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Abstract: A problem of identification of mathematical model of chemical reaction is considered. 

Mathematical model in the form of ODE is obtained from the experimental data of concentrations changes 

during the reaction process. To solve the identification problem we use a numerical network operator 

method that allows finding structure and parameters of mathematical expression presented as an integer 

matrix. The network operator method uses evolutionary search algorithms. A numerical example of 

identification for the chemical generation singlet oxygen reaction is given.     

1. INTRODUCTION 

For more than 70 years, researchers in several areas of 

science have been intrigued by the physical and chemical 

properties of the lowest excited states of molecular oxygen. 

With two singlet states lying close above its triplet ground 

state, the O2 molecule possesses a very unique configuration, 

which gives rise to a very rich and easily accessible 

chemistry, and also to a number of important photophysical 

interactions. In particular, photosensitized reactions of the 

first excited state, 1O2, play a key role in many natural 

photochemical and photobiological processes, such as 

photodegradation and aging processes including even 

photocarcinogenesis. Reactions of 1O2 are associated with 

significant applications in several fields, including organic 

synthesis, bleaching processes, and, most importantly, the 

photodynamic therapy of cancer, which has now obtained 

regulatory approval in most countries for the treatment of 

several types of tumors (Schweitzer, Schmidt, 2003). 

Mathematical modeling of atomic-molecular and nanolevels 

is necessary to understand the mechanism of the process, to 

obtain the correct (usually nonlinear) dependence of the rate 

of chemical transformations of the reaction mixture 

composition and properties of the reaction surface, 

temperature and other process parameters. The result of these 

studies is the kinetic model of the reaction (Boreskov and 

Slin’ko, 1961, 1964). The kinetic model provides the 

necessary theoretical and practical information for the 

mathematical modeling of catalytic reactions, the reactor 

design and determine the optimal conditions of the industrial 

process (Kuchanov et al., 1991, Zyskin et al., 1981).  

At present, the construction of kinetic models based on 

existing methods is the most time-consuming and lengthy 

stage of the study. Because of this during the development of 

the catalytic process is increased, the number of errors and 

the industry suffers significant economic loss (Wasserman, 

Murray, 1979). Therefore, the accuracy and efficiency of 

kinetic modeling is of great practical importance to shorten 

the research and development of new catalytic processes. 

The development of kinetic models is done by solving 

inverse problem of physical chemistry. It deals with 

minimization of deviation between experimental data and 

calculated values. It requires multiple primal kinetic 

problems solving. 

The main physic-chemical law which is used to simulate the 

chemical reactions is the law of mass action, which states that 

the speed of the elementary reaction is proportional to the 

product of the concentrations of the reacting molecules, was 

established in 1867 by the Norwegian mathematician 

K. Guldberg and chemist P. Waage. 

Studying mechanisms of complex chemical reactions both 

physic-chemical and mathematical problems occur. Physic-

chemical problems deal with measurement complexity of 

intermediate compounds that may initiate mathematical 

ambiguity of inverse problem solution for kinetic parameters 

determination. 

Mathematical problem lies in the fact that certain conditions 

complex physical and chemical processes are not always 

described by the law of mass action. For example, sometimes 

in the kinetic equations the functional dependence of the 

Langmuir-Hinshelwood mechanism, taking into account the 

slowdown in certain stages of the chemical transformation is 

used (Slin’ko, et al., 1982, 1997). Plans are to search more 

adequate mathematical descriptions of chemical reactions; in 

this paper we consider a new approach to the establishment 

of the laws of chemical reaction rate dependence on the 

concentration of the participating agents. 

To solve the problem of identification for the chemical 

reaction we use a method of network operator (Diveev, 

Sofronova, 2008, 2009, 2012, Diveev, 2012). This method 

allows presenting mathematical expressions in the form of 

integer matrices using a new data structure, a network 
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operator. Applying this method we can find structure and 

parameters of nonlinear mathematical model of reaction. 

2. IDENTIFICATION OF CHEMICAL REACTION 

MODEL 

Consider the identification of chemical reaction mathematical 

model.  

The observed results of changing concentrations of 

substances that participate in reaction are given  

( ) ( )( )N
Ntt yy ,,,,X 0

0 K= ,    (1) 

where ky  is an observed vector of values of concentrations 

at moment it , [ ]Tk
m

kk yy K1=y , kk tt <−1 , Nk ,1= , 

( )xj
k
jy ϕ= , Nk ,1= , mj ,1= ,   (2) 

[ ]Tnxx K1=x , ix  is a concentration of substance i , ( )xjϕ  

are known function, that describe the values of changing 

concentrations. 

It is known that initially in the reaction participate nl <  

substances. The rest ln −  substances are obtained as a result 

of reaction. 

To describe changing concentrations in time we define the 

system of differential equations  

( )( )lxx ,,1 K& vfx = ,    (3) 

where 

( ) ( ) ( )[ ]T
jirjil rr

xxvxxvxx ,,,,
1111 KK =v , 

ljiji rr ≤≤ ,,,,1 11 K . 

Functions ( )
pp jip xxv ,  describe the law of concentrations 

pix  and 
pjx  changes at interaction of substances pi  and 

pj : 

( )
pp jipp xxqgv ,,= , rp ,1= ,    (4) 

where pq  is unknown constant parameter, rp ,1= .  

We suppose that the structure of function ( )
pp jip xxqg ,,  and 

values of parameters pq , rp ,1= , are unknown. 

The constraints are given in the form of algebraic balance 

equations 

( ) 0=α xj , Mj ,1= .    (5) 

It is necessary to find functions (4) and parameters pq , 

rp ,1= , so that having solved the system of differential 

equations (3) for given initial values  

( ) 0
11 0 xx = , …, ( ) 00 ll xx = , ( ) 001 =+lx ,…, ( ) 00 =nx , (6) 

we could minimize the quality criterion  

( )( )( )∑ ∑
= =

ϕ−ω=
m

j

N

k
k

k
jj tyJ

1 1

2
x ,   (7) 

where ( )ktx  is a solution of (3) at moment kt , and fulfils the 

balance equations  (5) 

( )( ) 0=α kj tx , Nk ,1= .    (8) 

In most mathematical models interaction of substances (4) 

was presented by the law of K. Guldberg and P. Waage. 

According to this law velocities of interaction of substances 

are proportional to multiplication of their concentrations 

raised to the certain powers. In works (Slin’ko et al., 1997) 

using generalized models of chemical reactions the power of 

concentrations equals to one. To identify the model it was 

necessary to find only the values of parameters. In present 

work to identify the mathematical model we use a method of 

network operator. 

3. METHOD OF NETWORK OPERATOR 

To solve the problem of identification we use a method of 

network operator. Mathematical expressions are presented in 

the form of directed graphs. The structure of graph shows 

arguments of any function in the mathematical expression 

and the order of operations. 

Network operators consist of the following constructive sets: 

- set of variables 

( )Nxx ,,X 1 K= , 1R∈ix , Ni ,1= ;   (9) 

- set of parameters 

( )Pqq ,,Q 1 K= , 1R∈iq , Pi ,1= ;   (10) 

- unary operations set 

( ) ( ) ( )( )zzzz Wρρ=ρ= ,,,O 211 K ;   (11) 

- binary operations set 

( ) ( )( )zzzz V ′′′χ′′′χ= − ,,,,O 102 K .   (12) 

The set of unary operations must include the identity 

operation, ( ) zz =ρ1 .  

Binary operations are commutative 

( ) ( )zzzz ii ′′′χ=′′′χ ,, , 1,0 −= Vi ,   (13) 

associative 

( )( ) ( )( )zzzzzz iiii ′′′′′′χχ=′′′′′χ′χ ,,,, , 1,0 −= Vi , (14) 

and have a unit element 
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( ) 2O, ∈′′′χ∀ zzi , ie∃ , ( ) zzeii =χ , , 1,0 −= Vi . (15) 

Numeration of elements in set 2O  starts from zero, 

numeration of elements in set 1O  starts from one. Unit 

elements for these operations are zero and one respectively. 

When we present a network operator as a matrix zeros in 

positions for unary operations mean the absence of unary 

operations.  

The network operator is a directed graph where each source 

node corresponds to parameter or variable, other nodes - to 

binary operations, edges – to unary operations, the results are 

kept in the sink nodes. 

To present a network operator in the PC memory we use a 

network operator matrix (NOM) 

[ ]ji,ψ=Ψ , Lji ,1, = ,    (16) 

where L  is a number of nodes in a network operator. 

NOM has the same structure as the adjacency matrix of the 

graph. We replace ones in the adjacency matrix by 

corresponding unary operations kji =ψ , , if the edge ( )ji,  

corresponds to operation ( )zkρ . The main diagonal elements 

contain indices of binary operations mii =ψ , , if the node i  

corresponds to binary operation ( )zzm ′′′χ , . 

All nodes in the network operator should be numerated so 

that the index of the node where the edge comes out is less 

than the index of the node where this edge comes in ( )ji,∀  

ji < . Thus the NOM is upper triangular, and we can 

calculate the result of mathematical expression.  

Here we present the most commonly used unary and binary 

operations. 

( )





=ρ= zz11O , ( ) ,2

2 zz =ρ ( ) zz −=ρ3 , 

( ) ( ) zzz sgn4 =ρ , ( ) 1
5

−=ρ zz , ( ) zez =ρ6 , ( ) zz ln7 =ρ , 

( )
z

z

e

e
z

−

−

+

−
=ρ

1

1
8 , ( )



 ≥=ρ

otherwise  ,0
 0 if  ,1

9
z

z , ( ) ( )zz sgn10 =ρ , 

( ) ( )zcos11 =ρ z , ( ) ( )zz sin12 =ρ , ( ) ( )zz arctan13 =ρ , 

( ) 3
14 zz =ρ , ( ) 3

15 zz =ρ , ( ) ( )

 <

=ρ
otherwise  ,sgn

1  if  ,
16 z

zz
z , 

( ) ( ) ( )1lnsgn17 +=ρ zzz , ( ) ( ) 




 −=ρ 1sgn18

z
ezz , 

( ) ( ) z
ezz

−=ρ sgn19 , 

( )











ε−ε
<

ε>

=ρ
otherwise ,/2/3

0  if  ,0

  if  ,1

3322
20

zz

z

z

z , 

( )







ε−ε
ε−<−

ε>
=ρ

  otherwise ,/4/3

2/  if  ,1
2/  if  ,1

332
21

zz

z
z

z , ( ) z
ez

−=ρ22 , 

( ) 3
23 zzz −=ρ , ( ) 





+
=ρ

− ze
z

1

1
24 , 

( )( zzzz ′′+′=′′′χ= ,O 02 , ( ) zzzz ′′′=′′′χ ,1 , 

( ) { }z,zmax,2 ′′′=′′′χ zz , ( ) { }z,zmin,3 ′′′=′′′χ zz , 

( ) zzzzzz ′′′−′′+′=′′′χ ,4 , 

( ) ( ) ( ) ( )22
5 sgn, zzzzzz ′′+′′′+′=′′′χ , 

( ) ( )( )zzzzzz ′′+′′′+′=′′′χ sgn,6 , 

( ) ( ) { } 

′′′′′+′=′′′χ z,zmaxsgn,7 zzzz . 

All these binary operations are associative, commutative and 

have unit elements 00 =e , 11 =e , 1
2

−ε−=e , 1
3

−ε−=e , 

04 =e , 05 =e , 06 =e , 07 =e . 

Network operator matrix Ψ  of dimension LL ×  contains 

sets of N  variables, P  parameters, W  unary operations and 

V  binary operations. NOM can present  

( )∏ ∑
++=

−

=

−−=
L

PNj

j

k

kPNL
O WkGVK

1

1

1

,  (17) 

where 

( ) ( )
( ) !!1

!1

kkj

j
kG

−−

−
= ,    (18) 

different mathematical expressions. 

Network operators which matrices are of the same dimension 

and have the same indices of the nodes for variables, 

parameters and outputs are called alike network operators.  

Let ( )LΞ  be a set of alike network operators of dimension 

L . The cardinal of set ( )LΞ  is determined by (18). We 

search for solution over this set. The search is complicated by 

the fact that the elements of set have nonnumerical codes. 

Nonnumerical codes are the codes for which arithmetical 

operations of addition and multiplication are not performed.  

To organize a directed search of optimal network operator we 

define a metrics on the set of alike network operators as a 

sum of differences between matrices  

( ) ∑ ∑
= =






 Ψ−Ψϑ=δ

L

i

L

j

l
ji

k
ji

lk

1 1
,,,ΨΨ ,   (19) 

where ( )Llk Ξ, ∈ΨΨ , [ ]k
ji

k
,Ψ=Ψ , [ ]l

ji
l

,Ψ=Ψ , Lji ,1, = , 

( )Aϑ  is Heaviside function 
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( )


 >=ϑ

otherwise  0
0  if  ,1 A

A . 

If ( )Llk Ξ, ∈ΨΨ  and ( ) ∆=δ lk
ΨΨ , , then we say that the 

distance between network operators k
Ψ  and l

Ψ  is equal to 

∆ .  

Define ∆ -neighborhood of network operator as a subset of 

network operators ( ) ( )Li Ξ, ⊆∆ΨΩ  that are no more than ∆  

far from the network operator iΨ ,  

( )∆∈∀ ,ij ΨΩΨ , ( ) ∆≤δ ji ΨΨ , . 

Let us have a function ( )Ψ0f  on the set ( )LΞ  of network 

operators. Then we consider that the function ( )Ψ0f  reaches 

its local minimum on the set of network operators, if Ψ
~

∃  that 

( )1,
~
ΨΩΨ ∈∀ ,  

( ) ( )ΨΨ
~

00 ff ≥ . 

Suppose w  is variation operator or simply variation of 

network operator 

ΨΨw ≠o .     (20) 

A small variation of network operator is a variation that 

fulfills the condition  

( ) 1, =δ ΨΨw o .     (21) 

The condition of local minimum of function ( )Ψ0f  on the 

set ( )∆,ΨΩ  is the following 

( ) ( ) 000 ≥− ΨΨw ff o ,    (22) 

where ( )∆∈ ,ΨΩΨw o . 

Small variations of network operator may differ from each 

other. For network operator small variations are: 

0 – a replacement of unary operation,  

1 – a replacement of binary operation,  

2 – an addition of unary operation, 

3 – a deletion of unary operation.  

Operation 3 requires that the elements in columns and rows 

of network operator that are not source nodes cannot be equal 

to zero. To present variations we use a vector of four 

elements  

[ ]Twwww 4321=w ,    (23) 

where 1w  is a number of small variation, 2w  is a number of 

row, 3w  is a number of column, 4w  is a number of unary or 

binary operation. 

To search for the optimal network operator Ψ
~

 we use 

ordered sets of elementary variations  

( )lii
i

,1, ,,W ww K= ,    (24) 

ΨwwΨ ooKoo

1,,W ili
i = .   (25) 

The search algorithm of optimal mathematical expression has 

the following steps. 

We start from the network operator 0Ψ  that is supposed by 

the researcher to be close to the desired solution. This 

network operator is called a basis network operator.  

Then we generate sets of variations ( )lii
i

,1, ,,W ww K= , 

Hi ,1= , and calculate the values of goal function for each 

new network operator ( )0
0 W Ψoif . 

If we find a network operator with a better value of goal 

function than the basis network operator then we replace the 

basis network operator with a new found one.  

If ( ) ( )0
0

0
0 W ΨΨ ff i <o , then 00 W ΨΨ oi← . 

The probability AP  of finding optimal network operator with 

the help of the algorithm proposed depends on the number 

H  of generated sets of variations. 

1lim =
∞→

A
H

P .     (26) 

Any evolutionary algorithm can be applied to the search. In 

our research we use genetic algorithm where genetic 

operations are performed on the ordered sets of elementary 

variations (24). 

4. AN EXAMPLE 

As an example, consider the chemical reaction of singlet 

oxygen generation. 

For many years singlet oxygen 
1
O2 has been attracting the 

attention of researchers because of its essential role in the 

organic synthesis and biological processes (Wasserman, 

Murray, 1979). Equally important is the involvement of 
1
O2 

in the chemluminescent reactions (Kazakov et al., 2007). 

Previously, the reaction accompanied by the high-

efficiency generation of 
1
O2, namely the collapse dioxiranes 

(Adam et al., 1989) catalyzed by the series of anions (Сl – , 

Br–, I–, OH–, O2–) (Adam et al., 2002) was found. The yield 

of singlet oxygen measured in this peroxide system by IR-CL 

method is high enough. 

The data on the laws of this reaction will be useful for a 

better understanding of the processes of generation of excited 

states in the reactions of peroxides, as well as for 

understanding of factors affecting the stability of dioxiranes 

in solution. The high yield of 
1
O2 can be considered a 

dioxirane-nucleophilic ion system as a promising one for the 

chemical lasers and organic synthesis. 

The differential equation (3) describing the changes in the 

concentrations of substances in the study of the catalytic 

process generating 
1
O2 based on the proposed scheme of 
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chemical transformations in (Ovchinnikov et al., 2010) are of 

the form 

3211 vvvx −−−=& , 

212 vvx +−=& , 

3213 vvvx −−=& , 

24 vx =& , 

25 vx =& , 

36 vx =& , 

37 vx =& , 

where 

( )2111 ,, xxqgv = , 

( )3122 ,, xxqgv = , 

( )3133 ,, xxqgv = , 

( )baqg ,,  is unknown function of three arguments, iq  are 

unknown values of constant parameters, 3,2,1=i . 

For the system of differential equations we have the initial 

conditions: ( ) 881834215.001 =x , ( ) 118165785.002 =x , 

( ) 00 =ix , 7,3=i . 

Balance equations (5) are  

( )0333333 176531 xxxxxx =++++ , 

( )0666666 176531 xxxxxx =++++ , 

( )0222222 1765431 xxxxxxx =+++++ , 

( )02732 xxxx =++ . 

Let us consider an example of concentrations changing 

estimation by the value of intensity  

( ) ( )00 21

21

xx

xx
y = . 

In our research we tried to improve the law of K. Guldberg 

and P. Waage. The law stipulates that the velocity pv  of 

changing of concentrations of substances ix  and jx  in 

reaction p  is proportional to multiplication of these 

substances concentrations raised to certain powers 

βα=
pp jipp xxqv . 

It is usually assumed that 1=α , 1=β  and parameters pq  

are searched for. 

We used this law as a basis solution and tried to find its 

presentation by method of network operator.  

To solve the problem we used a method of network operator 

and evolutionary algorithm. The parameters of the variation 

genetic algorithm with multiple basis were: cardinal of initial 

set of possible solutions 512; number of generations 128; 

number of crossovers in one generation 256; number of 

variations in one solution 4; number of generations between 

epochs 16; number of elite solutions 12; probability of 

mutation 0.7; crossover parameter 0.4; number of bases 5. 

Our approach is realized in the specific software NOP4C-I 

developed for the identification of control systems. 

As a result we obtained the following network operator 

matrix 























=

00000000
151000000
323100000
302310000
000231000
00010000
0001423000
000523000

Ψ , 

which corresponds to the following mathematical expression 

( ) ( ) −+−−−−= 33 333 2,, AAAAAAbaqg i  

( )( ) ( ) ( )
a

b
bbaabbaaqi

3333333 −−+−−− , 

where 

( ) ( )3434232626425 baabbaab
a

q
babbabqA i

i +−−−+−−= . 

For parameters iq  the values are: 09753.261 =q , 

01590.02 =q , 67213.3143 =q .  

Obtained mathematical expression can be considered as 

correction of law proposed by K. Guldberg and P. Waage. 

The plot of experimental and calculated values of the 

intensities obtained with the identified functions ( )baqg i ,,  

is presented in Fig.1.  

Plot on Fig. 1 shows high accuracy of obtained mathematical 

model of chemical reaction. The results of calculations may 

lead to certain correction of interaction law of substances 

proposed by K. Guldberg and P. Waage that concentrations 

of substances at their interaction are proportional to 

multiplication of polynomials from concentrations of each 

substance.  
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Fig. 1. The experimental and calculated values of the 

intensities at 283 K.  

5. CONCLUSIONS 

Application of method of network operator for the problem of 

chemical reaction model identification allowed obtaining 

mathematical model of substances interaction reaction. 

Comparison with experimental data proved high accuracy of 

obtained model which includes new mathematical expression 

that presents the law of substances interaction. This 

mathematical expression can be considered as correction of 

law proposed by K. Guldberg and P. Waage. 

Further research is also expected to treat an array of data for 

temperatures 288K and 316K, and investigate obtained 

mathematical expression for these reactions. 
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