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Abstract:
The paper considers an active noise feedforward control where a noise consists of a sinusoidal
signal and its harmonic components. To overcome drawbacks of filtered-x least mean square
algorithm and delayed-x harmonics synthesiser algorithm, a new adaptive algorithm is proposed.
Then stability property of the new algorithm is clarified by using averaging technique and it is
shown that there always exists a stable equilibrium point. It is also remarkable that the new
algorithm does not require any information on the second path dynamics, i.e., the intervening
transfer function. Therefore, the new method could guarantee robust stability without on-line
second path modelling. Finally, numerical simulation results show the effectiveness of the new
algorithm.

Keywords: Active noise control, Least-squares algorithm, Nonlinear system, Stability analysis,
Averaging method.

1. INTRODUCTION

There have been a lot of literatures on active noise or
vibration control [Elliott and Sutton (1996), Fuller and von
Flotow (1995), Kuo and Morgan (1999), George and Panda
(2013)]. In this paper, a noise to be rejected is periodic, i.e.,
the noise consists of sinusoidal signals with a fundamental
frequency and its some harmonic components. This type of
noise or vibration control problem is well known to occur in
many fields, e.g., cabin noise and vibration of automobiles
or aircrafts, sounds in ducts of factories etc. For narrow-
band noise control, as the control architectures, two main
approaches are well known; feedback from sensors to con-
trol actuators and feedforward to the control actuators
of a signal correlated with the disturbance. Controllers
[Landau et al. (2005), Sievers and von Flotow (1992)]
based on internal model principle belong to the former
and the least mean square (LMS) algorithm belongs to the
latter.

LMS algorithm has been still playing an important role
in the field of active noise feedforward control. To deal
with the case that the canceling signal cannot be directly
applied to the primary signal due to an intervening transfer
function, the filtered-x LMS (FxLMS) algorithm has been
proposed and its characteristics have been investigated
in detail [Morgan (1980), Burgess (1981), Morgan and
Sanford (1992), Bodson et al. (1994)].

Concerning to FxLMS algorithm, it was pointed out that
stability is not always guaranteed in the case of low SNR
error input or fluctuation of secondary path. Therefore,
its convergence property has still received many attentions
[Vicente and Masgrau (2006), Xiao et al. (2008), Ardekani
and Abdulla (2010)].

Of course, FxLMS is extended to carry on-line second path
modelling, but it needs an extra noise injection to the
actuator and requires a lot of computational load. Many
techniques have still been proposed to improve FxLMS
algorithm [Akhtar et al. (2008), Lan et al. (2002), Lin
and Liao (2008), Hinamoto and Sakai (2006), Wang et al.
(2006), Xiao (2011) ].

Then, in order to overcome those drawbacks of FxLMS,
the delayed-x harmonics synthesiser (DXHS) algorithm
has been proposed as well as its extension for on-line
second path modelling [Shimada et al. (1998), Shimada
et al. (1999)].

However, stability consideration in DXHS algorithm is
still not enough because it may become unstable due to
estimation errors of the intervening transfer function.

In this paper, a new DXHS algorithm is proposed and
its stability analysis is carried by using the averaging
method [Sastry and Bodson (1989)]. Then it is clarified
that the new method makes many equilibrium points in the
space of adjustable parameters and guarantees that some
of them are always stable equilibrium points. Moreover,
the new method does not require any information on the
intervening transfer function, and therefore the on-line
second path modelling is not needed.

The paper is organized as follows: in Section 2, an active
noise control system is set up. Then the conventional and
the new DXHS algorithms are shown. Section 3 carries
the stability analysis by characterizing all the equilibrium
points, deriving an averaged system and then showing that
there always exists stable equilibrium point. In Section 4,
the numerical simulation results show the effectiveness of
the new method and also it is shown that the new method
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would guarantee global stability. Section 5 is for some
concluding remarks.

2. CONVENTIONAL AND NEW DXHS
ALGORITHMS

First the conventional DXHS algorithm is summarized,
then a new DXHS algorithm will be proposed.

2.1 The Conventional DXHS Algorithm

Figure 1 shows a block diagram of active noise control
system based on DXHS algorithm where d(t) is a noise
signal to be suppressed, y(t) is a control signal, u(t) is a
command signal to the actuator as the secondary source,
and e(t) is an error signal at control point. G(s) expresses
a transfer function which consists of both the actuator’s
dynamics and a transmission characteristic of the second
path.

Here it is assumed that the noise d(t) consists of sinusoidal
signals with a fundamental frequency ω and its harmonic
components where ω is known. Then d(t) cannot be
observed directly, only the error signal e(t) is available to
generate the command signal u(t) adaptively.

Fig. 1. Active noise control based on DXHS algorithm

Suppose d(t) and u(t) are given as

d(t) =
m∑

k=1

αk sin (kωt + δk) (1)

u(t) =
m∑

k=1

ak(t) sin (kωt + φk(t)) , (2)

where ak(t) and φk(t) are adjustable parameters in the
DXHS algorithm. The control signal y(t) is generated by
u(t) through G(s). If the dynamics of G(s) is much faster
than the adaptive dynamics of ak(t) and φk(t), i.e., the
adaptation speed is slow enough, then y(t) and e(t) can
be expressed as

y(t) =
m∑

k=1

gkak(t) sin (kωt + φk(t) + θk) (3)

e(t) = d(t) + y(t)

=
m∑

k=1

αk sin (kωt + δk)

+
m∑

k=1

gkak(t) sin (kωt + φk(t) + θk) (4)

where gk and θk are defined by

gk := |G(jkω)|, θk := 6 G(jkω). (5)

Therefore, in order to force e(t) to be zero, ak(t) and φk(t)
are needed to be immediately tuned as

ak(t) = αk/gk, φk(t) = π + δk − θk. (6)

The adaptive rule of ak(t) and φk(t) in the conventional
DXHS algorithm [Shimada et al.(1998 and 1999)] is ex-
pressed in continuous-time version as follows.

ȧk(t) =−γak

∂e(t)2

∂ak(t)
= −2γak

e(t)
∂e(t)
∂ak(t)

=−2γak
gke(t) sin (kωt + φk(t) + θk) (7)

φ̇k(t) =−γφk

∂e(t)2

∂φk(t)
= −2γφk

e(t)
∂e(t)
∂φk(t)

= −2γφk
gkak(t)e(t) cos (kωt + φk(t) + θk) (8)

where k = 1, 2, · · · ,m, the parameters γak
and γφk

are pos-
itive constants. Notice that you should use some estimated
values of gk and θk in (7) and (8) if their exact ones are
not known.

2.2 A New DXHS Algorithm

Instead of (2), the command signal u(t) in a new DXHS
algorithm is proposed as

u(t) =
m∑

k=1

ak(t) sin (kωt + `kφk(t)) (9)

where `k is any positive integer (≥ 2). Notice that this u(t)
could be equal to (2) if `k = 1 for ∀k.

The error signal e(t) is now given by

e(t) =
m∑

k=1

αk sin (kωt + δk)

+
m∑

k=1

gkak(t) sin (kωt + `kφk(t) + θk) . (10)

An adaptive rule of ak(t) and φk(t) in (9) is given by

ȧk(t) =−µak
e(t) sin (kωt + φk(t)) (11)

φ̇k(t) =−µφk
e(t) cos (kωt + φk(t)) (12)

where µak
, µφk

are positive constants. In oder to keep ak(t)
positive, when ak(t) is tuned to be negative, ak(t) and
φk(t) are reset as |ak(t)| and φk(t) + π, respectively.

Notice that the above rules (11) and (12) do not include
the dynamics of G(s), i.e., gk and θk, which are needed
in the conventional DXHS with (7) and (8). This is an
advantage of the new algorithm because gk and θk are very
difficult to estimate in advance and/or they are sometimes
time-varying.
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3. STABILITY ANALYSIS

The aim of this section is to analyze the stability of active
noise control system in Fig. 1. The system is nonlinear
and it is difficult to analyze the stability directly, so
here the averaging method (Sastry and Bodson (1989)) is
used. Before considering the stability analysis, let some
notations be prepared.

The adjustable parameters ak(t), φk(t) (k = 1, · · · ,m)
are collected as an adjustable parameter vector x(t) :=
[x1(t)T , x2(t)T ]T ∈ R2m where

x1 := [a1, a2, · · · , am]T , x2 := [φ1, φ2, · · · , φm]T . (13)

Denoting α := [α1, α2, · · · , αm]T ∈ Rm and setting all of
µak

and µφk
as ε ∈ (0, ε0] for simplicity, the dynamics of all

ak(t), φk(t) (k = 1, · · · ,m) in (11) and (12) are expressed
in a compact form by

ẋ1(t) =−ε {Wss(t, x2(t))α + Wsgs(t, x2(t))x1(t)} (14)

ẋ2(t) =−ε {Wcs(t, x2(t))α + Wcgs(t, x2(t))x1(t)} (15)
where Wss(t, x2),Wsgs(t, x2),Wcs(t, x2),Wcgs(t, x2) ∈
Rm×m and their (k, n) elements are respectively given by

wss
kn :=

1
2
{cos((k − n)ωt + φk − δn)

− cos((k + n)ωt + φk + δn)} (16)

wsgs
kn :=

gn

2
{cos((k − n)ωt + φk − `nφn − θn)

− cos((k + n)ωt + φk + `nφn + θn)} (17)

wcs
kn :=

1
2
{− sin((k − n)ωt + φk − δn)

+ sin((k + n)ωt + φk + δn)} (18)

wcgs
kn :=

gn

2
{− sin((k − n)ωt + φk − `nφn − θn)

+ sin((k + n)ωt + φk + `nφn + θn)} . (19)

(14) and (15) are rewritten in more compact form as
ẋ(t) = −εf(t, x(t)), x(0) = x0 (20)

where

f(t, x) :=
[

Wsgs(t, x2)
Wcgs(t, x2)

]
x1 +

[
Wss(t, x2)
Wcs(t, x2)

]
α. (21)

It is easy to see that the dynamical system (20) with (21)
has many equilibrium points, all of which can be given as
xeq = [xT

1eq, x
T
2eq]

T where

x1eq =
[
α1

g1
,
α2

g2
, · · · , αm

gm

]T

(22)

x2eq =
[
(2k1 + 1)π + δ1 − θ1

`1
, · · · , (2km + 1)π + δm − θm

`m

]T

(23)
with k1, · · · , km any integers.

Now we will discuss about stability of those equilibrium
points.

The averaging method [Sastry and Bodson (1989)] relies
on the fact that f(t, x) has the mean value fav(x), i.e.,

there exists a continuous and strictly decreasing function
γ : R+ → R+ such that γ(H) → 0 as H → ∞ and∥∥∥∥∥∥ 1

H

t0+H∫
t0

f(τ, x) − fav(x)dτ

∥∥∥∥∥∥ ≤ γ(H) (24)

for all t0 ≥ 0,H ≥ 0, x ∈ Bδ(xeq) where Bδ(xeq) is a closed
ball with radius δ centered at xeq ∈ Rn. And the following
system is called the averaged system of (20).

ẋav(t) = −εfav(xav(t)), xav(0) = x0 (25)

Theorem 1. Associated with the original system (20) with
(21), the averaged system (25) is given by

fav(x) :=
[

W av
sgs(x2)

W av
cgs(x2)

]
x1 +

[
W av

ss (x2)
W av

cs (x2)

]
α (26)

where W av
ss (x2),W av

sgs(x2),W av
cs (x2),W av

cgs(x2) ∈ Rm×m

are diagonal with (k, k) elements respectively given by

wav,ss
kk :=

1
2

cos(φk − δk) (27)

wav,sgs
kk :=

gk

2
cos((`k − 1)φk + θk) (28)

wav,cs
kk :=−1

2
sin(φk − δn) (29)

wav,cgs
kk :=

gk

2
sin((`k − 1)φk + θk). (30)

Proof. It is easy to see that
h(τ, x) := f(τ, x) − fav(x)

=
[

Vsgs(τ, x2)
Vcgs(τ, x2)

]
x1 +

[
Vss(τ, x2)
Vcs(τ, x2)

]
α

(31)

where Vss(τ, x2), Vsgs(τ, x2), Vcs(τ, x2), Vcgs(τ, x2) ∈ Rm×m

are respectively equal to Wss(t, x2), Wsgs(t, x2), Wcs(t, x2),
Wcgs(t, x2) in (16) - (19) except (k, k) elements given by

vss
kk :=−1

2
cos(2kωτ + φk + δk) (32)

vsgs
kk :=−gn

2
cos(2kωτ + (`k + 1)φk + θk) (33)

vcs
kk :=

1
2

sin(2kωτ + φk + δk) (34)

vcgs
kk :=

gn

2
sin(2kωτ + (`k + 1)φk + θk). (35)

Notice that for any H > 0,∣∣∣∣∣∣
t0+H∫
t0

vss
kndτ

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
t0+H∫
t0

vcs
kndτ

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
t0+H∫
t0

vsgs
kn

gn
dτ

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
t0+H∫
t0

vcgs
kn

gn
dτ

∣∣∣∣∣∣ < ckn

where

ckn =


1

2kω
(for k = n)

1
|k − n|ω

+
1

(k + n)ω
(for k 6= n)

.

Therefore, it is straightforward to see that by setting
γ(H) = 2m(gmax‖x1‖+‖α‖)

ω /H with gmax := max{gk; k =
1, · · · ,m}, (24) holds, which means that (25) with (26) is
an averaged system of (20) with (21). (Q.E.D.)
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Remark 1 All the points xeq given in (22) and (23) are also
equilibrium points of the averaged system (25) with (26).
In the original system (20) with (21), the dynamics of x1k

and x2k depend on not only x1k and x2k but also all x1n’s
and x2n’s for n = 1, 2, · · · , k − 1, k + 1, · · · , m. But, in the
averaged system (25) with (26), the dynamics of xav1k and
xav2k are independent of all xav1n and xav2n for n 6= k. 2

Now we can apply the well known theorems using the
averaging techniques [Sastry and Bodson (1989)].

Theorem 2. Associated with the original system (20) with
(21) and its averaged system (25) with (26) where x(0) =
xav(0) ∈ Bδ(xeq), there exists ψ(ε) such that given H ≥ 0,

‖x(t) − xav(t)‖ ≤ ψ(ε)bH (36)

for some bH ≥ 0, εH > 0, and for all t ∈ [0,H/ε] and
ε ≤ εH .

Proof. This theorem comes from Theorem 4.2.4 in (Sas-
try and Bodson (1989)) and what we need to show is that
all the conditions of Theorem 4.2.4 hold.

In fact, it is easy to see that f(t, x) in (21) is Lipschitz in
x ∈ Bδ(xeq) as well as fav(x) in (26) is.

Furthermore, with respect to h(τ, x) defined in (31), it is
easy to verify that∥∥∥∥∥∥ 1

H

H∫
t0

h(τ, x − xeq)dτ

∥∥∥∥∥∥ ≤ γ(H)‖x − xeq‖∥∥∥∥∥∥ 1
H

H∫
t0

∂h

∂x
(τ, x − xeq)dτ

∥∥∥∥∥∥ ≤ γ(H).

The observation above shows that all the conditions
of Theorem 4.2.4 in (Sastry and Bodson (1989)) hold.
(Q.E.D.)

Theorem 3. If xeq given in (22) and (23) is an exponen-
tially stable equilibrium point of the averaged system (25)
with (26), then the point xeq is also exponentially stable
for the original system (20) with (21) under that ε is
sufficiently small.

Proof. This theorem also comes from Theorem 4.2.5 in
in (Sastry and Bodson (1989)). (Q.E.D.)

Now we will consider the stability of the equilibrium points
xeq given in (22) and (23). In order to do this, we will
linearize the averaged system (25) with (26) in the vicinity
of the equilibrium xeq.

Recall Remark 1, the averaged system (25) with (26)
can be regarded as a set of independent subsystems, kth
subsystem of which is

ȧk(t) =−εgk

2
ak(t) cos ((`k − 1)φk(t) + θk)

−εαk

2
cos (φk(t) − δk) (37)

φ̇k(t) =−εgk

2
ak(t) sin ((`k − 1)φk(t) + θk)

+
εαk

2
sin (φk(t) − δk) . (38)

Suppose that (aeq,k, φeq,k) is an equilibrium point and let
ak(t) and φk(t) be described by ak(t) = aeq,k + ∆ak(t)
and φk(t) = φeq,k + ∆φk(t). Then the kth averaged
subsystem (37) and (38) can be linearized in the vicinity
of (∆ak, ∆φk) = (0, 0) as[

∆ȧk(t)
∆φ̇k(t)

]
= Ak

[
∆ak(t)
∆φk(t)

]
(39)

where

Ak =
ε

2

[
gk cos (φeq,k − δk) αk`k sin (φeq,k − δk)
−gk sin (φeq,k − δk) αk`k cos (φeq,k − δk)

]
(40)

Then the following theorem on stability of the equilibrium
points xeq is obtained.
Theorem 4. Consider the original system (20) with (21)
and its equilibrium points xeq in (22) and (23). The
equilibrium point xeq is asymptotically stable if for k =
1, 2, · · · ,m

cos (φeq,k − δk) < 0. (41)

Proof. It is easy to see that the linearized model (39)
is asymptotically stable, i.e., Ak in (40) is stable, if and
only if the condition (41) holds. Therefore, the equilibrium
point xeq is asymptotically stable in the averaged system
(25) with (26) as well as in the original system (20) with
(21) because of Theorem 3. (Q.E.D.)

Figure 2 shows distribution of the equilibrium points in
the ak-φk plane in the case of `k = 5 and δk = 0. Note
that there exists `k equilibrium points in the φk’s interval
(−π, π] on the line of ak = αk/gk. In the case of δk = 0, the
equilibrium point in the region of either (π

2 , π] or (−π,−π
2 )

is stable, the other points are unstable; red circles are
stable and red crosses unstable. Therefore, when `k is even,
the number of stable equilibrium points is always `k/2. On
the other hand, when `k is odd, it is either (`k − 1)/2 or
(`k + 1)/2 (See that Fig. 2 shows the case of (`k − 1)/2).

Fig. 2. Distribution of equilibrium points (`k = 5, δk = 0)

Remark 2 If `k = 1 for k = 1, 2, · · · ,m, which corresponds
to the conventional DXHS algorithm, the system (20) with
(21) has a unique equilibrium point in the range (−π, π] of
φk and it is stable if and only if −π/2 < θk < π/2 in the
case of δk = 0. But if `k ≥ 2, there always exists at least
one stable equilibrium point. This is important advantage
of the proposed method, compared with the conventional
algorithm. 2

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12089



Recall that in the adaptive rule of ak(t), φk(t) in (11) and
(12), to keep ak(t) positive, when ak(t) is tuned to be
negative, ak(t) and φk(t) are reset as |ak(t)| and φk(t)+π,
respectively. If this process would cause ak(t) to remain
on the line of ak = 0, the proposed algorithm could not
guarantee the global stability. In this sense, it is important
to see whether ak(t) remains on the line of ak = 0 or not.

Note that the dynamical equations of ak(t), φk(t) in (25)
with (26) on the line of ak = 0 satisfy

ȧk(t) = −εαk

2
cos(φk(t) − δk), φ̇k(t) =

εαk

2
sin(φk(t) − δk).

Figure 3 shows the behavior on the line of ak = 0 in
the case of δk = 0, where red arrows denote vector field
and blue dotted arrows show the resetting of ak(t) and
φk(t). It is easy to see that ak(t) gets closer to the line of
ak = 0 only when φk(t) ∈ (−π

2 , π
2 ). After ak(t) reaches to

ak = 0, ak(t) is reset to ak = 0 with either φk(t) ∈ (π
2 , π]

or φk(t) ∈ [−π,−π
2 ), and then ak(t) goes away from the

line of ak = 0. Therefore it concludes that the resetting
process never force ak(t) to remain on the line of ak = 0.

Fig. 3. Behavior on the line of ak = 0 in the case of δk = 0

4. NUMERICAL SIMULATIONS

4.1 The averaged system and its equilibriums

Figure 4 (a)-(d) show behaviors of the averaged system in
the ak-φk plane; (a) and (b) for `k = 1 with θk = −45 [deg]
and −135 [deg] respectively, and (c) and (d) for `k = 5 with
θk = −45 [deg] and −135 [deg] respectively. For simplicity,
the parameters are set as αk = gk = 1, δk = 0, ε = 10. The
red circles in the figures denote stable equilibrium points
and the red crosses are unstable ones.

Figure 5 shows time-histories ak(t), φk(t) of the aver-
aged system with `k = 5 with four different initial val-
ues (ak(0), φk(0)), i.e., (1) (0.1, 130), (2) (0.5, 50), (3)
(0.5,−10), and (4) (0.7,−90). The dotted lines denote
stable equilibrium values. The jump phenomenon in φk(t)
can be seen in the case of (3) at an instant when ak(t)
reaches to 0.

From the observation above, it seems to suggest that the
proposed algorithm provides not only local stability but
also global stability.

4.2 The original system and its averaged system

Here we will compare the behaviors of the original system
with its averaged system, where the noise signal’s param-
eters are set as ω = 2π × 40[rad/sec], m = 2, α1 = 1, α2 =

Fig. 4. Averaged system’s behaviors and its equilibrium
points

Fig. 5. Averaged system’s time-histories (` = 5)

0.5, δ1 = 0, and δ2 = −π/4. The parameters with respect
to G(s) are set as g1 = 1, g2 = 0.8, θ1 = −π/3, θ2 = −2π/3.
Note that the parameters on the adaptive algorithm are
`1 = `2 = 5 and ε = 10.

Fig. 6. Behaviors of Original(red curves) and Aver-
aged(green curves) systems (`1 = `2 = 5)

Figure 6 shows four behaviors of the original system
(red curves) and its averaged system (green curves) in
the a1-φ1 plane in Fig. (a) as well as in the a2-φ2

plane in Fig. (b), where each behavior’s initial point
x0 = (a1(0), a2(0), φ1(0), φ2(0))T is set as follows and
denoted by black square in the figures: (1) x0 =
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(0.1, 0.1, 130, 180)T , (2) x0 = (0.5, 1.5, 50, 150)T , (3) x0 =
(0.5, 2.0,−10,−20)T and (4) x0 = (0.7, 0.5,−90,−110)T .
Notice that red circles and red crosses denote stable and
unstable equilibrium points, which are given by (22) and
(23), i.e., x1eq = (α1/g1, α2/g2)T = (1, 5/8)T and x2eq =(

(2k1+1)+1/3
5 π, (2k2+1)+5/12

5 π
)T

. Table 1 shows all equi-
librium points of x2eq in the range of (−π, π] and whether
they are stable or unstable.

From the case (1) in Fig. 6, we can see that the averaged
system’s behavior (green curve) is almost equal to the
original system’s behavior (red curve) except the middle
and they converge to the same stable equilibrium point.
In the cases (2) and (3), the averaged system’s behaviors
look same as the original system’s ones, that is why red
curves cannot be seen there. Note that the average system
sometimes converges to an equilibrium point different from
the original system (see the a1-φ1 behavior of the case (4)
in Fig. 6).

Table 1. Equilibrium points x2eq

stable unstable stable

φ1eq [deg] (192) 120 48, -24 -96, -168

φ2eq [deg] (195) 123 51 -21, -93 -165

5. CONCLUSION

The paper proposed the new DXHS algorithm, by which
the active noise feedforward control is always stable with-
out any information on the second path dynamics, i.e., the
intervening transfer function. And also by using the aver-
aging method, this stability mechanism was investigated
under the assumption of slow adaptation.

The future researches are to investigate theoretically
whether the proposed algorithm has a property of global
stability or not, and to verify how well the proposed
algorithm works in practical situation (in discrete-time
version).
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