so that
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∆f t
i = 0, f t

i |Γ0 = 0,
∂f t

i

∂ν

∣∣
Γ1

= k1g
t
i ,

gt
i |Γ0 = 0, gt

i

∣∣
Γ1\U(x(i),δ(t))

= 0, gt
i

∣∣
Γ1∩U(x(i), 1

2 δ(t))
= 1,

0 ≤ gt
i |Γ1∩U(x(i),δ(t)) ≤ 1, |gt

it|Γ1∩U(x(i),δ(t))| ≤ π

∣∣∣∣
δ′(t)
δ(t)

∣∣∣∣ ,

∣∣∣∇gt
i

∣∣
Γ1∩(U(x(i),δ(t))\U(x(i), 1

2 δ(t)))

∣∣∣ ≤ π

δ(t)
,

∣∣∣∇gt
i |Γ1\(U(x(i),δ(t))\U(x(i), 1

2 δ(t)))

∣∣∣ = 0.

(22)
It is seen from (6) that f t

i = k1Υgt
i and hence f t

it = k1Υgt
it,

and gt
i can be constructed analytically as

gt
i(x) =





1, |x− x(i)| < δ(t)
2

,

0, |x− x(i)| ≥ δ(t),

−1
2

cos
(

2π|x− x(i)|
δ(t)

)
+

1
2
, others.

(23)

It is easy to see that gt
it(x), ∇gt

i(x) are continuous.
Substitute (f t

i , g
t
i)
> into (15) to obtain

d

dt

∫

Ω

[∇w(x, t)∇f t
i (x) + wt(x, t)gt

i(x)]dx

=
∫

Ω

[∇w(x, t)∇f t
it(x) + wt(x, t)gt

it(x)]dx

−
∫

Ω

∇w(x, t)∇gt
i(x)dx +

∫

Γ1

u(x, t)gt
i(x)dx

+d(ξi(t), t)
∫

Γ1

gt
i(x)dx,

(24)

where ξi : [0,∞) → Γ1 ∩ U(x(i), δ(t)) satisfies





d(ξi(t), t) =

∫

Γ1

d(x, t)gt
i(x)dx

∫

Γ1

gt
i(x)dx

,

d

dt

(
d(ξi(t), t)

∫

Γ1

gt
i(x)dx

)
=

∫

Γ1

dt(x, t)gt
i(x)dx

+
∫

Γ1

d(x, t)gt
it(x)dx.

(25)
Let M be a constant such that |d(x, t)| ≤ M , |dt(x, t)| ≤
M for all x ∈ Γ1 and t ≥ 0. By (19),





|d(ξi(t), t)| ≤ M,
∣∣∣∣
d

dt

(
d(ξi(t), t)

∫

Γ1

gt
i(x)dx

)∣∣∣∣ ≤ M

+C ′(Γ1)‖d‖L∞(0,∞;C(Γ1)) sup
t>0

(|δ′(t)|δn−2(t)) < ∞,

(26)
where C ′(Γ1) > 0 is a constant. Let





yi(t) =
∫

Ω

[∇w(x, t)∇f t
i (x) + wt(x, t)gt

i(x)]dx,

y2i(t) =
∫

Ω

[∇w(x, t)∇f t
it(x) + wt(x, t)gt

it(x)]dx

−
∫

Ω

∇w(x, t)∇gt
i(x)dx, i = 1, 2, . . . .

(27)

Then

ẏi(t) = y2i(t) +
∫

Γ1

u(x, t)gt
i(x)dx

+d(ξi(t), t)
∫

Γ1

gt
i(x)dx, i = 1, 2, . . . .

(28)

We design a time varying high gain extended state observer
for system (27) as





˙̂yi(t) = y2i(t) +
∫

Γ1

u(x, t)gt
i(x)dx

+d̂i(t)
∫

Γ1

gt
i(x)dx− r(t)[ŷi(t)− yi(t)],

d

dt

(
d̂i(t)

∫

Γ1

gt
i(x)dx

)
= −r2(t)[ŷi(t)− yi(t)],

i = 1, 2, . . . ,

(29)

which is served as a disturbance estimator.
Lemma 2.2. Let {x(i)} be defined in Lemma 2.1, gt

i be
defined by (23), ξi and d(ξi(t), t) by (25), and yi and y2i

by (27). Then under conditions (18), (19), and (20), the
solution of (29) satisfies

lim
t→∞

|d̂i(t)− d(ξi(t), t)| = 0, lim
t→∞

|ŷi(t)− yi(t)| = 0 (30)

uniformly for all i = 1, 2, · · · .
Now we define

d̂(x, t) =




d̂1(t), x ∈ Γ1 ∩ U(x(1), δ(t)),

d̂2(t), x ∈ Γ1 ∩ (U(x(2), δ(t)) \ U(x(1), δ(t))),

· · · ,

d̂i(t), x ∈ Γ1 ∩ (U(x(i), δ(t)) \ ∪i−1
j=1U(x(j), δ(t))),

· · · ,

d̂N(t)(t), x ∈ Γ1 ∩ (U(xN(t), δ(t))

\ ∪N(t)−1
j=1 U(x(j), δ(t))),

(31)

where x(i) is defined in Lemma 2.1.
Lemma 2.3. Let d̂ be defined by (31). Then under the
conditions of Lemma 2.2, we have

lim
t→∞

‖d̂(·, t)− d(·, t)‖L2(Γ1) = 0. (32)

By (32), we design naturally a collocated like state feed-
back control law to (11) as follows:

u(x, t) = −k2wt(x, t)− d̂(x, t), k2 > 0. (33)

Under the feedbacks (10) and (33), the closed-loop system
of (11) becomes, for all i ≥ 1, that
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wtt(x, t)−∆w(x, t) = 0, x ∈ Ω, t > 0,

w(x, t)|Γ0 = 0,

∂w

∂ν
(x, t)

∣∣
Γ1

= −kwt(x, t)− d̂(x, t) + d(x, t),

k = k1 + k2,

˙̂yi(t) = y2i(t)

−k

∫

Γ1

gt
i(x)wt(x, t)dx− r(t)[ŷi(t)− yi(t)],

d

dt

(
d̂i(t)

∫

Γ1

gt
i(x)dx

)
= −r2(t)[ŷi(t)− yi(t)].

(34)

We state our main result.
Theorem 2.1. Let {x(i)} be defined in Lemma 2.1, gt

i by
(23), d̂ by (31), and yi and y2i by (27). Then for any initial
value (w(·, 0), wt(·, 0))> ∈ H, the closed-loop system (34)
admits a unique solution (w(·, t), wt(·, t))> ∈ C(0,∞,H);
{ŷi, d̂i)}∞i=1 ∈ C(0,∞). Moreover, under conditions (2),
(4), (17), (18), (19), and (20), system (34) is asymptoti-
cally stable:

lim
t→∞

Ei(t) = 0 (35)

uniformly for i = 1, 2, . . . , where

Ei(t) =
∫

Ω

[|∇w(x, t)|2 + |wt(x, t)|2]dx + |ŷi(t)|

+
∫

Γ1

|d̂(x, t)− d(x, t)|2dx.

(36)

3. PROOF OF MAIN RESULTS

Proof of Lemma 2.1. Since Γ1 ∈ C2 is compact in
Rn−1, we may assume (by finite covering theorem) without
loss of generality that Γ1 can be described by xn =
ψ(x1, x2, . . . , xn−1) ∈ C2(Ωn−1) for some Ωn−1 ⊂ Rn−1.

Let Ωc be a (n − 1)-hypercube in Rn−1 space. Suppose
that each side of Ωc parallels the corresponding orthog-
onal coordinate axis of Rn−1 so that Ωn−1 ⊂ Ωc. Let
C(Γ) =

∥∥∥
√

1 + ψ2
x1

+ ψ2
x2

+ . . . + ψ2
xn−1

∥∥∥
C(Ωn−1)

, δ1(t) =

δ(t)
C(Γ) . We suppose that Ωc = ∪k0

j=1Urect(y
(j)
0 , δ1(0)

2
√

n−1
) and

Urect(y
(p)
0 , δ1(0)

2
√

n−1
) ∩ Urect(y

(q)
0 , δ1(0)

2
√

n−1
) = ∅ for 1 ≤ p 6=

q ≤ k0 ≥ 1, where Urect(y∗, r) = {y ∈ Rn−1| |yi −
y∗i | < r, i = 1, 2, . . . , n − 1} stands for a hypercube of
Rn−1 where yi is the i−th component of y and so is y∗i for
y∗.

We first state a simple fact on geometry of Rn−1. For ρ > 0,
let S = {zh = (ρi1, . . . , ρin−1)|ij ∈ Z, j = 1, 2 . . . , n − 1}
be the set of grid points of Rn−1. Let {Urect(zh, ρ)| zh ∈
S} be a set of hypercube of Rn−1. Then, the length of
boundary of Urect(zh, ρ) along any parallel direction of
the orthogonal coordinate axis of Rn−1 is just 2ρ. It is seen
that along a fixed orthogonal coordinate direction of Rn−1,
any point of Rn−1 belongs to at most two hypercubes
of {Urect(zh, ρ)}. Since Rn−1 has n − 1 number of axes,
any point of Rn−1 belongs to at most 2n−1 number of
hypercubes of {Urect(zh, ρ)}.

Let X (0) = {y(j)
0 | Urect(y

(j)
0 , δ(0)

2
√

n−1
) ∩ Ωn−1 6= ∅}.

Obviously, {Urect(y
(j)
0 , δ(0)√

n−1
)| y

(j)
0 ∈ X (0)} is a cover of

Ωn−1. Taking ρ = δ(0)√
n−1

as that in above paragraph, we
see that there are at most 2n−1 number of such hypercubes
such that

y ∈
2n−1⋃

j=1

Urect

(
y
(j)
0 ,

δ(0)√
n− 1

)
, y

(j)
0 ∈ X (0),

∀ y ∈ Ωn−1

(37)

and hence
N(0)∑

j=1

meas
(

Ωn−1 ∩ Urect

(
y
(j)
0 ,

δ(0)√
n− 1

))

≤ 2n−1meas(Ωn−1),

(38)

where N(0) = #X (0). By the continuity of δ(t), for all
sufficiently small t > 0,

N(0)∑

j=1

meas
(

Ωn−1 ∩ Urect

(
y
(j)
0 ,

δ(t)√
n− 1

))

≤ 2n−1meas(Ωn−1).

Since limt→∞ δ(t) = 0, there exists a t∗ > 0 such that
for all t > t∗, {Ωn−1 ∩Urect(y

(j)
0 , δ(t)√

n−1
)}N(0)

j=1 cannot cover
Ωn−1. Let

t1 = inf

{
t > 0

∣∣∣∣
{

Ωn−1 ∩ Urect

(
y
(j)
0 ,

δ(t)√
n− 1

)}N(0)

j=1

cannot cover Ωn−1

}
.

Then there are a finite number of {y(j)
1 }N(t1)

j=N(0)+1 ∈
Ωn−1 \ {Ωn−1 ∩ Urect(y

(j)
0 , δ(t1)√

n−1
)}N(0)

j=1 such that Γ1 ⊂
{Urect(y

(j)
1 , δ(t1)√

n−1
)}N(t1)

j=N(0)+1∪{Urect(y
(j)
0 , δ(t1)√

n−1
)}N(0)

j=1 . For

notation simplicity, we still denote by {y(j)}N(t1)
j=1 =

{y(j)
0 }N(0)

j=1 ∪{y(j)
1 }N(t1)

j=N(0)+1. Same to (37) and (38), we have

y ∈
2n−1⋃

j=1

Urect

(
y(j),

δ(t1)√
n− 1

)
, y(j) ∈ X (t1),∀ y ∈ Ωn−1,

N(t1)∑

j=1

meas
(

Ωn−1 ∩ Urect

(
y(j),

δ(t1)√
n− 1

))

≤ 2n−1meas(Ωn−1),

(39)

where X (t1) = X (0)∪ {y(j)}N(t1)
j=N(0)+1, N(t1) = #X (t1).

By induction, there exist {ti}∞i=2 and {y(j)}N(ti)
j=1 such that

y ∈
2n−1⋃

j=1

Urect

(
y(j),

δ(ti)√
n− 1

)
, y(j) ∈ X (ti),∀ y ∈ Ωn−1

N(ti)∑

j=1

meas
(

Ωn−1 ∩ Urect

(
y(j),

δ(ti)√
n− 1

))

≤ 2n−1meas(Ωn−1),

(40)

where X (ti) is defined iteratively by

X (ti+1) = X (ti) ∪ {y(j)}N(ti+1)
j=N(ti)+1, t0 = 0, i ≥ 0. (41)
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By this construction, we see that the bounded measure
cover

N(ti)⋃

j=1

(
Ωn−1 ∩ Urect

(
y(j),

δ(ti)√
n− 1

))
= Ωn−1 (42)

is a discrete series of cover which is independent of time t.
Now we relate this cover with time t by setting

X (t) := X (ti), t ∈ [ti, ti+1),

N(t) = #X (t), lim
t→∞

N(t) = ∞, i ≥ 0.
(43)

Then we get from (40) that for all t ≥ 0,
N(t)⋃

j=1

(
Ωn−1 ∩ Urect

(
y(j),

δ(t)√
n− 1

))
= Ωn−1, (44)

N(t)∑

j=1

meas
(

Ωn−1 ∩ Urect

(
y(j),

δ(t)√
n− 1

))

≤ 2n−1meas(Ωn−1).

(45)

Let x(i) = (y(i), ψ(y(i))) ∈ Γ1 for i = 1, 2, . . .. Then

x ∈
N(t)⋃

i=1

U
(
x(i), δ(t)

)
,∀ x ∈ Γ1, t ≥ 0, (46)

and by (45),
N(t)∑

i=1

meas(Γ1 ∩ U(x(i), δ(t)))

=
N(t)∑

i=1

∫

Ωn−1∩U((y(i),0),δ(t))

√
1 + ψ2

x1
+ ψ2

x2
+ . . . + ψ2

xn−1
dx1dx2 . . . dxn−1

≤
N(t)∑

i=1

∫

Ωn−1∩Urect(y(i),δ(t))

√
1 + ψ2

x1
+ ψ2

x2
+ . . . + ψ2

xn−1
dx1dx2 . . . dxn−1

≤
N(t)∑

i=1

C(Γ1)meas(Ωn−1 ∩ Urect(y(i), δ(t)))

≤ C(Γ1)(n− 1)
n−1

2 2n−1meas(Γ1),∀ t ≥ 0,

(47)

where
C(Γ1) =

∥∥∥
√

1 + ψ2
x1

+ ψ2
x2

+ . . . + ψ2
xn−1

∥∥∥
C(Ωn−1)

.

Combining (46) and (47) gives the required result.

Proof of Lemma 2.2. Let
ỹi(t) = r(t)[ŷi(t)− yi(t)], d̃i(t) = d̂i(t)− d(ξi(t), t) (48)

be the errors, and we denote by

Vi(t) :=
(

ỹi(t), d̃i(t)
∫

Γ1

gt
i(x)dx

)

×P

(
ỹi(t), d̃i(t)

∫

Γ1

gt
i(x)dx

)>
, i = 1, 2, . . . ,

(49)

where the positive definite matrix P is the solution of the
following Lyapunov equation:

F>P + PF = −I2×2, F =
(−1 1
−1 0

)
.

Since

λmin(P )‖(y1, y2)‖2 ≤ V (y1, y2) ≤ λmax(P )‖(y1, y2)‖2,
(50)

where λmin(P ) and λmax(P ) are the minimal and maximal
eigenvalues of P , respectively. By (28) and (29), finding the
derivative of Vi along the (ỹi, d̃i) to yield

V̇i(t) ≤ −r(t)
∥∥∥∥
(

ỹi(t), d̃i(t)
∫

Γ1

gt
i(x)dx

)∥∥∥∥
2

+N1

∥∥∥∥
(

ỹi(t), d̃i(t)
∫

Γ1

gt
i(x)dx

)∥∥∥∥
2

+N2

∥∥∥∥
(

ỹi(t), d̃i(t)
∫

Γ1

gt
i(x)dx

)∥∥∥∥ ,

(51)

where N1 and N2 are two positive constants. In the last
step of (51), (26) was used. This together with (50) gives

dVi(t)
dt

≤ − r(t)
λmax(P )

Vi(t) +
N1

λmin(P )
Vi(t)

+
N2

λmin(P )

√
Vi(t).

(52)

Since limt→∞ r(t) = +∞, there exists t0 > 0 such that
r(t) > 2λmax(P )

λmin(P ) N1 for all t ≥ t0. This together with (52)
shows that for all t ≥ t0,

d
√

Vi(t)
dt

≤ − 1
4λmax(P )

r(t)
√

Vi(t) +
N2

2λmin(P )
. (53)

Applying the L’Hospital rule and assumption (20), we
obtain

lim
t→∞

√
Vi(t) = 0. (54)

The left part of the proof needs property of gt
i . The details

are omitted.

Proof of Lemma 2.3. Define

d̃(x, t) = d̂(x, t)− d(x, t),∀ x ∈ Γ1, t ≥ 0. (55)

Since d(·, t) is Hölder continuous with index α ∈ (0, 1]
and satisfies |d(x′, t) − d(x′′, t)| ≤ K(t)|x′ − x′′|α. For
the given ε(t) > 0, since δ(t) = ( ε(t)

K(t) )
1
α > 0, we have

|d(x′, t) − d(x′′, t)| ≤ ε(t) as long as |x′ − x′′| ≤ δ(t).
Moreover, since ξi : [0,∞) → Γ1 ∩ U(x(i), δ(t)) which is
defined in (25), we have

‖d(ξi(t), t)− d(·, t)‖L2(Γ1∩U(xi,δ(t)))

≤ meas(Γ1 ∩ U(x(i), δ(t)))ε(t),∀ t ≥ 0.
(56)

From this we can prove

lim
t→∞

‖d̃(·, t)‖L2(Γ1) = 0. (57)

The details are omitted.

Proof of Theorem 2.1. Using the error variables (ỹi, d̃i)
defined in (48), we can write the equivalent system of (34)
as follows:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11367







wtt(x, t)−∆w(x, t) = 0, x ∈ Ω, t > 0,

w(x, t)|Γ0 = 0,

∂w

∂ν
(x, t)

∣∣
Γ1

= −kwt(x, t)− d̂(x, t) + d(x, t),

˙̃yi(t) = −r(t)ỹi(t) + d̃i(t)
∫

Γ1

gi(x)dx +
ṙ(t)ỹi(t)

r(t)
,

d

dt

(
d̃i(t)

∫

Γ1

gi(x)dx

)
= −r(t)ỹi(t)

− d

dt
d

(
ξi(t), t)

∫

Γ1

gi(x)dx

)
.

(58)
The “ODE part” in (58) has been shown in (30) through
(48) to tend zero as t →∞. Now we only need to consider
the “w part” of system (58) which is rewritten as




wtt(x, t)−∆w(x, t) = 0, x ∈ Ω, t > 0,

w(x, t)|Γ0 = 0, t ≥ 0,

∂w

∂ν
(x, t)

∣∣
Γ1

= −kwt(x, t)− d̃(x, t), t ≥ 0.

(59)

Exactly to (12), we write (59) as

ẅ = −Ãw − kB∗Bẇ −Bd̃ in [D(A1/2)]′ (60)
Let Ak and B be defined in (14) with replacement of k1

by k only. It is known that eAkt is exponentially stable ([5,
p.668]). By the admissibility of B proved in Proposition
1.1, along the same line as that presented in [2], we can
prove that the solution of (59) satisfies

lim
t→∞

∥∥∥∥
(

w(·, t)
wt(·, t)

)∥∥∥∥
H

= 0. (61)

The remaining part of the proof is straightforward.

4. NUMERICAL SIMULATION

In this section, we present some numerical simulations for
Example 1.1 for illustration. The purpose are twofold. The
first is to verify the theoretical results and the second is
to look at the peaking value reduction by the time varying
gain approach. Now, n = 2, the closed-loop system is (34),
Ω = {(x1, x2) ∈ R2| 1 < x2

1 + x2
2 < 4}, Γ0 = {(x1, x2) ∈

R2| x2
1 + x2

2 = 1},Γ1 = ∂Ω \ Γ0, gt
i is defined by (23),

yi and y2i are defined by (27), ξi is define dy (25), and
d̂ is defined by (31), r is the time varying gain in (20).
For numerical computations, we take parameter k = 3,
disturbance d(x, t) = sin(x1t), and the following initial
values in the polar coordinate form:



w(γ, θ, 0) = (γ2 − 1)2 cos(3θ), 1 < γ < 2, 0 < θ < 2π,

wt(γ, θ, 0) = 9 sin(2γ − 2) sin(3θ), 1 < γ < 2, 0 < θ < 2π,

ỹi(0) = 2r(0), d̃i(0) = 1.5, i = 1, 2, . . . .
(62)

The backward Euler method in time and the Chebvshev
spectral method for polar variables are used to discretize
system (34) under the polar coordinates. Here we take the
grid size rN = 30 for γ, the grid size θN = 50 for θ, and the
time step dt = 5× 10̃−4. The time varying gain function r
is taken as

r(t) = min{e5t, 30}. (63)

Figures 1(a) and 1(b) display the displacement w and the
velocity wt at the initial time t = 0 and the time t = 15,
respectively.

Figure 2 plots the tracking errors for the disturbance where
Figure 2(a) is with the time varying gain (63) and Figure
2(b) is with the constant gain r = 30. It is clearly seen
from these figures that the peaking value from Figure 2(b)
is dramatically reduced by the time varying gain in Figure
2(a).
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(a) Displacement w at initial
time t = 0 and time t = 15.
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(b) Velocity wt at initial time t =
0 and final time t = 15.

Fig. 1. The initial state and state at t = 15 of system (34)
with d(x, t) = sin(x1t).

(a) (b)

Fig. 2. (a) The error d̂−d under the time varying high gain;
(b) The error d̂− d under the constant high gain.
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