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Abstract: This paper presents an input selection wrapper approach using local model network
trees. This model class allows the distinction in two input spaces - the rule premises input space
and the rule consequents input space. Therefore the input selection can take place in both or
just in one of these input spaces. As we will show, this leads to an improved model accuracy
and an improved understanding of the dependencies between the inputs and the output. The
introduced input selection algorithm is applied to one artificial data set and to the auto miles
per gallon data set, see Frank and Asuncion [2010], to show the algorithm’s abilities.
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1. INTRODUCTION

Mathematical descriptions of reality, respectively models,
are very important in many areas, such as simulation,
optimization, or feedback control. The number of potential
input variables to achieve the modeling task typically is
huge and a priori there is often no information which input
variables are useful to model a certain kind of process. The
term useful is chosen to make clear, that the best input
variable subset regarding to model accuracy might not
necessarily include all relevant input variables, according
to Kohavi and John [1997]. Additional input variables usu-
ally cause a greater model flexibility and therefore increase
the model’s variance error. The most useful input variable
subset corresponds to the best bias-variance trade-off, see
Munson and Caruana [2009]. Besides the fact, that the
selection of all input variables might not lead to the best
bias-variance trade-off, one other fundamental reason for
selecting subsets of input variables is the curse of dimen-
sionality, as stated by Liu and Motoda [2008]. To mention
just one problem related to the curse of dimensionality,
the amount of necessary samples to cover the input space
grows exponentially with the input dimensionality. This
leads to more time consuming and therefore more expen-
sive measurements. In summary, the reduction of the input
dimensionality aims to

• improve the reliability and accuracy of the model,
• reduce the time for model construction and
• make the underlying process more concise and trans-

parent.

The usage of local model networks for input selection
tasks creates new possibilities, such as the separation
between the rule premises and consequents. Although such
a strategy can be taken for any local model network
structure, the identification algorithm must be able to
cope with this. LOLIMOT (LOcal LInear MOdel Tree)
and HILOMOT (HIerarchical LOcal MOdel Tree) are
prominent examples that are capable of this purpose,

as stated by Nelles [2000] and Nelles [2006]. However,
the popular algorithms based on product-space clustering
according to Gustafson and Kessel [1978] as well as to Gath
and Geva [1989] can only treat common input spaces. In
the fuzzy interpretation the separation means that the rule
premises (IF) can operate on (partly) other variables than
the rule consequents (THEN). Therefore input selection
can be performed on both input spaces. To investigate the
two input spaces we use a wrapper approach based on the
HILOMOT algorithm.

2. HIERARCHICAL LOCAL MODEL TREE

HILOMOT belongs to the the class of local model net-
works and is based on the ideas of hinging hyperplane trees,
which are described by Breiman [1993], Ernst [1998] and
Töpfer [2002]. As already mentioned, local model networks
allow to distinguish between the input space of the validity
functions Φi(·) and the local models ŷi(·), where the index
i corresponds to the i-th validity function and the i-th
local model. The output ŷ of a local model network can be
calculated as the interpolation of M local model outputs:

ŷ =

M∑
i=1

ŷi(x)Φi(z) , (1)

with x = [x1 x2 · · · xnx] spanning the consequent input
space and z = [z1 z2 · · · znz] spanning the premise input
space, refer to Nelles [2000]. The originally measured input
variables can be assigned to the premise and/or consequent
input space according to their nonlinear or linear influence
on the model output (Nelles [2006]), see Fig. 1. The
validity functions describe the regions where the local
models are valid; they describe the contribution of each
local model to the output. For a reasonable interpretation
of local model networks it is mandatory that the validity
functions form a partition of unity :

M∑
i=1

Φi(z) = 1 . (2)
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Fig. 1. For local model networks the inputs can be assigned
to the premise and/or consequent input space.

Thus, everywhere in the input space the contributions of
all local models sum up to 100%.

HILOMOT uses sigmoid splitting functions, that are
linked in a hierarchical, multiplicative way to determine
the validity functions (Nelles [2006]). In every region de-
fined by its validity function a local affine model is es-
timated. With the help of Fig. 2 the algorithm’s proce-
dure should be explained shortly. Starting with a global
affine model, in each iteration an additional local affine
model is generated. The local model with the worst lo-
cal error measure is split into two submodels, such that
the spatial resolution is adjusted in an adaptive way.
The affine parameters of the new submodels are esti-
mated locally by a weighted least squares method. This
is computationally extremely cheap and introduces a reg-
ularization effect which increases the robustness against
overfitting, as stated by Nelles [2000]. A major advantage
of HILOMOT is the possibility to perform axes-oblique
splits, which makes this modeling approach very suitable
for high-dimensional input spaces. Therefore the current
split direction in each iteration is determined through a
nonlinear optimization. Only the new split is optimized,
all already existing splits are kept unchanged. The initial
split direction for the optimization is either one of the
orthogonal splits or the direction of the parent split.

One very important issue is the choice of the model
complexity, which in case of HILOMOT is equivalent to
the question: How many local models should be used for
the final model? Especially for the input selection task a
good bias-variance trade-off is mandatory. If the model
is too complex overfitting arises, which means, that the
model describes not only the process, but also the noise.
In that case irrelevant inputs, that only contain noise,
might appear important for the modeling of the process.
If the model complexity is too low, the model is not able
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Fig. 2. Procedure of the HILOMOT algorithm in the first
4 iterations for a 2-dimensional input space (p = 2).

to describe the process sufficiently well and some inputs
might be underrated. To find a good bias-variance trade-off
the corrected Akaike Information Criterion (AICc) is uti-
lized. The AICc estimates the expected, relative Kullback-
Leibler information (which quantifies a ”distance” between
full reality and a model) based on the maximized log-
likelihood function, see Burnham and Anderson [2004]:

AICc = −2 lnL(θ̂|y) + 2neff +
2neff(neff + 1)

N − neff − 1
. (3)

The number of data samples is denoted by N , whereas
neff denotes the number of effective model parameters.
The first term of equation 3 represents the log-likelihood

function of the parameters θ̂ given the process output y. In
the assumed case of least squares estimation and normally
distributed noise this term becomes, as stated by Burnham
and Anderson [2004]:

−2 lnL(θ̂|y) = N ln σ̂2
n

= N ln

(
1

N

N∑
i=1

(y(i)− ŷ(u(i)))2

)
, (4)

with the measured process output y(i) and the predicted
model output ŷ(i) at u(i) in the input space. More de-
tailed information on Akaike’s Information Criterion and
its corrected version can be found in Burnham and An-
derson [2002, 2004] as well as in Akaike [1973]. Additional
information regarding the HILOMOT algorithm can be
obtained from Nelles [2006].

3. INPUT SELECTION

As mentioned in the introduction, removing inputs may
increase the reliability and accuracy of a model. This is
possible, because some inputs might increase the model’s
variance error significantly (Munson and Caruana [2009])
and some inputs might be irrelevant or redundant (Liu
and Motoda [2008]). Because even relevant inputs might
decrease the predictive power of a model, as stated by
Guyon and Elisseeff [2003], in the following the term
relevant will be replaced by the term useful. Even if
an input is useful in the sense of improving a model’s
accuracy, it has to be weighed up if the increase of
predictive power overcomes the disadvantages of having
more inputs, such as a higher computational demand and
less interpretability.

To figure out which inputs are useful, three typical ap-
proaches exist: filter, wrapper and embedded methods,
compare with Guyon [2006], Liu and Motoda [2008], Tan
et al. [2006]. In embedded methods the generation of input
subsets and their evaluation is incorporated in the training
algorithm itself. Since the properties of embedded meth-
ods are very algorithm-specific, the following statements
refer only to the filter and wrapper approaches. The main
difference between filter and wrapper approaches is the
evaluation criterion, according to Guyon [2006]. Filters
use criteria not involving any learning machine. These
criteria are often related to correlation estimations (Tan
et al. [2006]) or similarity estimations (Guyon [2006]).
In contrast wrappers use learning machines as a black
box and wrap the input selection around that black box.
So the evaluation criterion can be any criterion that is
suited to measure the predictive power of a model, i.e.
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cross-validation or as proposed in Karagiannopoulos et al.
[2007] the correlation coefficient. Sindelar and Babuska
[2004] suggest to use Akaike’s information criterion (AIC),
because it balances the model’s error with the model’s
complexity. This is advantageous when comparing models
with an unequal number of inputs and in order to find a
good bias-variance trade-off.

An important issue of selecting useful inputs is the search
strategy, that is used to explore the space of possible input
combinations. An exhaustive search, where all possible
input combinations are considered, takes usually a huge
amount of time, since for p candidate inputs there are
2p subsets to go through. Therefore a lot of suboptimal
approaches have been developed, that try to find a rea-
sonably good input subset even if the best subset is not
achieved (Guyon [2006]). Besides the argument of being
feasible, the suboptimal search strategies are less prone to
overfitting, especially when dealing with small sample sizes
as mentioned in Liu and Motoda [2008].

In our wrapper approach we use the HILOMOT algorithm
with a corrected version of Akaike’s information criterion
(AICc) to determine useful input variable subsets. The
AICc is used to ensure the validity of the criterion for
low ratios of N

neff
< 40 as recommended in Burnham and

Anderson [2004]. Using the HILOMOT training algorithm
is advantageous because there exist no crucial fiddle pa-
rameters and the algorithm is very robust. Furthermore
the resulting model belongs to the class of local model
networks, such that the input spaces for the rule premises
and the rule consequents can be considered independently.
Without specifying a special strategy to investigate the
two input spaces, the procedure evaluating different input
variable subsets is outlined in Fig. 3. In every iteration
j the search strategy determines which of the original
inputs u are included in the rule premises z and in the
rule consequents x. In the subsequent steps, a HILOMOT
model is built and the output of the model is used to
calculate the AICc as the criterion for the currently used
combination of input variables. In this paper we use two
search strategies, the so called backward elimination (BE)
and an exhaustive search (ES). The backward elimination
starts with all input variables. In each step of the search
algorithm one of the variables is discarded from the input
variable subset. Once an input is removed from the subset,
it cannot be added afterwards. To decide which input
variable should be removed at the current step, each of the
remaining input variables is tentatively discarded from the
input subset and a model is trained. The AICc value for
each removed input variable is calculated and the input
variable, that yields the best AICc value is picked for
removal at the current step. After all input variables are
removed, the model is empty and the search algorithm
stops. The exhaustive search simply tries all possible com-
binations of inputs out and therefore is computationally
very expensive. The latter approach is only feasible, when
the number of potential inputs is relatively low. In the
following, it is utilized to show the gap between the sub-
optimal simple backward elimination and what might be
achieved through more sophisticated search strategies.
In this paper the input selection is carried out for two
different input spaces. The first input space, we will call
x-z-input space or for short just x-z-space. In this x-z-
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AICcx
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Φ
ŷ

y
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j

j
j

j

model complexity
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Fig. 3. Procedure to gain evaluation criteria for different
input subsets. Every iteration j corresponds to an
other input subset.

space the inputs, that are used in the rule premises are
linked to the ones used for the rule consequents (x = z),
see Fig. 4 (a). The second input space, we will call z-
input space or for short z-space. Here all physical inputs
are kept in the rule consequents (x = u), while only a
subset of the physical inputs is considered in the rule
premises, as outlined in Fig. 4 (b). The investigation of the

(a) x-z-input selection
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premisessearch 
strategy

consequents
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Fig. 4. Visualization of the x-z- and z-input selection. If
the x-z-space is investigated, the two input spaces are
linked, otherwise they are separated.

linked x- and z-space is possible with all kinds of modeling
algorithms and from this point of view our approach can
be seen as a competitor to existing wrapper approaches.
In addition the HILOMOT algorithm extends the classical
wrapper approach to investigations of the z-space, because
it is able to cope with the separation between rule premises
and consequents.

4. DEMONSTRATION EXAMPLES

In this section the input selection using HILOMOT will be
tested on one artificial and one real-world data set. The
artificial example is meant to demonstrate the abilities of
the input selection with HILOMOT and should improve
the understanding of what it means to deal with the two
different input spaces, that are introduced at the end of
Section 3. As real-world data set the auto miles per gallon
(MPG) data set (Frank and Asuncion [2010]) is considered.

4.1 Artificial Example

The artificial example has three input variables (u1 up
to u3), that contain information and one input variable
(u4), that only contains normally distributed noise with
zero mean and a standard deviation of 0.05. For each
useful input a separate function is defined and all functions
are summed up. Variable u4 is added to the sum of all
functions:

y = f(u1) + f(u2) + f(u3) + u4

y =
0.2

(0.2 + (1− u1))
+ e−

(0.5−u2)2

0.52 + 0.8u3 + u4 . (5)
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The first term in equation 5 is a hyperbola, that is
nonlinear and monotonic. The second term contains a
function, that is similar to a Gaussian function (nonlinear
and non-monotonic), whereas the third term is just a
linear function. All individual functions as well as the
superposed noise are shown in Fig. 5 (a). To get a rough
idea of the function’s shape, the projection to the u1-
u2 subspace is visualized in Fig. 5 (b). In the shown
visualization the third and fourth input are set to zero.
For this artificial example an input selection in the x-z-
space and in the z-space is carried out as described at the
end of Section 3. Because of the way, the artificial example
is constructed, the usefulness of the inputs for the two
different input spaces is known a priori. In the x-z-input
space (rule consequents and rule premises linked), the first
three inputs should be stated as useful, because these
inputs contain information about the process behavior. In
the z-input space (rule premises) only the first two inputs
should be useful, because these inputs are the only ones
with a nonlinear characteristic. The slope in the direction
of input 3 is constant and, therefore, can be described
by one linear model without further subdivision in the z-
input space, as visualized in Fig. 6. To investigate the two
input spaces, two different training data sets are utilized,
that differ in the number of contained samples. In both
cases the input samples are placed equidistantly on a
grid. Five samples per axis are chosen for the smaller
data set (54 = 625 samples) and nine samples per axis
for the larger one (94 = 6561 samples). Because there
are no interdependencies between the input variables, the
backward elimination and the exhaustive search lead to
identical results. To make sure, the specific realization
of the added noise has no significant influence on the
results, the investigations are performed with 100 different
noise realizations. The variance due to the different noise
realizations is very low, so only the result for one specific
noise realization is shown in Fig. 7. The plot shows next
to each point the input variable, that is discarded in the
corresponding backward elimination step. In case of zero
inputs, the model output is estimated to be the mean of
all output values contained in the training data set. As
can be seen in Fig. 7 (a) and (c) (left column) the results
of the x-z-input investigation are qualitatively equal for
the different sample sizes. The AICc values decrease until
all inputs are chosen, that contain information about the
artificial process. A similar behavior can be observed from
the results of the z-input investigation, shown in Fig. 7
(b) and (d) (right column). After all input variables, that
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Fig. 5. Individual functions of the single inputs and a
projection of the resulting function in the u1-u2-space.

Fig. 6. Visualization of the process together with 4 local
models and their validity regions in the u1-u3-space.

are useful in the z-input space are taken into account the
AICc values stop decreasing as predicted and expected.
Useless input variables in the z-input space are those,
that only contain noise or influence the process output
in an affine way, which can be described by just one
affine model without further subdivisions of the z-input
space. In case of 625 samples, the z-input investigation
declares input 4 more useful than input 3, even though
input 4 only contains noise. This is due to the small
sample size and the superposed noise. In fact none of
the two last input variables helps to increase the model’s
accuracy, if included in the z-input space. So it is more
or less random, which of these two variables is stated as
more useful. For the 100 different realizations of the noise,
input 3 is stated as more useful in 63 cases. In Fig. 8
box plots of the required computation time are shown for
the different search strategies and the different number of
training data samples. At a first glance it is very surprising,
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(c) x-z-input space (N = 6561)
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(d) z-input space (N = 6561)
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Fig. 7. Results of the x-z- and z-input investigation for the
artificial data set and two different sample sizes N .
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(a) 625 training data samples
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Fig. 8. Computation time for the different search strategies
on a computer with eight CPUs operating at 2.4GHz.

that the exhaustive search requires less time than the
backward elimination, because the computational effort
of the exhaustive search is higher. But there is a simple
explanation related to the algorithm’s implementation
and the possibility to calculate results for different input
combinations in parallel. The calculations were performed
on a computer, that has two quad core CPUs, such
that eight different variable input combinations can be
calculated at once. In case of the backward elimination the
number of parallel calculations is restricted to the number
of different input combinations left for a specific number
of inputs. Let’s say the algorithm is about to figure out,
which input should be discarded in the second step and
input u4 is already discarded. There are only three possible
input combinations left, such that only three calculations
can be done in parallel. Before further calculations can
be performed, the algorithm has to wait for the results of
earlier iteration steps.

4.2 Real-World Example

In this subsection the HILOMOT wrapper approach is
tested on the auto MPG data set (Frank and Asuncion
[2010]). The data set consists of 392 samples and seven
input variables, that will be named u1 up to u7 in the
following. The information contained is the number of
cylinders (u1), the displacement (u2), the horsepower (u3),
the car weight (u4), the acceleration (u5), the model year
(u6) and the origin (u7). The output that should be
predicted with the help of a model is the fuel consumption
in miles per gallon (MPG). The data set is split into two
groups. The first group (75% of the data samples) is used
for the input selection. After the input selection is finished,
models that are built with the best input combinations
are tested on the second test data group. The test data
is chosen in a deterministic way, with the goal to avoid
extrapolation. At first an investigation of the x-z-space is
carried out and the AICc curve together with the input
selection path is shown in Fig. 9. The input selection path
contains the information which input variables are taken
into account, given the search strategy and the number
of inputs. In case of the backward elimination, the input
selection path has to be read from right to left. The results
for the x-z-input investigation are very similar for both
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Fig. 9. Results of the x-z-input investigation of the auto
MPG data set together with the corresponding input
selection path (ES=x; BE=+).

search strategies and differ only for three and for four
input variables. Both strategies have their optimum at five
input variables, but the variable subset containing four
input variables (ES-result) is very close to the best result.
The mean squared test error (MSE) values are calculated
for the subset with five variables, with four variables (the
result from the ES-solution) as well as for all variables
and are shown in Table 1. As can be seen, the input

Table 1. Test MSE for chosen input subsets in
the x-z-space.

ES (4 inputs) ES & BE (5 inputs) All inputs

MSE 5.978 5.977 7.679

combination containing five inputs yields the best result,
closely followed by the subset with four input variables.
The MSE value on test data is obviously worse, if all inputs
are used. So the input selection with linked x- and z-inputs
reveals a way to improve the model’s accuracy.

For the following z-input investigation all physical inputs
are included in the rule consequents. The results for the
two search strategies are very similar, as can be seen in
Fig. 10. The exhaustive search strategy as well as the back-
ward elimination reach the minimum AICc in case of four
input variables, but with different input subsets. Table 2
shows the results of the test MSE values. The best subset
of inputs is determined by the exhaustive search strategy,
but the backward elimination is very close. Both input

Table 2. Test MSE for chosen input subsets in
the z-space.

BE (4 inputs) ES (4 inputs) All inputs

MSE 5.266 5.171 7.679
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Fig. 10. Results of the z-input investigation of the auto
MPG data set together with the corresponding input
selection path (ES=square; BE=diamond).
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subsets lead to a better model compared to the model with
all inputs. In comparison with the results from the x-z-
input space investigation (see Table 1), the results from the
z-input investigation lead to better results. Together the
results of both investigations can bring more insight in the
interdependencies of some input variables with the output
variable. In the input selection paths of both investigations
the model year (u6) is included in almost every subset of
input combinations. So this input is very important for
the modeling of the process, which sounds very reasonable
as there are technical improvements over time, that lead
to more efficient engines. In the z-input investigation the
displacement (u2) turns out to be very important, whereas
in the case where the x- and z-inputs are linked, the car
weight (u4) is considered to be more useful. This can be
interpreted as follows. The car weight is very important
to model the fuel consumption, but in a more or less
linear way. The influence of the displacement on the fuel
consumption is not as important as the car weight, but has
a more nonlinear characteristic. This insight can be gained
through the distinction of the rule premises and the rule
consequents and might be useful for further measurements
or investigations of the process in general.

Finally, we will take a closer look at the computation time
for the two search strategies, shown in Table 3. As ex-

Table 3. Required computation time for the
auto MPG data set input selection.

x-z-selection z-selection

Backward elimination 24.66 s 25.73 s

Exhaustive search 65.65 s 71.06 s

pected, the exhaustive search requires more time than the
backward elimination. The z-input investigation is more
time consuming than the x-z-input investigation due to the
fact, that the estimation of the local models is computa-
tionally more demanding. For every local model there are
always seven parameters to estimate, whereas in case of the
x-z-input investigation this number of parameters is less
or equal to seven. With a growing input dimensionality the
difference between the computation time of the exhaustive
search and the backward elimination becomes greater due
to the fact, that the number of possible combinations grow
exponentially with the number of inputs. This exponential
growing makes the exhaustive search infeasible for higher
input dimensionalities. Nevertheless for a small number
of inputs the exhaustive search is a realistic possibility in
combination with the fast HILOMOT algorithm as the real
world data set with seven inputs demonstrates.

5. CONCLUSIONS

This paper proposed a new advanced input selection
framework that is based on local model networks. It distin-
guishes between linear (consequent space) and nonlinear
(premise space) effects which leads to improved perfor-
mance and better interpretability. The results motivate for
further investigations regarding the influence of discrete
inputs in the context of the presented input spaces.
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