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Abstract: Chattering alarms repeatedly make transitions between alarm and non-alarm states
without response from operators, and severely deteriorate the performance of industrial alarm
systems. Two rules are formulated based on the metrics of alarm durations and intervals to
detect chattering alarms caused by random noise and oscillation. An online method is proposed
to reduce the number of the chattering alarms via delay timers. Industrial examples are provided
to illustrate the effectiveness of the formulated rules and the proposed method.

1. INTRODUCTION

Alarm systems are crucial assets of modern industrial
plants to improve process safety and efficient operation.
However, the current performance of alarm systems is far
below industrial standards such the well-accepted ISA 18.2
standard [7]. In particular, the averaged and peak numbers
of alarms are excessively high, so that industrial plant
operators cannot handel the alarms promptly [1][10].

One of main reasons causing the excessive numbers of
alarms is the presence of chattering alarms, which are the
alarms that repeatedly make transitions between alarm
and non-alarm states without operators’ response. Chat-
tering alarms, accounting for around 50% of the alarm
annunciations, perhaps are the most common forms of
nuisance alarms [3].

Chattering alarms, as well as the closely-related repeating
alarms and fleeting alarms, have received an increasing at-
tention. Burnell & Dicken [2] used an auto-shelving facility
and changed the alarm display list to handle repeating
alarms. Bransby & Jenkinson [1] (Appendix 10 therein)
and EEMUA-191 [3] (Appendix 9 therein) exploited the
filtering, deadband, delay timer, and shelving to remove
repeating and fleeting alarms. Hugo [6] designed adap-
tive alarm deadbands to reduce the number of chattering
alarms. Kondaveeti et al. [8] devised a chattering index to
quantify the degree of chattering alarms based on the run
lengths of alarms. The index was estimated by Naghoosi
et al. [9] based on statistical properties of process vari-
ables. Wang & Chen [12] revised the chattering index
and proposed an online method to detect and remove the
chattering alarms due to oscillation.

This paper is a continuing study of our previous work
[12], motivated by two drawbacks revealed in applying
the chattering indices in [8][12] to some industrial alarm
signals. First, the rate of missing detection sometimes
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is large, because the chattering indices are essentially
weighted averages and are based on alarm run lengths
that are not good measures of chattering alarms. Second,
the chattering indices can only indicate the presence or
absence of chattering alarms in collected alarm samples,
but cannot tell which alarm sample is chattering.

This paper has two main contributions.

• Two rules are formulated to detect the chattering
alarms, based on the alarm durations and interval-
s. The two rules resolve the above-mentioned two
drawbacks of the existing chattering indices in [8][12]
that are based on the weighted averages of alarm run
lengths.

• A novel online method is proposed to remove the
chattering alarms due to random noise and oscilla-
tion, by exploiting the two rules and the m-sample
delay timer. The proposed method is designed in a
systematic manner by considering requirements on
three performance indices, namely, the false alarm
rate (FAR), missed alarm rate (MAR) and averaged
alarm delay (AAD).

The proposed method makes significant improvements
over the method in our earlier work [12]. First, the ap-
plicability is broaden to chattering alarms due to random
noise and oscillation, while the method in [12] is limited
to the chattering alarms caused by oscillation. Second, the
proposed method is more effective, because it is based new
rules in detection of chattering alarms, and looks directly
at the regularity of some metrics of alarm signals, while
the method in [12] is based on the revised chattering index
suffering from the above-mentioned drawbacks and takes
an indirect approach by detecting the oscillation in process
signals in the first place.

The rest of the paper is organized as follows. Section 2
reviews the two chattering indices and formulates two rules
to detect chattering alarms. The proposed online method
is presented in Section 3, and its effectiveness is illustrated
via industrial examples in Section 4. Section 5 concludes
the paper.
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2. DETECTION OF CHATTERING ALARMS

This section discusses the definition of chattering alarms,
and the drawbacks of the existing chattering indices. Next,
two novel rules are formulated to detect chattering alarms.

2.1 Definition of chattering alarms

The industrial standard ISA-18.2 [7] says “a chattering
alarm repeatedly transitions between the alarm state and
the normal state in a short period of time.” Synonyms of
a chattering alarm are the repeating and fleeting alarms,
which are respectively defined as “the same alarm raising
and clearing repeatedly over a period of time” and as “the
alarms which are raised and cleared shortly afterwards”
from an industrial guide EEMUA-191 [3].

These definitions contain some vagueness that comes from
the uncertainty of the short period of time that a chatter-
ing alarm is raised and cleared. ISA-18.2 [7] and Hollifield
& Habibi [5] suggest the first pass identification of the
worse chattering alarms as the alarms that repeat more
than three times per minute, i.e., the short period is 20
sec. Rotherberg [10] define a chattering/repeating alarm
as the one that is activated and cleared 10 or more times
within 1 min/15 min, i.e., the short period is 6 sec for
chattering alarm, and 90 sec for repeating alarms. The
alarms being activated and cleared within such a short
period of 6 sec, 20 sec or even 90 sec, which are usually too
short for operators taking action and adjusting the process
to clear alarms, are very likely to be nuisance alarms, and
are regarded as chattering alarms.

2.2 Chattering indices and their drawbacks

Suppose that the process variable x(t) is available, and is
configured with a high alarm with trippoint xtp. Then the
alarm signal xa(t) is generated as

xa (t) =

{

1, if x (t) ≥ xtp
0, if x (t) < xtp

. (1)

Another form of the alarm signal is to take the value of
‘1’ only at the time instant when the non-alarm state is
switched to the alarm state, i.e.,

x′a (t) =

{

1, if x (t− 1) < xtp and x (t) ≥ xtp
0, otherwise

. (2)

The run length, denoted as r, is defined as

r := t2 − t1 − 1, (3)

where

x′a (t1) = 1, x′a (t2) = 1,

t2
∑

t=t1

x′a (t) = 2, for t2 > t1.

The chattering index proposed by Kondaveeti et al. [8] is

ψ =

∑

r ACr/r
∑

r ACr
, (4)

where r is the run length in (3) and ACr is the total
number of r. A cutoff threshold of ψ is 0.05 alarms/sec,
determined by a rule of thumb from ISA-18.2 standard

that alarms repeating more than three times per minute
are considered chattering.

Rule 1 [8]. Chattering alarms are claimed to be present
when ψ ≥ 0.05.

To incorporate the length of collected alarm samples, a
revised chattering index was proposed in [12],

η =
2
∑

r ACr/r

N
, (5)

where N is the data length of x′a(t) in (2). The cutoff
threshold η = 0.005 is based on the same rule of thumb
from ISA-18.2 standard that three alarms caused by oscil-
lation are evenly spread in one minute.

Rule 2 [12]. Chattering alarms due to oscillation are
claimed to be present when η ≥ 0.005.

Both ψ in (4) and η in (5) have been demonstrated to be
the valid measures of chattering alarms in some industrial
examples; however, the indices have the following draw-
backs. First, as weighted averages, the indices may miss
the detection of chattering alarms. As a simple example,
if there are two alarm run lengths 21 sec and 20 sec, then
ψ = 0.0488 so that Rule 1 detects no chattering alarms. If
the two run lengths are equal to 20 sec, then a controversial
conclusion is obtained from Rule 1. Second, the run length
is not a good measure of chattering alarms. For instance,
if an alarm rises up and disappears in a short period, and
another similar alarm occurs again after a rather long time,
then the run length will be quite large and these types of
alarms cannot be detected as chattering ones (see Fig. 2
appeared later for an example). Finally, both indices only
tell if a set of collected alarm samples contains chattering
alarms, but cannot pinpoint the location of chattering
alarms. In the process of removing chattering alarms, it
is necessary to tell which one is the chattering alarm and
thus should be removed.

2.3 Two rules to detect chattering alarms

In this subsection, two rules are formulated to detect
chattering alarms based on two metrics, namely, the alarm
duration and the alarm interval. The alarm duration,
denoted as T1, is the time duration of adjacent ‘1’s for
xa(t) in the first form (1), i.e.,

T1 := t2 − t1 + 1, (6)

where

xa(t1 − 1) = 0, xa(t2 + 1) = 0,
t2
∑

t=t1

xa (t) = t2 − t1 + 1, for t2 > t1.

The alarm interval, denoted as T0, is the time interval
from the clearance of an alarm to the occurrence of the
next alarm, i.e.,

T0 := t2 − t1 + 1, (7)

where

xa(t1 − 1) = 1, xa(t2 + 1) = 1,
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t2
∑

t=t1

(1− xa (t)) = t2 − t1 + 1, for t2 > t1.

Next, we present the following proposition associated with
Rules 1 and 2.

Proposition 1. If the alarms with run lengths no larger
than r0 are removed, then the chattering index ψ in (4) is
always smaller than 1/r0, and the revised chattering index
η in (5) is always smaller than 2/r2

0
.

Proof of Proposition 1. If all run lengths are larger than
r0, then

ψ =

∑

r ACr/r
∑

r ACr
<

∑

r ACr/r0
∑

r ACr
=

1

r0
.

The inequality r > r0 implies that
∑

r ACr < N/r0, ∀r >
r0, leading to,

η =
2
∑

r ACr/r

N
<

2N/r20
N

=
2

r2
0

.

Even though the proof of Proposition 1 is rather simple,
the practical implication of Proposition 1 is significant.
That is, there is no need to introduce the chattering indices
ψ in (4) and η in (5) as well as Rules 1 and 2 to detect the
chattering alarms. All the chattering alarms detected by
Rules 1 and 2 can always be found by directly looking at
whether there are alarms having the run lengths less than
r0 = 1/0.05 = 20 sec. However, the converse statement is
not true, namely, some chattering alarms with run lengths
less than 20 sec may be missed by Rules 1 and 2 that are
based on the averaged statistics ψ and η, respectively.

Based on Proposition 1, we formulate a new rule to detect
the chattering alarms.

Rule 3a. If the alarm duration T1 or the alarm interval T0
is less than 20 sec, then the chattering alarm is present.

Rule 3a is a hard classification of chattering alarms. The
threshold 20 sec is based on the same rule of thumb from
ISA-18.2 standard used for Rules 1 and 2. The threshold
20 sec can be regarded as a default choice, and could be
adapted to the character of alarm signals; see Example 1
in Section 4 for illustration.

To accommodate with the chattering alarms caused by
oscillation, a complementary rule is proposed along with
Rule 3a,

Rule 3b. If the alarm duration T1 or the alarm interval
T0 is kept constant, then the chattering alarm is present.

If T1 or T0 is constant in a long period of time, then it
is very likely that no operator responses are involved, and
the appearance and clearance of alarms are on their own,
so that these alarms are chattering. A regularity test will
be presented later in Section 3 to perform a statistical test
on whether T1 or T0 is a constant.

3. REDUCTION OF CHATTERING ALARMS

This section proposes an online method to reduce the
number of chattering alarms by exploiting the m-sample
delay timer.

The m-sample delay timer raises (clears) an alarm if and
only if m consecutive samples of the alarm signal xa(t) are
‘1’s (‘0’s). A proper design of the m-sample delay timer,
namely, the selection of the factor m, should meet with
the requirements on the FAR, MAR and AAD.

If xa(t) is an independent and identically distributed (IID)
sequence, the FAR, MAR and AAD for them-sample delay
timer are [13],

FAR =
qm−1

1
(1− qm

2
)

qm−1

1
(1− qm

2
) + qm−1

2
(1− qm

1
)
, (8)

MAR =
pm−1

2
(1− pm

1
)

pm−1

2
(1− pm

1
) + pm−1

1
(1− pm

2
)
, (9)

AAD =
1− pm

1

p2pm1
, (10)

where q1 and p2 respectively are the FAR and MAR for
the case that no delay timer is used, and p1 := 1− p2 and
q2 := 1− q1.

Based on Rules 3a and 3b, the factorm of the delay timer is
selected as m = 20 or another larger value. The chattering
alarms with alarm duration or interval less than m sec are
removed by using the m-sample delay timer. Hence, the
FAR or MAR will be reduced significantly. Meanwhile,
the increment of AAD needs to be controlled. Eq. (10)
implies that the AAD does not deviate too much from m
if p2 is small, but the AAD increases very quickly with the
increment of m for a large value of p2.

It is ready to propose the online method, by assuming the
following assumptions:

A1. The past samples of the alarm signal xa(t) in the
normal and abnormal conditions are available.

A2. The upper limits of FAR, MAR and AAD, respective-
ly denoted as RFAR, RMAR and RAAD, are known
a priori.

A3. The alarm signal xa(t) is IID except the deterministic
components that it may contain.

A4. The alarm signal xa(t) is in the non-alarm state for
the majority of time.

The past samples of xa(t) in Assumption A1 is used
to estimate the FAR q1 and MAR p2 of xa(t) where
the m-sample delay timer is not used. Thus, owing to
Assumptions A2 and A3, the requirement of RFAR or
RMAR impose the lower bound mL of the factor m for
the delay timer from (8) or (9), while the RAAD gives the
the upper bound mU of m from (10).

The proposed method consists of the following steps.

Step 1. Initialize the factor m = 20 for the m-sample delay
timer based on Rule 3a, and set the starting position ts
of the most-recent alarm data segment {xa(t)}tet=ts

as the
current time index t, i.e., ts = t.

Step 2. Select the time window of the alarm data segment
{xa(t)}tet=ts

as one hour, i.e., te = ts +3600− 1, and check
whether the alarm data segment starts and ends with ‘0’;
otherwise, goes to Step 4 to wait for more alarm samples
till the clearance of the alarm state.
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Step 3a. If {xa(t)}tet=ts
is ready, then apply the delay timer

with m = 20 to the segment to yield a new set of alarm
samples denoted as {x̃a(t)}tet=ts

.

Step 3b. Compute the alarm duration sequence T1(l) in (6)

for {x̃a(t)}tet=ts
, and perform the regularity test in Remark

#1 on T1(l). If the regularity test is passed, then update
the factor m as

m = min

(

mU , T̄1 +
ST1√

2 · RFAR

)

, (11)

where mU is the upper bound of m confined by the
requirement on the RAAD in Assumption A2, and T̄1
and ST1

are respectively the sample mean and standard
deviation of T1(l). If the regularity test fails, then there is
no need to update m = 20.

Step 3c. Update the starting and ending positions, i.e.,
ts = te and te = ts + 3600− 1.

Step 4. Apply the m-sample delay timer to the current
alarm sample xa(t) to yield the alarm signal to be pre-
sented to users, denoted as x̂a(t). Note that the previous
samples xa(t −m + 1), · · · , xa(t − 1) as well as x̂a(t − 1)
are required by the delay timer.

Step 5. Wait for the next alarm sample xa(t) with t = t+1
and repeat Steps 2-4.

There are several remarks to be made for the above steps.

Remark #1: In Step 3b, the regularity test is performed
to tell whether the alarm duration is kept constant. The
idea of the regularity test is inspired from the oscilla-
tion detection methods proposed by Thornhill et al. [11].
The coefficient of variation (CV) of the alarm duration
sequence T1(l) is introduced, i.e., CV := σT1

/µT1
, where

µT1
and σT1

are the mean and standard deviation of T1 (l),
respectively. A hypothesis test is formulated based on the
CV,

H0 : CV = 1, H1 : CV > 1, (12)

where H0 and H1 represent the null and alternative hy-
potheses, respectively. The (1− α) 100% confidence inter-
val for CV is [4],

√
L− 1ĈV

√

χ2

L−1,1−α/2

< CV <

√
L− 1ĈV

√

χ2

L−1,α/2

, (13)

where ĈV = ST1
/T̄1 and χ2

L−1,α/2 is the 100α/2-th

percentile of a chi-square distribution with L − 1 degree
of freedom. Here α is a small positive real number, e.g.,
α = 0.05. Symbols T̄1 and ST1

respectively stand for
the estimates of µT and σT from the collected samples

{T1 (l)}Ll=1
:= {T1 (1) , · · · , T1 (L)}, i.e.,

T̄1 =
1

L

L
∑

l=1

T1 (l) , ST1
=

√

√

√

√

1

L− 1

L
∑

l=1

(

T1 (l)− T̄1
)2
. (14)

From (12) and (13), if the inequality

RT1
:=

√

χ2

L−1,α/2√
L− 1ST1

/T̄1
> 1 (15)

holds, then H0 is rejected with the type-I error equal to
α, so that the alarm duration T1 (l) is claimed to be non-
constant.

Remark #2: If the alarm duration T1 (l) passes the regu-
larity test, then the factor m of the delay timer needs to
be updated as follows. Under Assumption A4, xa (t) is in
the non-alarm state for the majority of time, so that the
updated value of m should meet with the requirement on
the FAR, i.e.,

Pr (T1 (l) > m) ≤ RFAR.

Applying Chebyshev’s inequality to T1 (l) yields

Pr (T1 − µT1
> γT1

) ≤
σ2

T1

2γ2T1

.

Thus, γT1
is obtained as

γT1
=

σT1√
2 · RFAR

,

In practice, µT1
and σT1

are replaced by their estimates T̄1
and ST1

in (14), respectively. Then, the updating equation
of m is obtained as (11).

Remark #3: If the opposite of Assumption A4 is true,
i.e., xa(t) is in the alarm-state for the majority of time,
then the proposed method is applicable with the following
minor modifications. First, the alarm data segment in
Step 2 should start and end with ‘1’s instead of ‘0’s.
Second, the alarm interval sequence T0(l) in (7) should
replace the alarm duration sequence T1(l) in Step 3b. That
is, the regularity test in (15) becomes

RT0
:=

√

χ2

L−1,α/2√
L− 1ST0

/T̄0
> 1, (16)

where T̄0 and ST0
are the counterparts of T̄1 and ST1

in
(14) for T0(l), respectively; the update of m is made to
satisfy the requirement on the MAR, i.e., the counterpart
of (11) is

m = min

(

mU , T̄0 +
ST0√

2 · RMAR

)

.

4. EXAMPLES

Two industrial examples are presented here to support
Rules 3a and 3b, and to illustrate the effectiveness of the
proposed method. The data samples in the examples are
collected with the sampling period h = 1 sec at a large-
scale thermal power plant at Shandong Province in China.

Example 1. This example illustrates that the delay timer
with m = 20 is effective in removing the chattering alarms
therein, and it is straightforward to adapt the factor m
to the character of signals under study, in order to have a
smaller increment of the AAD.

The process variable x(t) is the range of measurements
from 54 temperature sensors installed at stator outlet
pipes for a power generator; a high alarm arises if the
temperature range is larger than 8 degrees. The alarms in
Fig. 1 are raised and cleared quickly for 1117 times in 24
hours; see Fig. 2 for a detailed visualization of these signals
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Fig. 1. (a) process variable x(t) (solid) and alarm trippoint
xtp (dash), (b) alarm signal xa(t) in Example 1
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Fig. 2. (a) process variable x(t) (solid) and alarm trippoint
xtp (dash), (b) alarm signal xa(t) in 1 hour for
Example 1
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Fig. 3. (a) number of alarms per hour, (b) histogram of
the alarm duration in Example 1

in 1 hour. Fig. 3 presents the number of alarms per hour
and the histogram of the alarm durations. All the 1117
alarm durations are less than 6 sec. Hence, according to
Rule 3a, all the 1117 alarms are regarded as chattering,
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Fig. 4. (a) process variable x(t) (solid) and its alarm trip-
point xtp (dash), (b) alarm signal xa(t) in Example 2
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Fig. 5. (a) process variable x(t) (solid) and its alarm
trippoint xtp (dash), (b) alarm signal xa(t) in 1 hour
for Example 2
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Fig. 6. (a) number of alarms per hour, (b) histogram of
the alarm intervals in Example 3

and can be removed via the m-sample delay timer with
the default choice m = 20. Since all the alarm durations
are less than 6 sec, a much smaller factor m = 6 could be
used in order to have a smaller value of the AAD.
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Example 2. The example demonstrates that the proposed
method can promptly detect the regularity of alarm dura-
tions or intervals so that the factor m of delay timers is
updated accordingly to reduce the number of chattering
alarms due to oscillation.

The process variable x(t) is the water level in a low-
pressure heater. If the level is higher than 38 mm, a high
alarm arises. Fig. 4 presents the samples of the water
level and its alarm signals in 24 hours; see also Fig. 5
for a detailed visualization of these signals in 1 hour. No
operator response is made for the alarms associated with
x(t); thus, these alarms are chattering. As a matter of
facts, these chattering alarms have been present for more
than 6 months ever since the power plant is in operation.

Since the water level is above the alarm trippoint 38 mm
for the majority of the time (i.e., Assumption A4 is in-
valid), the alarm interval T0, instead of the alarm duration
T1, is the information source to update the factor m of the
delay timer, and the proposed method is implemented with
the modifications mentioned in Remark #3 (Section 3).
Fig. 6 presents the number of alarms per hour and the
histogram of the alarm interval of xa(t) in Fig. 4. There
are 244 alarms in 24 hours, among which 101 alarms have
the alarm intervals less than 20 sec. The oscillation causes
many alarms with intervals larger than 20 sec. The pro-
posed online method is applied, with the detailed results
for each data segment listed in Table 1, where Nxa

, Nx̂a

andNx̃a
are the number of alarms in xa(t), x̂a(t) and x̃a(t),

respectively. Here x̂a(t) and x̃a(t) are defined in Steps 3a
and Step 4 in Section 3, respectively. The statistics RT0

is defined in (16), and T̄0 and ST0
are the sample mean

and standard deviation for T0(l), respectively. Table 1
shows that the regularity of the alarm interval is promptly
detected, and the factorm is updated in the way consistent
with the variation of alarm intervals. The total number
of alarms is reduced from 244 in xa(t) to 28 in x̂a(t) by
the proposed method. By contrast, if the delay timer with
m = 20 were used for 24 hours without updating, the total
number of alarms in x̃a(t) would be 143.

5. CONCLUSION

Rules 3a and 3b were formulated to detect chattering
alarms caused by random noise and oscillation, based on
alarm durations and intervals. The two rules are capable
of overcoming the drawbacks of the existing chattering
indices that are based on the run lengths of alarms.
With the consideration on the FAR, MAR and AAD,
an online method was proposed to reduce the number of
chattering alarms by exploiting the m-sample delay timer.
The effectiveness of the proposed method was illustrated
via two industrial examples.
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