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Abstract: We propose a dual-objective MPC formulation in which the dual objective is the
convex combination of an economic- and regulatory stage cost, using a specially formulated state-
and input-dependent dynamic weight function. The purpose of the dynamic weight function
is to promote increased economic performance while ensuring asymptotic stability for the
economically optimal steady-state setpoint. First, sufficient conditions are derived for which the
dual-objective MPC value function is a Lyapunov candidate function. Next, we propose a weight
function which satisfies these conditions. We implement the combined economic and regulatory
MPC, with proposed weight function, in an isothermal CSTR numerical case study, which
illustrates how economics are emphasized during process transients, while retaining stability by
emphasizing the regulatory cost close to the setpoint.
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1. INTRODUCTION

Model Predictive Control (MPC) is a well-established
method for the optimal control of linear and nonlinear
systems (Rawlings and Mayne, 2009). The practical uti-
lization thereof has seen increased preference in indus-
try, ranging from petro-chemical and food processing up
to aerospace applications (Qin and Badgwell, 2003). Re-
sults pertaining stability, optimality and robustness of the
underlying MPC formulations are now well documented
(Rawlings and Mayne, 2009; Mayne et al., 2000; Grüne
and Pannek, 2012). However, most of these results often
apply only to the special case of standard MPC, also
called regulatory MPC. Regulatory MPC often optimize
a simplistic convex and quadratic cost function which em-
beds steady-state economic criteria in a setpoint tracking
formulation. However, the true economic cost involved for
operating a process may be far from the cost as measured
by a convex and quadratic cost function. Therefore, the
resulting control law for regulatory MPC may often prove
suboptimal for minimizing actual economic costs over a
receding horizon (Angeli et al., 2012).

Recently, Economic MPC (EMPC) attempts to recon-
cile the control design with process economics by replacing
the regulatory stage cost with the actual economic stage
cost (Rawlings and Amrit, 2009). The latter has shown
to outperform economic performance of regulatory MPC
in the transients, as well as on time average, compared to
steady-state operation (Angeli et al., 2012; Amrit et al.,
2011). Results on stability analysis of EMPC are still at
an early stage. Results to date for stability either depends
on restrictive assumptions made on convexity, linearity or
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strict dissipativity of the underlying process models and
objectives (Diehl et al., 2011; Angeli et al., 2012). Even
though dissipativity theory is an elegant theoretical con-
cept for analyzing stability in EMPC, finding a dissipative
function that satisfies strict dissipativity often proves to
be hard (Angeli et al., 2012; Amrit et al., 2011).

It has been observed, via simulation (Angeli et al., 2011;
Amrit et al., 2011), stability, or at least convergence, can
be obtained for EMPC if the convexity of the underlying
stage cost can be tuned up sufficiently. In the context of
dissipativity theory (Angeli et al., 2012), one can modify
the convexity of the underlying cost function by adding an
appropriately chosen convex term, and consequently en-
force strict dissipativity. The latter, however, still requires
the solution of a nontrivial off-line optimization problem.
Tuning the convexity of an EMPC cost function bears close
resemblance to dual-objective MPC (Maree and Imsland,
2011) in which one considers the weighted economic and
regulatory cost objective. The technical challenge is how to
tune the weight in such a way that convergence (strict dis-
sipativity (Angeli et al., 2012), or sufficient convexity (An-
geli et al., 2011; Amrit et al., 2011)) is guaranteed, while
simultaneously promoting economic performance during
process transients, by optimizing a favourably weighted
economic stage cost over a receding horizon. To date, it
seems (Rawlings et al., 2012), no intuitive, and practical
viable method has yet been proposed in how to tune a
weighted dual-objective MPC formulation, that guaran-
tees asymptotic stability, while also promoting economic
benefits during process transients in an optimal way.

1.1 Contribution

This work aligns with the ideas stipulated in Angeli et al.
(2012) in which the convexity of the underlying stage cost
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of interest for EMPC is tuned to achieve asymptotic sta-
bility, while promoting economic objectives during tran-
sients. In particular, focus is placed on the weighted dual-
objective (economic-regulatory) formulation (Maree and
Imsland, 2011), where the aim is to formulate conditions
on the weighted dual-objective function such that good
control performance (asymptotic tracking of optimal eco-
nomic steady-state setpoints) and economic performance
(minimize actual economic costs over a receding horizon)
are achieved in an optimal way.

Contributions in this work are the following: (i) suffi-
cient conditions are stipulated, such that for a weighted
dual-objective MPC formulation, the resulting optimal
MPC value function admits being Lyapunov, where
asymptotic stability of the origin follows; (ii) optimality
of a general weight function, which favourably weights the
economic stage cost, is analysed by inspecting Karush-
Kuhn-Tucker (KKT) conditions of optimality. An explicit
weight function is subsequently proposed by embedding
these KKT conditions in the proposed weight function;
(iii) practical suggestions are given in how the proposed
weight function can be implemented for a dual-objective
MPC formulation. The theory is applied to an isothermal
CSTR case study.

NOTATION

The symbols I and R define integer and real numbers
respectively. A vector z consists of components zi, i ∈
I1:nz such that z ∈ Rnz . A function γ : R>0 → R is a class-
K function if γ(0) = 0, continuous, and strictly increasing.

2. PRELIMINARIES

We consider the nonlinear, discrete-time system model

x+ = f (x, u) (1)

with state, x ∈ X ⊆ Rnx , and control input u ∈
U ⊆ Rnu respectively. We define the mixed constraint set
(x (k) , u (k)) ∈ Z, ∀k ∈ I>0 for a compact set Z = X× U.

2.1 Dual-objective MPC

Consider the economic cost function, le : Z → R. The so-
lution to the economic steady-state optimization problem

(xs, us) := arg min
(x,u)∈Z

{le (x, u) |x = f (x, u)} (2)

defines the optimal economic steady-state, (xs, us). In reg-
ulatory MPC, (xs, us) is usually embedded in a regulatory
stage cost function, lr : Z → R, which measures the
tracking distance from (xs, us). We will adopt a quadratic
regulatory stage cost function

lr (x, u) := 1
2 ‖x− xs‖

2
Q + 1

2 ‖u− us‖
2
R (3)

in which Q and R are positive (semi-)definite matrices
used for tuning. Since the true economic cost, le, involved
for operating the process (1), can be different from the
tracking cost measured by a regulatory stage cost function,
lr; it may prove beneficial (Maree and Imsland, 2011), from
an economical point of view, to combine the economic and
regulatory cost objectives in a weighted, dual-objective
function. For such purposes, consider the general continu-
ous weight function µ : Z→ [0, 1]. Then, we can define the
weighted, dual-objective stage cost functional, lµ : Z→ R,

lµ (x, u) := µ (x, u) lē (x, u) + (1− µ (x, u)) lr (x, u) (4)

in which lē (x, u) := le (x, u) − le (xs, us). This dual-
objective stage cost function (in addition to the eco-
nomic steady-state, (xs, us), embedded in lr) promotes
increased economic performance during dynamic opera-
tion, by favourably tuning µ close to one. A technical
concern, however, is that no intuitive method has yet been
presented in how to determine the optimal choice of µ
(for increased economic performance), while still retaining
desirable stability characteristic as guaranteed for regu-
latory MPC (Rawlings et al., 2012). In regulatory MPC,
one often considers a terminal cost function in the MPC
formulation to promote recursive feasibility, and stable
regulatory MPC optimization problems (Mayne et al.,
2000). We define such a terminal cost function, Vf (x) > 0,
on a compact local neighbourhood Xf ⊆ X of xs where
Vf (xs) = 0 holds (see also Rawlings and Mayne (2009)).
Next, we define the dual-objective MPC value function for
a N -step horizon

VN (x,u) :=

N−1∑
k=0

lµ (x (k) , u (k)) + Vf (x (N)) (5)

in which u := [u(0), u(1), · · · , u(N − 1)], and x = x(0)
being the control sequence and initial state, respectively.
The dual-objective MPC optimal control problem is then
defined

min
u
VN (x,u) (6a)

s.t. x (k + 1) = f (x (k) , u (k)) , ∀k ∈ I0:N−1 (6b)

(x (k) , u (k)) ∈ Z, ∀k ∈ I0:N−1 (6c)

x (N) ∈ Xf (6d)

The optimal MPC value function and control sequence are
defined V 0

N (x) and u0(x) respectively. The MPC receding-
horizon control law is the first optimal control input,
κN (x) := u0(0;x), such that the system (1) evolves
according to this control law with closed-loop trajectories

x+ = f (x, κN (x)) (7)

The admissible set for the dual-objective MPC problem
(6) is the set of state-control sequence pairs in which the
initial state x can be steered to Xf , with an admissible
input sequence u, while satisfying the state constraints

ZN := {(x,u) |(φ (k;x,u) , u(k)) ∈ Z, ∀k ∈ I0:N−1,
φ (N ;x,u) ∈ Xf}

in which φ (k;x,u) defines the solution of (1) at sample
time k ∈ I0:N for initial state x and control sequence u.
The feasible set of initial states is the projection of ZN
onto X

XN :=
{
x ∈ X

∣∣∃u ∈ UN s.t. (x,u) ∈ ZN
}

The feasible set XN is not empty since it contains xs.

Assumption 1. There exists an admissible solution to the
steady-state optimization problem (2), being unique in
some local region of interest.

Assumption 2. (Continuity of cost and system).
The regulatory cost, lr(·), economic cost, le(·), and system,
f(·), are continuously differentiable.

Assumption 3. (Basic Stability). There exists an admissi-
ble control input, u ∈ U, such that

Vf (f (x, u))− Vf (x) 6 −(1 + ε)lr (x, u) , ∀x ∈ Xf (8)
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holds in which ε ∈ R>0 is some small scalar constant.
Define the terminal control law, κf : Xf → U, as an
admissible control input for which (8) holds.

3. STABILITY FOR DUAL-OBJECTIVE MPC

We proceed in presenting sufficient conditions for the dual-
objective MPC formulation (6), such that the optimal
steady-state point, (xs, us), is asymptotically stable with
respect to closed-loop system trajectories (7).

Assumption 4. [Bounds on lµ]. There exists a class-K
function γµ (·), an admissible control for all u ∈ U, and a
unique function µ(x, u) ∈ Z → [0, 1], not identically zero,
such that

γµ (|x− xs|) 6 lµ (x, u) 6 (1 + ε)lr (x, u) (9)

in which ε ∈ R>0 being some small scalar constant.

Note 1. It is clear that Assumption 4 is satisfied for a
weighting function of µ(x, u) = 0 for all (x, u) ∈ Z, since
lµ (x, u) evaluates lr (x, u) for µ(x, u) = 0. We emphasize
that it is desirable to have µ(x, u) not identically zero such
that we can directly optimize process economics. For the
design of µ(x, u) that evaluates not identically zero, but
dependent on the current state of process operation, we
refer the reader to Section 4.

The inclusion of a weighted, economic cost function
µ(x, u)lē(x, u) in the dual-objective cost formulation (4)
promotes increased economic performance by optimizing
actual economic costs over a receding-horizon. It is pos-
sible, however, that the inclusion of µ(x, u)lē(x, u) may
imply that (4) becomes non-convex, or indefinite, and
it may occur that lµ(x, u) < lµ(xs, us) (Angeli et al.,
2012). As consequence, one cannot analyse for asymptotic
stability using the general framework presented by Mayne
et al. (2000). Instead, one needs to consider an alternative
stability analysis framework (Diehl et al., 2011; Angeli
et al., 2012) which require additional assumptions either
on convexity, or dissipativty. In contrast to the contribu-
tions of Diehl et al. (2011); Angeli et al. (2012), this work
entails finding a weight function µ(x, u), which explicitly
satisfies Assumption (4). To be shown is how the latter
can be used to analyse asymptotic stability of the dual-
objective MPC formulation.

Note 2. Scaling of stage costs lr(x, u) and lē(x, u), with
respect to each other, plays an important role in how a
dynamic weight (4) will adapt to satisfy the bounds (9).
For this work we assume that lr(x, u) and lē(x, u) are
appropriately scaled on the defined set Z.

Lemma 3.1. (Terminal cost decrease). Suppose Assump-
tions 3-4 hold. Then, there exists a control input u ∈ U
such that

Vf (f (x, u))− Vf (x) + lµ (x, u) 6 0, ∀x ∈ Xf (10)

Proof. From Assumption 4, manipulation on the upper
bound of (9) reveals that

µ (x, u) [lē (x, u)− lr (x, u)]− εlr (x, u) 6 0 (11)

holds for all x ∈ XN ⊇ Xf . Next, expand relation (10)

Vf (f (x, u))− Vf (x) + lµ (x, u) (12a)

= Vf (f (x, u))− Vf (x) + lµ (x, u) (12b)

+ εlr (x, u)− εlr (x, u) (12c)

= Vf (f (x, u))− Vf (x) + (1 + ε) lr (x, u) (12d)

+ µ (x, u) [lē (x, u)− lr (x, u)]− εlr (x, u) (12e)

Assumption 3 implies the existence of an admissible con-
trol input u = κf (x) such that (12d) is negative semi-
definite for all x ∈ Xf . The latter, in conjunction with
(11), concludes the proof.

Lemma 3.2. (Bounds on V 0
N ). Let Assumptions 1 and 4

hold. Then, V 0
N (xs) = 0, and there exist class-K functions

γ1 (·) , γ2 (·) such that

γ1 (|x− xs|) 6 V 0
N (x) 6 γ2 (|x− xs|) , ∀x ∈ XN (13)

Proof. The lower bound in (13) is clear from Assumption
4. The upper bound in (13) follows since the horizon length
N is finite; U is bounded; and, Vf (x) is defined on the
closed set Xf . We evaluate the stage- and terminal-cost,
given the optimal steady-state (xs, us), as lµ(xs, us) = 0,
and Vf (xs) = 0, respectively. The latter in conjunction
with (5) subsequently implies V 0

N (xs) = 0.

Lemma 3.3. (Descent of V 0
N ). Suppose that Assumption 4

holds. Then, for all x ∈ XN there exists a class-K function
γ (·) such that

V 0
N (f (x, κN (x)))− V 0

N (x) 6 −γ (|x− xs|) , ∀x ∈ XN (14)

Proof. Consider the optimal control sequence, u0(x),
which evaluates V 0

N (x)

u0 (x) :=
[
u0 (0;x) , u0 (1;x) , · · · , u0 (N − 1;x)

]
The corresponding system trajectory of (1), which evolves
with u0(x) is

x0 (x) :=
[
x0 (0;x) , x0 (1;x) , · · · , x0 (N ;x)

]
in which x0(0;x) = x. Next, define an admissible control
sequence

ũ (x) :=
[
u0 (1;x) , · · · , u0 (N − 1;x) , κf

(
x0 (N ;x)

)]
and corresponding evolving admissible state sequence

x̃ (x) :=
[
x0 (1;x) , · · · , f

(
x0 (N ;x) , κf

(
x0 (N ;x)

))]
Express the MPC value function for the next evolved state,
given the previously defined admissible sequences,

VN (f (x, κN (x)) , ũ (x)) = V 0
N (x)− lµ

(
x, u0 (0;x)

)
+ Vf

(
f
(
x0 (N ;x) , κf

(
x0 (N ;x)

)))
− Vf

(
x0 (N ;x)

)
+ lµ

(
x0 (N ;x) , κf

(
x0 (N ;x)

))
From the optimality of (6) we have V 0

N (f (x, κN (x))) 6
VN (f (x, κN (x)) , ũ (x)). From Assumption 4, and apply-
ing Lemma 3.1, we conclude for all x ∈ XN the closed-loop
trajectories (7) satisfy

V 0
N (f (x, κN (x)))− V 0

N (x) 6 −lµ (x, κN (x)) 6 −γµ (|x− xs|)

Theorem 3.1. (Asymptotic stability). Let Assumptions 1-
4 hold. Then, the steady-state solution xs is an asymptot-
ically stable equilibrium point for the closed-loop trajec-
tories (7) with region of attraction XN .

Proof. Lemmata 3.2-3.3 are sufficient conditions for the
optimal MPC value to be a Lyapunov function (Mayne
et al., 2000).
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4. ON OPTIMALITY OF A WEIGHT FUNCTION

As discussed earlier, a benefit of choosing 1 µ > 0 is
that the resulting receding horizon control law promotes
increased economic performance. To optimize for increased
economic performance, it is desirable to have µ as large
as possible (close to one). Remark 1, and the discussion
thereafter, emphasize the technical challenge of selecting
a weight function which promotes increased economic per-
formance while simultaneously satisfying some stabilizing
criteria. In this work, we derive an economic optimal
weight function which strictly satisfies Assumption 4, re-
quired for asymptotic stability. It is sufficient to define such
an optimal weight function, µ0 : Z → R, as the optimal
solution the parametric optimization problem

µ0 := argmin
µ
−µ (16a)

s.t. c1 (µ) := (1 + ε) lr − µlē − (1− µ) lr > 0 (16b)

c2 (µ) := µlē + (1− µ) lr − γµ > 0 (16c)

c3 (µ) := (1− µ) > 0 (16d)

c4 (µ) := µ > 0 (16e)

The function µ0 defines the optimal choice for µ that gives
maximum economic performance, while satisfying the sta-
bility conditions (9), for the current point of operation
(x, u). µ0 is therefore a natural choice for the adaptive
weight function.

Note 3. Parametric optimization problem (16) is always
feasible for µ = 0.

Proposition 1. The optimal weight function, µ0 : Z → R,
satisfies Assumption 4.

Proof. By inspection, feasibility of the constraints (16b-
16c) implies fulfilment of Assumption 4.

Proposition 2. (Explicit Optimal Weight).
Suppose Assumption 2 holds. The optimal weight function
µ0 for (16) is explicitly defined for all (x, u) ∈ Z as

µ0 :=

{
min{1, εlr/(lē − lr)}, lē > lr
min{1, (γµ − lr)/(lē − lr)}, lē < lr
c, lē = lr

(17)

for any c ∈ [0, 1].

Proof. Write inequalities (16b-16e) in the compact form
aµ > b. Define the vectors a and b respectively as

a := [− (lē − lr) , (lē − lr) , −1, 1]
T
, (18a)

b := [−εlr, (γµ − lr) , −1, 0]
T

(18b)

Next, define the Lagrangian function

L (µ, λ) := −µ− λT (aµ− b) (19)

in which λ is a vector of Lagrange multipliers with com-
ponents λi, i ∈ I1:4. Let µ0 be an optimal solution to (16).
Then, there exists a Lagrange multiplier vector λ0 with
components λ0

i , i ∈ I1:4 such that the following conditions
are satisfied at (µ0, λ0) (Nocedal and Wright, 2006)

1 To present the work in a compact manner, the following short-
hand notation will be adopted, for present and future definitions,
throughout Sections 4-5: lr := lr(x, u), lē := lē(x, u), lµ := lµ(x, u),
µ := µ(x, u), µ̄ := µ̄(x, u), µ0 := µ0(x, u), and γµ := γµ(|x− xs|).

∇µL
(
µ0, λ0

)
:= −1− λ0Ta = 0 (20a)

aµ0 − b > 0 (20b)

λ0
i ci
(
µ0
)

= 0, ∀i ∈ I1:4 (20c)

λ0
i > 0, ∀i ∈ I1:4 (20d)

These conditions, known as the KKT conditions, are nec-
essary and sufficient for the optimality of the linear (para-
metric) program (16). We proceed by arguing that (17)
implies that the KKT conditions hold. Suppose lē = lr.
Then, the optimization problem (16) becomes degenerate,
meaning, any µ0 ∈ [0, 1] gives equivalent performance.
For the general case in which lē 6= lr, inspection of the
equality constraints (16b)-(16c) reveals that if c1(µ) is
active then c2(µ) must be inactive. The reverse also holds.
Now consider the case when constraints ci(µ) for any
i = {1, 2} are active. Since the constraints are linear,
we can directly evaluate µ0 = bi

ai
and λ0

i = −1
ai

. From

property (20d), λ0
i > 0, we can conclude that ai must be

negative since bi for any i = {1, 2} is negative. It follows
that if a1 = − (lē − lr) < 0 then either c1(µ) or c3(µ) will
be active. Hence, for lē > lr it follows that µ0 is upper
bounded by min{1, b1/a1}. We apply similar reasoning
in the case when a1 = − (lē − lr) > 0 or equivalently
a2 < 0. It follows that either c2(µ) or c3(µ) will be active.
Hence, for lē < lr it follows that µ0 is upper bounded by
min{1, b2/a2}.

5. IMPLEMENTATION CONSIDERATIONS FOR
WEIGHT

Section 4 derived the KKT conditions (20) of optimality
for the dual-objective weight function µ which were used
in defining an explicit weight function (17). The explicit
weight function (17), however, is not suitable for immedi-
ate numerical implementation when a sufficiently smooth
and differential dual-objective MPC value function (5) is
required (desirable for most optimization environments).
We subsequently proceed in presenting a candidate weight
function which approximates the optimal weight function
µ0 and is differentiable and sufficiently smooth for im-
plementation. First, we define two intermediate weight
functions.

Definition 1. (Intermediate weights). We define the inter-
mediate weight functions µ̄lb : Z→ R and µ̄ub : Z→ R
µ̄lb(x, u) :=

(γµ−lr)(lē−lr)

(lē−lr)2+κ2 ; µ̄ub(x, u) := εlr(lē−lr)

(lē−lr)2+κ2 (21)

where κ is chosen sufficiently small.

For the remainder of this section we will adopt the func-
tional approximations for the minimum and maximum
functional operators,

min{x, y} ≈min{x, y} :=
(x+y)−

√
(x−y)2+ρ2

2 (22a)

max{x, y} ≈max{x, y} :=
(x+y)+

√
(x−y)2+ρ2

2 (22b)

where ρ is some sufficiently small constant. Using the
intermediate weight functions (21), and functional approx-
imations (22), we can proceed in formulating a candidate
weight function, µ : Z→ R.

Definition 2. (Candidate weight function). We define the
candidate weight function, µ : Z→ R, for all (x, u) ∈ Z as

µ(x, u) := max{min{1, µ̄lb},min{1, µ̄ub}} (23)
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in which κ and ρ are sufficiently small scalars defined for
(21) and (22), respectively.

Theorem 5.1. (Optimality of candidate weight). Suppose
Assumption 4 holds. Given the dual-objective MPC for-
mulation (6), the candidate weight function (23) approxi-
mates the optimal weight function (17) in the limits κ→ 0
and ρ→ 0, for all (x, u) ∈ Z.

Proof. From inspection, it is clear that in the limit κ→ 0

min{1, µ̄lb} →min{1, (γµ − lr) / (lē − lr)} (24a)

min{1, µ̄ub} →min{1, εlr/ (lē − lr)} (24b)

Next, suppose lē = lr. Then, lµ = lr > γµ by definition
of lµ, and Assumption 4. Also εlr > 0 by definition. It
follows that when lē = lr we have µ̄lb = −∞ which implies
min{1, µ̄lb} → −∞ in the limit ρ→ 0. Similarly, µ̄ub →∞
which results in min{1, µ̄ub} → 1. Subsequently, from
Definition 2 it follows that µ → 1 which approximates
µ0(x, u) for lē = lr. Next, for lē > lr we have min{1, µ̄lb} <
0, and in conjunction with (23) implies µ will evaluate as
(24b). Similarly, for the case in which lē < lr it follows
that min{1, µ̄ub} < 0, and from (23) we conclude that
µ evaluate as (24a) which in turn corresponds with the
optimal weight µ0(x, u).

6. NUMERICAL EXAMPLE

For a numerical example we will consider the continuous-
flow, stirred-tank reactor (CSTR) with heat flux con-
trol. The CSTR case exhibits the following stoichiometry
(consecutive-competitive) reactions

R→ P1; R→ P2

with R being the reaction concentration, P1 the desired
product, and P2 the waste product. The dimensionless
form of the conservation equations of the CSTR is ex-
pressed (Bailey et al., 1971)

ẋ1 = 1− a1e
−1/x3xα1 − a2e

−δ/x3x1 − x1

ẋ2 = a1e
−1/x3xα1 − x2

ẋ3 = u− x3

(25)

The dimensionless control input u is the heat-flux. States
x1, x2 and x3 are the dimensionless concentration R,
desired product P1 and waste product P2 respectively.
The following parameter values α = 2, δ = 0.55, a1 =
104, a2 = 400 are assumed.

6.1 Performance criteria

The economic performance criteria of process operation
is to maximize the amount of desired product P1 being
produced, i.e., minimize the economic objective le(x, u) =
−x2. The optimal economic steady-state, (xs, us), is ob-
tained by solving the steady-state optimization problem

(2), which evaluates xs = [0.083, 0.085, 0.149]
T

and us =
0.149. This economic steady-state is embedded in a regu-
latory quadratic cost objective, lr(x, u), where the choice
of penalty weight matrices (Q,R) are stipulated according
to Table 1. A prediction-horizon of N = 30 time steps,
sampling time of ∆t = 1/6 seconds, and optimization
horizon of tf = 5 seconds were implemented. Assumption
3 is satisfied for a terminal constraint MPC formulation
(Mayne et al., 2000), in which we choose Xf = {xs}.

The interested reader is referred to Mayne et al. (2000);
Rawlings and Mayne (2009) for a comprehensive coverage
on formulating a MPC optimal control problem in which
Xf is chosen as some sub-level set of a Lyapunov function,
being control invariant for some admissible control law
κf : X → U. The latter consequently allows for a larger
admissible region of operation, however, this is not in the
scope of this work.

6.2 Implementation details

The MPC formulation (6) was numerically solved in a
Modelica-based open source platform called JModelica.org
(Åkesson et al., 2010) (ver. 1.11). For integration, and
evaluation of sensitivities, we incorporated the CasADi
package. A Legendre-Gauss-Radau collocation scheme was
used for discretization, where the subsequent NLP prob-
lem was solved using IPOPT. The constants κ = 10−2

and ρ = 10−4 were considered for the candidate weight
function (23). For Assumption 4, we chose ε = 10−3 and
γµ (|x− xs|) = 10−3‖x− xs‖2.

6.3 Results

The CSTR case under investigation is known to have
improved economic process performance during nonsteady,
cyclical process operation (Lee and Bailey, 1980). For a
pure economic objective (select µ(x, u) = 1 in (4)) we
observe from Figure 1 how the resulting receding hori-
zon control law exploits nonsteady process operation for
increased economic performance, on average. Such non-
steady operation, however, is not always desirable for
industrial process operation. Instead, a control philos-
ophy in which one optimize process economics during
process transients (when nonsteady process operation is
unavoidable), and then within a finite period of time start
tracking some admissible steady-state, is more desirable.
The candidate weight function (23), incorporated in (5),
adopts these operational philosophies simultaneously: (i)
economic performance is increased (see Proposition 2) dur-
ing process transients by optimizing a favourably weighted
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Fig. 1. Economic MPC with a receding horizon control
law which exploits nonsteady process operation for
increased economic performance.
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Fig. 2. Closed-loop state and control trajectories for: (i) a
regulatory MPC formulation, r1, and (ii) a weighted
dual-objective MPC formulation, µ1; ((Q,R) =
([1.0, 10, 1] , 0.1) for regulatory weights used for (i-ii)).
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Fig. 3. Closed-loop state and control trajectories for: (i) a
regulatory MPC formulation, r2, and (ii) a weighted
dual-objective MPC formulation, µ2; ((Q,R) =
([0.1, 5, 10] , 0.5) for regulatory weights used for (i-ii)).

economic cost objective over a receding horizon. Figures 2-
3 illustrates closed-loop profiles. Table 1 tabulates realized
cumulative economic gains, for two experiments i ∈ {1, 2},
where either a dual-objective stage cost lµi , or, regulatory
stage cost, lri is optimized over a receding horizon; (ii)
regulatory control objectives are promoted by admissibly
start tracking steady-state economic setpoints after initial
process transients. Figure 4 illustrates how the candidate
weight function (23) adapts for different control philoso-
phies, i.e., economic performance during process transients
(µ close to one) and regulatory (control) performance
thereafter (µ converge to zero). Figure 4 also illustrates
that for the chosen candidate weight function (23), one
retains asymptotic stability of (xs, us) by observing strict
monotonicity of the optimal MPC value function V 0

N (x).
The latter validates Theorem 3.1 by simulation.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

t

µ

 

 
µ1 µ2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

t

V
0 N
(x
)

 

 
µ1 µ2 r1 r2

Fig. 4. Top figure illustrates adaptive on-line evolution
of the candidate weight function (23). Bottom figure
illustrates the optimal MPC value function for (6).
Note that the value function for µ1 is indistinguish-
able from the one for µ2.

Table 1. Economic Performance [×10−2]

i (Q,R) Profit (ri) Profit (µi) Gain
(
µi−ri
ri

)
1 ([1.0, 10, 1] , 0.1) 9.36 10.01 7.01
2 ([0.1, 5, 10] , 0.5) 9.18 10.05 9.49

7. CONCLUSION

In this work a dynamically weighted dual-objective MPC
formulation was proposed. First, sufficient conditions were
stipulated under which any general dynamic weight func-
tion will result in the weighted dual-objective MPC value
being a candidate Lyapunov function. Secondly, KKT
conditions under which the dynamic weight will promote
optimal economic performance were derived. These KKT
conditions were subsequently embedded in an explicit dy-
namic weight function used for the convex combination
of regulatory and economic objectives. For this explicit
dynamic weight function, is was observed that increased
economic performance is achieved by optimizing over a
favourably weighted economic objective during process
transients. Lyapunov properties of the MPC value still
admits desirable steady-state tracking once nonsteady pro-
cess behaviour, during process transients, has been ex-
ploited.

Future work will consider the effect of ill-scaled eco-
nomic and regulatory cost objectives (see Remark 2), and
how the latter relates to the dynamic behaviour of the
proposed weight function. Also, parallels between the par-
ticular weight function and dissipativity theory needs to be
investigated. Lastly, improvements on the explicit weight
function (17), which relax the restrictive upper bound of
Assumption 4, is envisioned for future work.
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